Integration of Optical and Thermal Models for Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Model
2.1. Thermal Sub-Model
2.2. Optical Sub-Model
2.3. Integration of Sub-Models
3. Experiments and Discussions
3.1. Sample Preparation
3.2. Electrical Properties
3.3. Thermal Properties
3.4. Optical Properties
3.5. Discussions
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bender, V.C.; Marchesan, T.B.; Alonso, J.M. Solid-State Lighting A Concise Review of the State of the Art on LED and OLED Modeling. IEEE Ind. Electron. Mag. 2015, 9, 6–16. [Google Scholar] [CrossRef]
- Kohári, Z.; Kollár, E.; Pohl, L.; Poppe, A. Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis. Microelectron. J. 2013, 44, 1011–1018. [Google Scholar] [CrossRef]
- Gärditz, C.; Winnacker, A.; Schindler, F.; Paetzold, R. Impact of Joule heating on the brightness homogeneity of organic light emitting devices. Appl. Phys. Lett. 2007, 90, 103506. [Google Scholar]
- Slawinski, M.; Bertram, D.; Heuken, M.; Kalisch, H.; Vescan, A. Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation. Organ. Electron. 2011, 12, 1399–1405. [Google Scholar] [CrossRef]
- Schwamb, P.; Reusch, T.C.G.; Brabec, C.J. Passive cooling of large-area organic light-emitting diodes. Organ. Electron. 2013, 14, 1939–1945. [Google Scholar] [CrossRef]
- Sturm, J.C.; Wilson, W.; Iodice, M. Thermal effects and scaling in organic light-emitting flat-panel displays. IEEE J. Sel. Top. Quantum. Electron. 1998, 4, 75–82. [Google Scholar] [CrossRef]
- Yang, L.; Wei, B.; Zhang, J. Transient thermal characterization of organic light-emitting diodes. Semicond. Sci. Technol. 2012, 27, 105011. [Google Scholar] [CrossRef]
- Poppe, A.; Pohl, L.; Kollár, E.; Kohári, Z.; Lifka, H.; Tanase, C. Methodology for thermal and electrical characterization of large area OLEDs. In Proceedings of the 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 38–44 March 2009. [Google Scholar]
- Chen, H.T.; Choy, W.C.H.; Hui, S.Y. Characterization, modeling, and analysis of organic light-emitting diodes with different structures. IEEE Trans. Power Electron. 2016, 31, 581–592. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Noh, Y.Y. Optical and thermal properties of large-area OLED lightings with metallic grids. Organ. Electron. 2012, 13, 184–194. [Google Scholar] [CrossRef]
- Bae, H.W.; Son, Y.H.; Kang, B.Y.; Lee, J.M.; Nam, H.; Kwon, J.H. Luminance uniformity study of OLED lighting panels depending on OLED device structures. Opt. Express 2015, 23, 30701–30708. [Google Scholar] [CrossRef]
- Bender, V.C.; Barth, N.D.; Pinto, R.A.; Alonso, J.M.; Marchesan, T.B. Scale-photo-electro-thermal model for organic light-emitting diodes. IET Optoelectron. 2016, 10, 100–110. [Google Scholar] [CrossRef]
- Kumar, M.; Gomes, J.; Pinto, A.; Pereira, L. Electro-thermal effects in large area white-organic light emitting diodes. In Proceedings of the Third International Conference on Applications of Optics and Photonics, Faro, Portugal, 8–12 May 2017. [Google Scholar]
- Ide, N.; Yamae, K.; Kittichungchit, V.; Tsuji, H.; Ota, M.; Komoda, T. Development of Extremely High Efficacy White OLED with over 100 Lm/W. J. Photopolym. Sci. Technol. 2014, 27, 357–361. [Google Scholar]
- Rakic, A.D. Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum. Appl. Opt. 1995, 34, 4755–4767. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Chen, Y.; Fu, X.; Peng, C.; So, F. Manipulating Refractive Index in Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 9595–9601. [Google Scholar] [PubMed]
- Moran, M.J.; Shapiro, H.N.; Munson, B.R.; DeWitt, D.P. Introduction to Thermal System Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Bergemann, K.J.; Krasny, R.; Forrest, S.R. Thermal properties of organic light-emitting diodes. Organ. Electron. 2012, 13, 1565–1568. [Google Scholar]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 2656. [Google Scholar]
- Qi, X.; Forrest, S.R. Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach. J. Appl. Phys. 2011, 110, 124516. [Google Scholar] [CrossRef]
- Watanabe, S.; Ide, N.; Kido, J. High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers. Jpn. J. Appl. Phys. 2007, 46, 1186–1188. [Google Scholar] [CrossRef]
- Tanaka, D.; Sasabe, H.; Li, Y.J.; Su, S.J.; Takeda, T.; Kido, J. Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. 2007, 46, 10–12. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar]
- Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 2001, 90, 5048–5051. [Google Scholar]
- Baldo, M.A.; O’Brien, D.F.; Thompson, M.E.; Forrest, S.R. Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 1999, 60, 14422–14428. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, W.; Shi, G.; Zhai, G.; Qian, B.; Li, J. Simultaneous enhancement of photo-and electroluminescence in white organic light-emitting devices by localized surface plasmons of silver nanoclusters. Nanotechnology 2017, 28, 085206. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Park, J.Y.; Hong, K.; Son, J.H.; Kima, S.; Lee, J.-L. The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes. Nanoscale 2016, 8, 6463–6467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Kim, T.W. Highly-efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots. Organ. Electron. 2018, 57, 305–310. [Google Scholar] [CrossRef]
- Lee, C.C.; Chang, M.Y.; Huang, P.T.; Chen, Y.C.; Chang, Y.; Liu, S.W. Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer. J. Appl. Phys. 2007, 101, 114501. [Google Scholar] [CrossRef]
- Barnea, S.N.; Sciuto, G.L.; Hai, N.; Shikler, R.; Capizzi, G.; Wo´zniak, M.; Polap, D. Photo-Electro Characterization and Modeling of Organic Light-Emitting Diodes by Using a Radial Basis Neural Network. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 11–15 June 2017; pp. 378–389. [Google Scholar]
- Pohl, L.; Kohári, Z.; Poppe, A. Vertical natural convection models and their effect on failure analysis in electro-thermal simulation of large-surface OLEDs. Microelectron. Reliabil. 2018, 85, 198–206. [Google Scholar] [CrossRef]
Area (cm2) | Thickness (mm) | Refractive Index | References | Interface Property | |
---|---|---|---|---|---|
Upper cover (glass) | 3 × 3 | 1 | 1.5 | [14] | |
Transparent, Fresnel equations considered | |||||
Cathode (Al) | 1 × 1 | 1 × 10−4 | 0.96526 + i 6.3996 | [15] | |
Reflective, Lambertian scattering | |||||
Organics | 1 × 1 | 1.8 × 10−4 | 1.75 | [16] | |
Transparent, Fresnel equations considered | |||||
Anode (ITO) | 1 × 1 | 1.5 × 10−4 | 1.8 | [14] | |
Transparent, Fresnel equations considered | |||||
Base (glass) | 4 × 4 | 1 | 1.5 | [14] | |
Thermal Conductivity (W/m∙K) | Density (kg/m3) | Specific Heat (J/kg∙K) | References | |
---|---|---|---|---|
Upper cover (glass) | 1.4 | 2.4 × 103 | 8.2 × 102 | [18,19] |
Cathode (Al) | 237 | 2.7 × 103 | 9 × 102 | [18,19] |
Organics | 0.2 | 1.2 × 103 | 1.7 × 103 | [18,20] |
Anode (ITO) | 8 | 7.2 × 103 | 3.4 × 102 | [20] |
Base (glass) | 1.4 | 2.4 × 103 | 8.2 × 102 | [18,19] |
Modeling Technology | Simulation Targets | References | ||
---|---|---|---|---|
Optical Features | Thermal Features | Electrical Features | ||
Successive network reduction (SURND) |
|
| [2,8] | |
Finite-element method (FEM) |
| [3,4] | ||
FEM + Computational fluid dynamics (CFD) |
|
| [5] | |
Photo-electro-thermal theory (PET) + Spectral power distribution (SPD) |
| [9] | ||
Equivalent circuits model |
| [10,11,12,13] | ||
Doping device model + Thin-film optics |
|
| [28] | |
Radial Basis Neural Network |
|
| [29] | |
Vertical natural convection models |
|
| [30] | |
FEM + Ray tracing |
|
| Proposed herein |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, A.-C.; Huang, Y.-J.; Huang, B.-L.; Sze, J.-R. Integration of Optical and Thermal Models for Organic Light-Emitting Diodes. Electronics 2019, 8, 17. https://doi.org/10.3390/electronics8010017
Wei A-C, Huang Y-J, Huang B-L, Sze J-R. Integration of Optical and Thermal Models for Organic Light-Emitting Diodes. Electronics. 2019; 8(1):17. https://doi.org/10.3390/electronics8010017
Chicago/Turabian StyleWei, An-Chi, Yih-Jong Huang, Bo-Lin Huang, and Jyh-Rou Sze. 2019. "Integration of Optical and Thermal Models for Organic Light-Emitting Diodes" Electronics 8, no. 1: 17. https://doi.org/10.3390/electronics8010017
APA StyleWei, A. -C., Huang, Y. -J., Huang, B. -L., & Sze, J. -R. (2019). Integration of Optical and Thermal Models for Organic Light-Emitting Diodes. Electronics, 8(1), 17. https://doi.org/10.3390/electronics8010017