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Abstract: In this paper, a new miniaturized compact dual-band microstrip slot antenna is presented.
To achieve the dual-band characteristics, two adjunct partial arc-shaped small slots are joined to
two main circular slots embedded in the ground of the antenna structure. With a reduced size
of 30 × 28.5 × 0.8 mm3, the proposed antenna presents a dual-band characteristic. The design is
optimized using a High Frequency Structure Simulator (HFSS) followed by experimental verifications.
An impedance bandwidth, for S11 ≤ 10 dB, that covers the 1.8 GHz and 2.4 GHz bands is
accomplished, which makes the proposed antenna basically suitable for hand-held devices and
medical applications. More applications such as digital communication system (DCS) 1.71–1.88 GHz,
personal communication services (PCS) 1.85–1.99 GHz, Universal and mobile telecommunications
system UMTS 1.92–2.17 GHz, Bluetooth 2.4–2.5 GHz, and Wi-Fi 2.4–2.454 GHz, Industrial Scientific
and Medical radio frequency (RF) band ISM-2.4 GHz, Wireless Local Area Network (WLAN-2.4) are
possible by simply changing one of the geometrical antenna dimensions. The antenna is characterized
by stable radiation patterns as well.

Keywords: slot antenna; medical applications; miniaturized antenna; arc-shaped; dual-band

1. Introduction

Conventional microstrip antennas have the attractive features of a low profile, light weight, ease of
analysis and fabrication, and ease of integration into microwave devices. However, they exhibit some
limitations such as single resonance frequency, low impedance bandwidth, low gain, larger size, and
polarization impurity. Among the planar antenna structures, the slot antenna is one of the most promising
candidates for multi-band antenna applications because, in addition to the aforementioned attractive
qualities, they inherently possess larger bandwidths and occupy less space which makes them promising
components for microwave applications [1–10]. In this frame, various designs of multi-band slot antennas
have been proposed [11–19]. Moreover, several techniques have been proposed in the literature to enhance
the parameters of conventional microstrip slot antennas and realize the multi-band function, these include
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using new feeding techniques [20], Defected Ground Structures (DGS) [10,21–23], parasitic elements [24,25],
Metamaterial [26,27], etc. Dual or multi-band characteristics are in great demand for various applications
such as wireless local area networks (Bluetooth, WLAN, and WiMAX) and Industrial Scientific and Medical
(ISM) applications. In modern communication standards a single antenna system that can cover all these
bands is considered highly necessary, not only to cover several frequency bands but also to reduce the
physical size of the system. A literature survey shows that planar slot antennas are promising candidates
to realize broadband or multi-band functions to cover up multi-standard services. Several dual- and/or
multi-band slot antenna designs have demonstrated their superior performances for the desired multi-band
requirements [28,29]. A compact CPW-fed triple-band antenna for diversity applications is reported
in [30], triple-band antennas in [31,32] and quad-band in [33,34] and broad-band circular polarization [35],
for example. The dual-band characteristic of these kind of antennas may be achieved by joining small
resonant slots to the body of the main one [36] or etching several stubs on the large slots [14]. Slot antennas
triple-band characteristic is also possible by etching three folded slots on the ground plane such as the
designs reported in [15,16], or several stubs on the slots [17]. Quad-band slot antennas are also possible
using the above mentioned techniques [3,19]. Better impedance matching may be achieved by inserting
open-ended stubs [37]. Generally speaking, slot antennas have larger bandwidth (BW) than the microstrip
antennas because of their lower quality factors due to the bidirectional radiation characteristics [4,35].
Combinations of slots and strips on the feeding side can generate circular polarization [4].

In this paper, we present the technique of introducing small arc-shaped slots in the antenna
structure to realize a new high gain miniaturized dual-band radiating antenna. The antenna design
consists of two main semi-circular slots. Two adjunct small arc-shaped slots are asymmetrically and
partially etched round these two main slots to realize the dual-band function and obtain a small
sized-structure. The antenna is fed by a stubbed microstrip line for a better impedance matching in
the operating bands. The proposed slot antenna covers the desirable 1.8 GHz and 2.4 GHz bands for
hand-held devices and medical applications.

2. Proposed Antenna Geometry and Summarized Results

The geometry of the slot antenna design is shown in Figure 1. In this design, two main
semi-circular slots are etched on a copper plane. A feeding L-shaped 50 Ω microstrip line is printed on
the other side of the substrate as this approach enables ease of impedance matching and other useful
features [38]. The feed line is stubbed for a better impedance matching. Two adjunct arc-shaped slots
are asymmetrically etched partially round the two slots. Two angular parameters: θ11 + θ12 and θ21 +

θ22 are attributed to the two arc-shaped slots to control their locations, lengths and widths with the aid
of the parameters r1, ϕ1 and r2, ϕ2, respectively. The whole structure is designed and realized on an
FR4 30 × 28.5 × 0.8 mm3 substrate with a relative permittivity εrs = 4.4 and loss tangent of 0.017.
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The antenna simulations were carried out using High Frequency Structure Simulator (HFSS)
software. The final antenna dimensions are: xg = 30, yg = 28.5, d1 = 1.5, d2 = 18.45, lf = 29.75,
wf = 1.5, l1f = 11.5, θ11 = 60◦, θ12 = 2.5◦, θ22 = 60◦, θ21 = 2.5◦, ϕ1 = 47.23◦, ϕ2 = 17.5◦, r1 = 9.3,
w11 = 0.8, w12 = 1.95, r2 = 8.75, w21 = 0.8, w22 = 1.9, x1 = 10.59, y1 = 1.87, x2 = 4.03, y2 = 7.20, x3 = 25
(all dimensions are in mm). All the parameters are clearly represented in Figure 1.

2.1. Effect of the Main Slots and Adjunct Arc-Shaped Slots

The objective of this work is to realize a miniaturized dual-band antenna that covers the bands
1.8 GHz and 2.4 GHz for mobile and medical applications, and solutions with stable radiation patterns.
In order to examine the effect of introducing the semi-circular slots and arcs in the radiating structure,
the different steps of the antenna design procedure and the comparative study results are presented by
Figures 2–4. The first antenna (Figure 2a) is a structure with simple partial circular slots etched in the
ground plane and the second one (Figure 2b) is the final proposed structure, where two additional
arc-shaped slots are cut round the two main slots. Figure 3a,b shows the S11 coefficient and gain,
respectively, for the two structures. The first antenna shows a better return loss coefficient at about
2.2 GHz with a gain varying between 1.04 dBi and 4.9 dBi in the frequency range 1.75–4 GHz. The final
structure (Figure 2b) manifests itself as a dual-band antenna that operates at the desired 1.8 GHz and
2.4 GHz bands with simulated gains of 3.43 and 4.47 dBi, respectively.
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The second study aims to investigate the response of the circular slots with arcs according to
Figure 4 configuration steps. Three different antennas are designed. In the first structure (Figure 4a),
only the slot in the first side of the antenna near the sub miniature version A (SMA) port is considered.
In the second structure (Figure 4b), we only consider the slot at the other side of the structure and in
Figure 4c, we consider both slots forming our final proposed antenna.

Figure 5a,b shows the compared simulation results of S11 coefficients and gains. We notice that the
two antennas (a) and (b) are basically mono-band and present operating bands centered at 1.95 GHz
and 2.0 GHz, respectively. Moreover, antenna (b) exhibits a very poor gain. The effect of the two main
slots and adjunct arc-shaped slots is clear on the properties of the antennas.
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2.2. Equivalent Circuit Model

In order to analyze the true behavior of the system, co-simulation of the antenna and other RF
front-end components is necessary. It is necessary to draw the equivalent circuit model of the antenna,
because time domain simulators such as Advanced Design System (ADS) and SPICE are used for
majority of the RF front-end design. The equivalent circuit model of the proposed dual-band antenna
is shown in Figure 6a. We excited two modes of the antenna using microstrip transmission line in
the electromagnetic (EM) model simulations. The two modes of the antenna are represented by the
two resistor, inductor and capacitor (RLC) section in the equivalent circuit model [39] as shown in
Figure 6a. The coupling associated between two modes of the antenna is represented as the resonant
circuit (LC) section [40]. The LC section is responsible for the strong or weak coupling between the
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modes. The impedance transformer shows the matching of the source with the antenna. The optimized
components of the equivalent circuit model is illustrated in Figure 6a. The impedance results of the
EM model and equivalent circuit model is compared in Figure 6b. We can see that the results match
well in the two resonating modes. We can see that there are several modes in the EM model and only
two modes in equivalent circuit model. The reason behind two modes in the equivalent circuit model
is that we have designed our equivalent circuit model keeping in mind the two resonating modes only.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 14 

 

The optimized components of the equivalent circuit model is illustrated in Figure 6a. The impedance 
results of the EM model and equivalent circuit model is compared in Figure 6b. We can see that the 
results match well in the two resonating modes. We can see that there are several modes in the EM 
model and only two modes in equivalent circuit model. The reason behind two modes in the 
equivalent circuit model is that we have designed our equivalent circuit model keeping in mind the 
two resonating modes only. 

2.3. Parametric Study 

A parametric study was carried out to examine the effects of the main slots as well as the arc-
shaped ones on the size reduction coefficient and return loss of the antenna. A direct relationship 
between the slots parameters and the characteristics of the antenna is noticed. These parameters could 
control the antenna characteristics by modifying the radial and angular dimensions of the slots. 

Note that the position and the size of the two arc-shaped slots are very influential. The 
characteristics of the antenna may be controlled using the two parameters φ1 and φ2 attributed to 
Arc1 and Arc2, respectively. While Arc1 has a significant effect around 1.8 GHz (Figure 7a,b) and can 
also realize a tri-band characteristic, Arc2 presents the same effect but around 2.4 GHz and helps shift 
the 1.8 GHz band towards higher frequencies. 

 

1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5

-400

-200

0

200

400

600

800

1000  Real(Z): EM Model
 Imag(Z): EM Model
 Real(Z): Circuit Model
 Imag(Z): Circuit Model

Im
pe

da
nc

e 
(
)

f (GHz)  
(a) (b) 

Figure 6. (a) Equivalent Circuit Model of the dual-band antenna; (b) Impedance comparison of the 
circuit model and electromagnetic (EM) model. 

1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5
-30

-25

-20

-15

-10

-5

0

 1=400

 1=450

 1=500

 1=550

 1=600

 1=47.50Proposed Antenna

S 11
 (d

B
)

f (GHz)  
1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5

-30

-25

-20

-15

-10

-5

0

 2=50

 2=100

 2=150

 2=200

 2=250

 2=300

 2=17.50Proposed Antenna

S 11
 (d

B
)

f (GHz)  
(a) (b) 

Figure 6. (a) Equivalent Circuit Model of the dual-band antenna; (b) Impedance comparison of the
circuit model and electromagnetic (EM) model.

2.3. Parametric Study

A parametric study was carried out to examine the effects of the main slots as well as the arc-shaped
ones on the size reduction coefficient and return loss of the antenna. A direct relationship between the
slots parameters and the characteristics of the antenna is noticed. These parameters could control the
antenna characteristics by modifying the radial and angular dimensions of the slots.

Note that the position and the size of the two arc-shaped slots are very influential.
The characteristics of the antenna may be controlled using the two parameters ϕ1 and ϕ2 attributed to
Arc1 and Arc2, respectively. While Arc1 has a significant effect around 1.8 GHz (Figure 7a,b) and can
also realize a tri-band characteristic, Arc2 presents the same effect but around 2.4 GHz and helps shift
the 1.8 GHz band towards higher frequencies.

The length of the two arcs as well as their widths (r1, r2, w11, and w12) have almost the same effect
around 1.8 GHz, but only Arc1 can affect the S11 around 2.4 GHz (Figure 8a–d). The spacing between
the arcs and the ground plane (w12 and w22) affects S11 in the same way. These remarks are certified
by the behavior of the current density, which showed the relationship between the two arcs and the
frequencies 1.8 GHz and 2.4 GHz (Figure 8e,f).
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The length of the two arcs as well as their widths (r1, r2, w11, and w12) have almost the same effect 
around 1.8 GHz, but only Arc1 can affect the S11 around 2.4 GHz (Figure 8a–d). The spacing between 
the arcs and the ground plane (w12 and w22) affects S11 in the same way. These remarks are certified 
by the behavior of the current density, which showed the relationship between the two arcs and the 
frequencies 1.8 GHz and 2.4 GHz (Figure 8e,f). 
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Figure 7. Length and position effects of arc-shaped slots on S11: (a) ϕ1 angular start of the first arc;
(b) ϕ2 angular start of the second arc; (c) θ11 angular length of the first arc; (d) θ12 angular spacing
between ground plane and first arc; (e) θ21 angular spacing between ground plane and second arc; and
(f) θ22 angular length of the second arc.

According to the proposed antenna parametric study, it is easy to reach any frequency in the band
1.8–2.6 GHz by simply modifying the dimensions of the antenna. Moreover, we can realize a single, double
or triple band antenna centered at: 1.8, 1.9, 2, 2.2, 2.4, 2.5, and 2.6 GHz for digital communication system
(DCS) (1.71–1.88 GHz), personal communication services (PCS) (1.85–1.99 GHz), UMTS (1.92–2.17 GHz),
Bluetooth (2.4–2.5 GHz), Wi-Fi (2.4–2.454 GHz), ISM (2.4 GHz), and WLAN (2.4 GHz).
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The length of the two arcs as well as their widths (r1, r2, w11, and w12) have almost the same effect 
around 1.8 GHz, but only Arc1 can affect the S11 around 2.4 GHz (Figure 8a–d). The spacing between 
the arcs and the ground plane (w12 and w22) affects S11 in the same way. These remarks are certified 
by the behavior of the current density, which showed the relationship between the two arcs and the 
frequencies 1.8 GHz and 2.4 GHz (Figure 8e,f). 
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Figure 8. Effect of arcs thicknesses on S11 of the proposed antenna: (a) inner radius of the first arc r1;
(b) inner radius of the second arc r2; (c) w11 thickness of the first arc; (d) w12 spacing between ground
plane and first arc; (e) w21 spacing between ground plane and second arc; and (f) w22 thickness of the
second arc.

The surface current density at operating frequencies is investigated to better understand the
operation mode of the proposed dual-band antenna, as shown in Figure 9a,b. Figure 9a shows that the
highest current density is observed along the quarter length of the feed line and the two arc-shaped
slots at 1.8 GHz. For 2.4 GHz, the current is mainly concentrated along the microstrip line and the
two arc-shaped slots, as shown in Figure 9b. By analyzing the current flux plot at 1.8 and 2.4 GHz,
we can conclude that coupling between the arc-shaped slots and the excitation line generates two
simultaneous resonance frequencies.Electronics 2019, 8, x FOR PEER REVIEW 8 of 14 
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Measuring the effective lengths corresponding to the current paths represented by the black lines
in Figure 10, we find respectively: L1 = 57 mm which corresponds to a frequency of f1 = 2.51 GHz and
L2 = 89 mm which corresponds to a frequency of f2 = 1.61 GHz.
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Figure 10. Current paths and antenna effective electric lengths.

According to the radiation pattern plots presented in Figure 11, it is noted that the antenna is
omni-directional in the XY plane (H plane) with a weak cross polarization. In the XZ plane (E plane),
the radiation pattern is stable with a weak cross polarization as well. Whereas, for the YZ plane, the
cross polarization is slightly higher.
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To validate the simulated results, an antenna prototype is realized as shown in Figure 12a,b and
measurements were performed using an HP8510C vector network analyzer.
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Figure 12. Photograph of the realized prototype: (a) top view and (b) bottom view.

In general, and from Figure 13a,b, measurements of the dual-band antenna S11 coefficient and
gain coincide well with simulations. For S11, a slight shift of less than 11 MHz between simulations
and measurements is observed. For the gain, the obtained results of simulations and measurements for
the two frequency bands are: 4.5 and 4.34 dB for 1.8 GHz and 5.29 and 5.09 dB for 2.4 GHz, respectively.
The measured gains of the prototype were carried out in a far-field anechoic chamber using a calibrated
EMCO type 3115 broadband horn as the reference antenna. The reference fixed antenna was a
broadband horn (EMCO type 3115) positioned at 4 m from the antenna under test. We have scanned for
three orthogonal planes. For each plane a co-polar and cross-polar gain components were measured.
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2.4. Specific Absorption Rate (SAR) Analysis

As we have seen in the parametric analysis section, that the antenna can be used as a single, double
or triple band antenna centered at: 1.8, 1.9, 2, 2.2, 2.4, 2.5, and 2.6 GHz, like Digital Cellular System
DCS (1.71–1.88 GHz), PCS (1.85–1.99 GHz), UMTS (1.92–2.17 GHz), Bluetooth (2.4–2.5 GHz), and
Wi-Fi (2.4–2.454 GHz) spectrum Industrial Scientific and Medical radio frequency band (ISM–2.4 GHz),
Wireless Local Area Network (WLAN-2.4). The above mentioned bands are commonly used in
hand-held modern devices. It is useful to study the impact of the electromagnetic radiations on the
human body at these frequencies.
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In this work, we only studied the SAR for 1.8 and 2.4 GHz. We modeled a three layer human model
using properties of skin, fat and muscle [41,42] as shown in Figure 14a. We placed the antenna at a distance
of 5 mm from the skin to avoid direct contact with the skin layer. As can be seen from the Figure 14b,
the proposed antenna has 10-g peak SAR values of 1.49 and 1.33 W/kg at 1.8 and 2.4 GHz, respectively for
input power of 1 W. According to IEEE C95.1-2005, the SAR values should not exceed 2 W/kg for 10-g
sample and 1.6 W/kg for 1-g sample [43]. From the peak SAR values, it is clear that the proposed antenna
is safe to be used in the any hand-held device with input power not more than 1.34 W.
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Let us conclude this part with a comparison of the size, operating bands and gain of our antenna
with those realized or simulated available in the literature. It is clear from Table 1 that our proposed
structure presents a good compromise between miniaturization and the significant gain obtained
compared to the reported studies. Our antenna structure is well miniaturized and has the best ratio
gain/size. By comparing with higher gain antenna cases, close to ours, presented in [2,5,6,17,23,44],
our proposed antenna size is reduced by more than three times. However, for reported antennas with
size close to ours [3,9,10,13,18,26,30,45,46], the proposed antenna presents a higher gain.

Table 1. Antenna dimensions and properties comparison with published data.

Reference, Year Total Area (mm2) Centered Operating Bands (GHz) Peak Gain in dBi

[2], 2001 90 × 75 1.8, 2.4/2.6 6/4.2/4.5
[5], 2008 75 × 75 2.4/5 4.5/6.2
[17], 2010 75 × 75 2.4–3.0/3.25–3.68/4.9–6.2 3.86/3.52/4.32
[23], 2014 70 × 40 2.4/5.5 1.99/3.71
[12], 2014 30 × 30 2.4/5.2/5.8 not reported
[28], 2014 40 × 50 3.5/5.2 2.84/0.16
[3], 2015 48 × 18 1.6/2.45/3.6/5.5 3.05/3.5/4.2/4.5
[30], 2015 26 × 25 2.5/3.5/5.5 1.73/1.86/2.18
[44], 2015 55 × 50 2.54/3.55/5.7 5.71/6.16/6.48
[45], 2015 31 × 14 2.5/3.5/5.5 nearly 2.9/3.1/4.5
[29], 2016 30 × 15 2.45/3.19–6.44 0.2/2.9
[27], 2016 38 × 38 2.4/3.5/5.8 1.52/1.6/1.5
[46], 2017 22 × 40 2.45/3.49/5.13/5.81 1.72/2/2.08/2.96
[33], 2018 56 × 44 3.1/5.52/7.31/9.72 1.35/1.0/1.07/1.75
[9], 2018 45 × 17 0.868/2.4 1.18/2.1
[10], 2018 20 × 21 913–934/1.5–1.59/2.43–2.50 0.32/1.2/1.5
[13], 2018 28 × 30 1.6/2.5/5.8/9.5 2.9/2.4/3.1/1.8
[18], 2018 32 × 32 3.5/5.9/6.7/8.5/9.8 1.2/1.6/2.1/2.5/2.7
[34], 2018 57.2 × 31.2 0.8/2.45/3.5/5.5 -8.12/-1.31/1.46/3.66
[36], 2018 40 × 40 2.16–3.42 2–3.2
[4], 2019 40 × 45 2.-2.6/3.21-3.5/3.8-6.38 2.2/4.3/6.3
[6], 2019 110 × 89 1.8/2.4 6.31/7.8

[11], 2019 220 × 220 0.9–6.1 Between 3.5–7
[26], 2019 35 × 30 2.3/2.7/3.5/3.8/4.3/5.6 2.3/2.7/3.5/3.8/4.3/5.6
[32], 2019 16.45 × 16 1.89/3.5/5.5 0.136/2.12/3.55
[26], 2019 35 × 30 2.3/2.7/3.5/3.8/4.3/5.6 2.2/2.5/3.4/3.2/3.5/4

Our proposed antenna 30 × 28.5 1.8/2.4 4.39/5.02
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3. Conclusions

In this work, we proposed a new slot antenna design for dual-band operation. Two adjunct
arc-shaped slots are added to two main semi-circular slots, all etched on the ground plane to realize an
appropriate adjustment of the desired frequency bands. Thus, two resonant frequencies centered at 1.8
and 2.4 GHz have been achieved resulting in a dual-band antenna. A radiation peak gain of 4.39/5.09
dB has been obtained. The key design advantages, including size reduction, simple configuration,
adequate gain, and dual-band feature make the proposed antenna an excellent candidate with potential
features for current and future applications.
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