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Abstract

:

Current-voltage (I-V) characteristics of a recessed-channel reconfigurable field-effect transistor (RC-RFET) is discussed, herein, depending on the variation of temperature (T) to understand the operation mechanisms, in depth. Assuming that RC-RFET can be simply modeled as a channel resistance (RCH) and a Schottky contact resistance (RSC) connected in series, the validity has been examined by a technology computer-aided design (TCAD) simulation with different Schottky barrier heights (SBHs) and carrier mobilities (μ). As a result, it was clearly determined that the drain current (ID) of RC-RFET is dominated by the bigger component, since RCH and RSC have an opposite correlation with T.
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1. Introduction


Over the past five decades metal-oxide-semiconductor field-effect transistors (MOSFETs) have been aggressively scaled down for a low-power operation with high performance and an enhanced logic functionality with large integration density [1,2]. However, below the 10 nm node, the extension of Moore’s law by aggressive scaling of FETs becomes increasingly difficult due to several technical issues [2]. Therefore, there have been a lot of efforts for an appropriate successor to the conventional complementary MOS (CMOS) technology especially based on novel devices [3]. On the other hand, a reconfigurable FET (RFET) has been regarded as another candidate to address the issues by extending the logic functionality of switching elements [4]. It features dynamically programmable operations which allows an integrated circuit (IC) to reduce the required devices for a similar logic function result in circuit-level scaling down [4,5,6,7,8,9]. Although there are several studies about RFETs, most of them have mainly focused on strategies for improving electrical performance with the help of geometrical device structures, materials, etc. [4,5,6,7,10,11] and there is still a lack of understanding about their operation mechanisms. RFETs are programmable as n- and p-FETs by selecting carrier types injected from Schottky contact at source which depends on the temperature (T), sensitively [12]. Therefore, a rigorous study about the T characteristics of RFETs is an important research topic. In this letter, the T dependent current-voltage (I-V) characteristic is discussed and analyzed by technology computer-aided design (TCAD) simulation [13].




2. Device Structure and Simulation


In this work, a novel recessed-channel RFET (RC-RFET), which was proposed in [11] to improve scalability and short-channel-effect immunity of conventional RFET, was used for the study (Figure 1) [14,15]. The switching mechanism of RC-RFET (thermionic emission) differs from that of conventional RFET (Schottky barrier tunneling). It enables RC-RFET to overcome the fundamental limit of subthreshold swing (S) degradation as a function of gate voltage and promises higher ON–OFF current ratio (ION/IOFF) [11]. The detail parameters used for the TCAD simulation are summarized in Table 1 and the following physical models are used: Shockley–Read–Hall (SRH) recombination, Schottky barrier tunneling (SBT), field-dependent mobility, drift-diffusion, and non-local band-to-band tunneling (BTBT) [13]. In order to exclude the effect of dopants and secure symmetricity for n- and p-FET operations, intrinsic silicon-on-insulator (SOI) is used for channel. The work function (WFN) for both the polarity gate (PG) and control gate (CG) is 4.6 eV, while Schottky barrier height (SBH) for Si/metal contact is 0.56 eV unless otherwise noted. They are analogous to half of the Si band gap.




3. Results and Discussion


Figure 2 shows drain current (ID) versus CG bias (VCGS) for n- and p-FET operations as T increases from 300 K to 400 K with different PG bias (VPGS). As shown in Figure 2a,b, the on-current (ION) defined as ID at ±1.5 V-VCGS is decreased for both n- and p-FETs as T increases in accordance with general expectation, since the mobility (μ) is decreased due to phonon scattering as expressed in Equation (1) [16]. The μ at 300 K-T (μ0) and γ are 1417 cm2/V·s and 2.5 for electron, whereas 486 cm2/V·s and 2.2 for hole, respectively [13].


  μ =  μ 0     (   T  300    K     )    − γ    



(1)







The noteworthy points are shown in Figure 2c,d that the ION becomes an increasing function of the T as |VPGS| is decreased from 5 to 2 V.



Figure 3a clearly shows ION has different tendencies on the T depending on the VPGS, regardless of n- or p-FETs. It is not related to the subthreshold characteristics since the extracted S is exactly sitting on the 2.3kB/q-slope (~0.2 mV/K) line similar to the conventional MOSFETs, where kB and q are the Boltzmann constant and elementary charge, respectively (Figure 3b).



In order to analyze these phenomena, the RC-RFET is simply modeled as a channel resistance (RCH) and a Schottky contact resistance (RSC) connected in series, which have an opposite correlation with T. In other words, if T is increased, the RCH is increased due to the increased phonon scattering, whereas the RSC is decreased due to the increased carrier injection ‘over’ and ‘through’ the Schottky barriers at source and drain contacts (Figure 4). Accordingly, the total resistance (RTOT) and ION is dominated by the bigger one. Since RSC is exponentially decreased as a function of band bending, the RTOT can be approximated to RCH and RSC with a small and a large |VPGS|, respectively. From Equation (1), the μ of electron (μe) is more sensitive to T than that of the hole (μh) due to the different coefficient γ. Thus, RCH of n-FET increases faster than that of p-FET as T increase which is well corresponded to the different slopes for 5 V-|VPGS| in Figure 3a. On the other hand, in case of small |VPGS| (= 2V), p-FET is more sensitive than n-FET to the T. This is because the effect of RSC decreasing is cancelled out by the RCH increase with the higher T for n-FET.



In order to confirm the hypothesis, the effects of RSC and RCH on n-FETs’ ION have been examined independently. For that, the change of doping concentration is inappropriate since both factors are affected at the same time. Thus, the RSC and the RCH of n-FET are changed by adjusting SHB and μe, respectively. First, if SBH decreases from 1.06 eV to 0.26 eV, the dominant factor changes from RSC to RCH; ION decreases as T increases as shown in Figure 5. On the other hand, if μe increases several times the default value (1417 cm2/V·s), the RTOT is determined by the RSC (Figure 6). As a result, there is a positive correlation between ION and T. Consequently, the assumption is clearly proven to be reasonable. It has to be mentioned that even if this approach is less practical in terms of device design, it is very meaningful to understand and confirm the operation mechanism and overall physics of RFET which is a milestone for device engineers.




4. Conclusions


The effects of T on the electrical characteristics of RC-RFET have been examined. There is an abnormal phenomenon that the ION decreases as T increases with a small |VPGS|. Based on rigorous study with the help of TCAD simulation, this was attributed to the large RSC which decreases the function of T and dominates the RTOT. This needs to be further addressed for high-performance operation with low-power consumption. In order to decrease SBH for the lower RCH, adopting a narrow band gap material (e.g., SiGe or Ge) at the source/drain and metal contacts could be a promising solution. In future works, the influences of band gap on SBH will be examined and the optimized RC-RFET will be demonstrated.
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Figure 1. Schematic structure diagrams for recessed-channel reconfigurable field-effect transistor (RC-RFET). It features the vertically stacked polarity gate (PG) and control gate (CG) separated to each other with an oxide gap. 
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Figure 2. Schematic transfer characteristics depending on T with different VPGS. (a) n-FET operations with VPGS = 5 V; (b) p-FET operations with VPGS = −5 V; (c) n-FET operations with VPGS = 2 V; (d) p-FET operations with VPGS = −2 V. The arrows indicate the direction of the graph according to log scale and linear scale. 
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Figure 3. Extracted parameters from ID–VPGS curves. (a) Normalized ION by ION at 300 K. ION is extracted when VPGS is 1.5 V; (b) subthreshold swing (S). The extracted S is exactly sitting on the 2.3kB/q-slope (~0.2 mV/K) line. 
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Figure 4. Energy band diagram and carrier distribution with different T. (a) Low T; (b) high T. The energy band is plotted along the source and channel (Figure 1). The blue-colored areas in the source represent the increased carrier distribution due to the increased T, and blue-colored arrows indicate the increased carriers passing through the Schottky barrier (SB) due to the increased T. 
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Figure 5. Normalized ION of n-FET as a function of T with different SBH (Schottky barrier height). The blue arrow shows a decrease in the normalized ID due to SBH reduction. 
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Figure 6. Normalized ION of n-FET as a function of T with different μe. The blue arrow shows an increase in the normalized ID due to mobility increasement. 
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Table 1. Simulated device parameters.






Table 1. Simulated device parameters.





	Definition
	Abbreviation
	Value





	Silicon body thickness
	TB
	20 nm



	Gate oxide thickness

Gate length
	TOX

LG
	1 nm

50 nm



	Program gate thickness

Control gate thickness

Oxide thickness between PG and CG
	TPG

TCG

TGAP
	20 nm

20 nm

10 nm











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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