Software-Based Adaptive Protection Control against Load Mismatch for a Mobile Power Amplifier Module
Abstract
:1. Introduction
2. Closed-Loop Protection Circuit
3. Operating Principle of Proposed Protection Method
3.1. Mismatch Impedance Detector
3.2. Adaptive Power Control for Protection
4. Fabrication and Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karoui, W.; Parra, T. A protection circuit for HBT RF power amplifier under load mismatch conditions. In Proceedings of the Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, Montreal, QC, Canada, 22–25 June 2008; pp. 241–244. [Google Scholar]
- Niwa, T.; Ishigaki, T.; Shimawaki, H.; Nashimoto, Y. A composite-collector InGaP/GaAs HBT with high ruggedness for GSM power amplifiers. In Proceedings of the 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, USA, 8–13 June 2003. [Google Scholar]
- Yang, Y.; In, B.; Chen, Y.; Nguyen, C.; Hou, D.; Zhou, J.; Feng, K.; Yau, W.; Wang, D. A super ruggedness InGaP/GaAs HBT for GSM power amplifiers. In Proceedings of the GaAs ManTech Conference, New Orleans, LA, USA, 11–14 April 2005. Paper No. 3, Section 12. [Google Scholar]
- Scuderi, A.; Carrara, F.; Palmisano, G.A. VSWR-rugged silicon bipolar RF power amplifier. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Santa Barbara, CA, USA, 9–11 October 2005; pp. 116–119. [Google Scholar]
- Yamamoto, K.; Suzuki, S.; Mori, K.; Asada, T.; Okuda, T.; Inoue, A.; Miura, T.; Chomei, K.; Hattori, R.; Yamanouchi, M.; et al. A 3.2-V operation single-chip dual-band Al-GaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique. IEEE J. Solid State Circuits 2000, 35, 1109–1120. [Google Scholar] [CrossRef]
- Bezooijen, A.; Straten, F.V.; Mahmoudi, R.; Roermund, A.H.M.V. Power amplifier protection by adaptive output power control. IEEE J. Solid State Circuits 2007, 42, 1834–1841. [Google Scholar] [CrossRef]
- Shin, H.; Ju, H.; Chang, M.F.; Nellis, K.; Zampardi, P. An output VSWR protection circuit using collector/emitter avalanche breakdown for SiGe HBT power amplifiers. IEICE Trans. Electron. 2004, 87, 1643–1645. [Google Scholar]
- Scuderi, A.; La Paglia, L.; Scuderi, A.; Carrara, F.; Palmisano, G.A. VSWR-protected silicon bipolar RF power amplifier with soft-slope power control. IEEE J. Solid. State Circuits 2005, 40, 611–621. [Google Scholar] [CrossRef]
- Bent, G.; Wanum, M.; Hek, A.; Graaf, M.; Vliet, F. Protection circuit for high power amplifiers operating under mismatch conditions. In Proceedings of the 2007 European Microwave Integrated Circuits Conference, Munich, Germany, 8–10 October 2007; pp. 158–161. [Google Scholar]
- Ferretti, J.; Preis, S.; Heinrich, W.; Bengtsson, O. VSWR protection of power amplifiers using BST components. In Proceedings of the 2016 German Microwave Conference, Bochum, Germany, 14–16 March 2016; pp. 445–448. [Google Scholar]
- Luo, X.; Halder, S.; Hwang, J. Rugged HBT Class-C Power Amplifiers with Base-Emitter Clamping. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011. [Google Scholar]
- King, J. High VSWR mismatch output stage. U.S. Patent 6,137,366, 24 October 2000. [Google Scholar]
- Inoue, A.; Nakatsuka, S.; Suzuki, S.; Yamamoto, K.; Shimura, T. Direct measurement of the maximum operating region in GaAs HBTs for RF power amplifiers. In Proceedings of the 2001 IEEE MTT-S Digest, Phoenix, AZ, USA, 20–24 May 2001; pp. 1687–1690. [Google Scholar]
- Ji, D.; Jeon, J.; Kim, J. A novel load mismatch detection and correction technique for 3G/4G load insensitive power amplifier application. IEEE Trans. Microw. Theory Tech. 2015, 63, 1530–1543. [Google Scholar] [CrossRef]
- Ji, D.; Jeon, J.; Kim, J. A linearity-improved multiband envelope tracking Tx power amplifier under antenna mismatch for mobile applications. Microw. Opt. Technol. Lett. 2018, 60, 2320–2325. [Google Scholar] [CrossRef]
Index | Vph (1st) | Vph (2nd) | Detected Section 1 |
---|---|---|---|
1 | L | H | #1 |
2 | L | L | #2 |
3 | H | L | #3 |
4 | H | H | #4 |
Frequency (MHz) | Supply Voltage (V) | Deactivating Protection | Activating Protection |
---|---|---|---|
2017.5 | 4.5 | Passed | Passed |
2017.5 | 5.0 | Passed | Passed |
2017.5 | 5.5 | Failed | Passed |
2017.5 | 6 | - | Failed |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Jung, Y.; Kang, M. Software-Based Adaptive Protection Control against Load Mismatch for a Mobile Power Amplifier Module. Electronics 2019, 8, 1226. https://doi.org/10.3390/electronics8111226
Jeon J, Jung Y, Kang M. Software-Based Adaptive Protection Control against Load Mismatch for a Mobile Power Amplifier Module. Electronics. 2019; 8(11):1226. https://doi.org/10.3390/electronics8111226
Chicago/Turabian StyleJeon, Jooyoung, Youngho Jung, and Myounggon Kang. 2019. "Software-Based Adaptive Protection Control against Load Mismatch for a Mobile Power Amplifier Module" Electronics 8, no. 11: 1226. https://doi.org/10.3390/electronics8111226
APA StyleJeon, J., Jung, Y., & Kang, M. (2019). Software-Based Adaptive Protection Control against Load Mismatch for a Mobile Power Amplifier Module. Electronics, 8(11), 1226. https://doi.org/10.3390/electronics8111226