Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz
Abstract
:1. Introduction
2. Channel Measurements
2.1. Propagation Environment
2.2. Measurement Setup and Procedure
- Scenario LOS: The Tx antenna was located at a height of 0.90 m above the floor level, imitating the position of a UE (e.g., a laptop, tablet, or mobile phone) that was on the desk. A total of 10 Tx locations (Tx1–Tx10) was considered in the measurements. Figure 5 (left) shows a view of the Rx-URA and the Tx antenna for the Tx1 position.
- Scenario OLOS: The Tx antenna was also located at a height of 0.90 m above the floor and close to the desk, but in OLOS propagation conditions due to the blockage of the direct component by the computer monitors on the desks. The measurements were taken in 4 Tx locations (Tx11-Tx14). Figure 5 (right) shows a view of the Rx-URA and the Tx antenna for the Tx14 position.
3. Measurement Results
3.1. Path Loss Results
3.2. Time-Dispersion Results
3.2.1. Root-Mean-Squared Delay-Spread
3.2.2. Coherence Bandwidth
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
5G | Fifth-generation |
AP | Access point |
CDF | Cumulative distribution function |
CI | Close-in free space reference distance path loss model |
CIR | Channel impulse response |
CTF | Channel transfer function |
DUT | Device under test |
FI | Floating-intercept path loss model |
HPBW | Half power beamwidth |
ITU | International Telecommunication Union |
LOS | Line-of-sight |
mmWave | Millimeter wave |
MPC | Multipath contribution |
OLOS | Obstructed-LOS |
PDP | Power delay profile |
RoF | Radio over fiber |
RSPG | Radio Spectrum Policy Group |
Rx | Receiver |
STD | Standard deviation |
Tx | Transmitter |
UE | User equipment |
URA | Uniform rectangular array |
VNA | Vector network analyzer |
WRC | World Radiocommunication Conference |
Appendix A. Path Loss Derivation
References
- Samsung R&D. 5G Vision. 2015. Available online: https://images.samsung.com/is/content/samsung/p5/ global/business/networks/insights/white-paper/5g-vision/global-networks-insight-samsung-5g-vision-2.pdf (accessed on 24 September 2019).
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- European Commission—Radio Spectrum Policy Group. Strategic Roadmap Towards 5G for Europe. 2016. Available online: https://rspg-spectrum.eu/wp-content/uploads/2013/05/RPSG16-032-Opinion_5G.pdf (accessed on 24 September 2019).
- Resolution 238. In Proceedings of the World Radio Communications Conference, Geneva, Switzerland, 2–27 November 2015.
- MacCartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks (invited paper). IEEE Access 2015, 3, 2388–2424. [Google Scholar] [CrossRef]
- Haneda, K.; Järveläinen, J.; Karttunen, A.; Kyrö, M.; Putkonen, J. A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz. IEEE Trans. Antennas Propag. 2015, 63, 2694–2704. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.X.; Feng, R.; Zhang, W.; Yang, Y. Multifrequency mmWave massive MIMO channel measurements and characterization for 5G wireless communications systems. IEEE J. Sel. Areas Commun. 2017, 35, 1591–1605. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, J.; Shafi, M.; Dmochwski, P.A.; Smith, P.J. Millimeter wave channel measurements and modeling in an indoor hotspot scenario at 28 GHz. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Rodrigo-Peñarrocha, V.M.; Rubio, L.; Reig, J.; Juan-Llácer, L.; Pascual-García, J.; Molina-Garcia-Pardo, J.M. Millimeter wave channel measurements in an intra-wagon environment. In Proceedings of the COST CA15104 TD(18)07040, Cartagena, Spain, 29 May 2018; pp. 1–5. [Google Scholar]
- Sánchez, M.G.; de Haro, L.; Pino, A.G.; Calvo, M. Human operator effect on wide-band radio channel characteristics. IEEE Trans. Antennas Propag. 1997, 45, 1318–1320. [Google Scholar] [CrossRef]
- Molisch, A.F. Wireless Communications, 2nd ed.; Wiley-IEEE Press: Chichester, UK, 2010. [Google Scholar]
- Steele, R.; Hanzo, L. Mobile Radio Communications, 2nd ed.; Wiley: Chichester, UK, 1999. [Google Scholar]
- Rubio, L.; Reig, J.; Fernández, H.; Rodrigo-Peñarrocha, V.M. Experimental UWB propagation channel path loss and time-dispersion characterization in a laboratory environment. Int. J. Antennas Propag. 2013, 2013, 35017. [Google Scholar] [CrossRef]
- Deng, S.; Samimi, M.K.; Rappaport, T.S. 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In Proceedings of the IEEE International Conference on Communications, London, UK, 8–12 June 2015; pp. 1244–1250. [Google Scholar]
- Meinilä, J.; Kyösti, P.; Jämsä, T.; Hentilä, L. WINNER II Channel Models. IST-4-027756-WINNER, Tech. Rep. D1.1.2; Inf. Soc. Technol. 2007. Available online: https://www.cept.org/files/8339/winner2%20-%20final%20report.pdf (accessed on 24 September 2019).
- 3GPP TR 25.996. Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations; ETSI Technical Repport 125 996; ETSI: Sophia Antipolis, France, 2012. [Google Scholar]
- Sun, S.; MacCartney, G.R.; Rappaport, T.S. Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar]
- Parsons, J.D. The Mobile Radio Propagation Channel, 2nd ed.; Wiley: Chichester, UK, 2000. [Google Scholar]
- Howard, S.J.; Pahlavan, K. Measurements and analysis of the indoor radio channel in the frequency domain. IEEE Trans. Instrum. Meas. 1990, 39, 751–755. [Google Scholar] [CrossRef]
- Gans, M. A power-spectral theory of propagation in the mobile radio environment. IEEE Trans. Veh. Technol. 1972, 21, 27–37. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
VNA output power | −17 dBm |
VNA center frequency | 26 GHz |
VNA SPAN(Bandwidth) | 2 GHz |
VNA IF Bandwidth () | 100 Hz |
Frequency points per trace | 1091 |
Tx/Rx antenna gain | 5.2 dB |
Tx antenna height | 0.90 m |
Rx antenna height | 1.62 m |
() | () | (dB) | |
---|---|---|---|
LOS | 59.29 (58.80–59.79) | 1.46 (1.39–1.53) | 1.73 |
OLOS | 60.01 (59.46–60.16) | 1.88 (1.80–1.95) | 0.92 |
FSPL (1 m) | n () | (dB) | |
---|---|---|---|
LOS | 60.74 dB | 1.27 (1.26–1.28) | 1.75 |
OLOS | 60.74 dB | 1.79 (1.78–1.80) | 0.93 |
Minimum | Mean | Maximum | STD | ||
---|---|---|---|---|---|
LOS | 11.21 | 15.88 | 21.74 | 2.01 | |
3.30 | 4.88 | 8.19 | 0.69 | ||
OLOS | 15.13 | 18.87 | 23.87 | 2.04 | |
3.02 | 4.11 | 5.34 | 0.51 |
LOS | 124.5 (120.8–128.2) | 1.178 (1.167–1.189) |
OLOS | 129.2 (122.2–136.2) | 1.178 (1.160–1.197) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, L.; Torres, R.P.; Rodrigo Peñarrocha, V.M.; Pérez, J.R.; Fernández, H.; Molina-Garcia-Pardo, J.-M.; Reig, J. Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz. Electronics 2019, 8, 1261. https://doi.org/10.3390/electronics8111261
Rubio L, Torres RP, Rodrigo Peñarrocha VM, Pérez JR, Fernández H, Molina-Garcia-Pardo J-M, Reig J. Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz. Electronics. 2019; 8(11):1261. https://doi.org/10.3390/electronics8111261
Chicago/Turabian StyleRubio, Lorenzo, Rafael P. Torres, Vicent M. Rodrigo Peñarrocha, Jesús R. Pérez, Herman Fernández, Jose-Maria Molina-Garcia-Pardo, and Juan Reig. 2019. "Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz" Electronics 8, no. 11: 1261. https://doi.org/10.3390/electronics8111261
APA StyleRubio, L., Torres, R. P., Rodrigo Peñarrocha, V. M., Pérez, J. R., Fernández, H., Molina-Garcia-Pardo, J. -M., & Reig, J. (2019). Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz. Electronics, 8(11), 1261. https://doi.org/10.3390/electronics8111261