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Abstract: An overview of the cylindrical wave approach in the modeling of through-wall radar
problems with targets hidden behind a dielectric wall is reported. The cylindrical wave approach
is a technique for the solution of the two-dimensional scattering by buried circular cross-section
cylinders in a semi-analytical way, through expansion of the scattered fields into cylindrical waves. In
a through-wall radar application, the scattering environment is made by a dielectric layer between two
semi-infinite half-spaces filled by air. For this layout, two possible implementations of the cylindrical
wave approach have been developed in the case of plane-wave excitation. The first was an iterative
scheme with multiple-reflection scattered fields, and the second was a fast and non-iterative solution,
through suitable basis functions (i.e., reflected and transmitted cylindrical waves). Such waves take
into account all the interactions of the source field with the interfaces bounding the dielectric layers
and the targets. The non-iterative approach was also extended for excitation from the radiated field
by a line source. A final system was derived for the computation of the scattered field by PEC or
dielectric targets. Numerical results show the potentialities of the cylindrical wave approach in the
modeling of through-wall radar, in particular in the evaluation of the scattered fields by human
targets in a building’s interior, modeled with a two-dimensional approach.

Keywords: electromagnetic scattering; buried objects; through-wall radar

1. Introduction

Through-the-wall radar is a technique to localize targets hidden by walls in a building’s interior [1–
3]. Important operations are in the field of security, military applications, such as counterterrorism or
civil investigations, such as rescue, disaster, and fire succor. This radar technique typically makes use
of ultrawideband waveforms to achieve high resolutions through very narrow pulses. However, the
highest frequencies of the spectrum have small penetration through typical walls, and part of the field
undergoes multiple reflections inside the wall. An accurate electromagnetic modeling of the scattering
occurring in through-wall radar applications is fundamental to enhance the understanding of the
physical phenomena, also serving as a benchmark of the imaging algorithms. In the literature, the
electromagnetic modeling of through-wall radar is mainly done with the finite-difference time-domain
(FDTD) method, as in [4], where an FDTD implemented for ground penetrating radar was employed [5].
A general FDTD approach was also employed in [6]. A specific FDTD approach for the through-wall
analysis in time domain, called AFDTD, was developed in [7]. The AFDTD is based on the classical
Yee algorithm, where the volume of analysis is divided in a grid of cubic cells, and its primary
application is to radar target signature analysis [1]. Due to the large investigation domains dealt
with in through-wall environments, hybrid techniques are also proposed, as in [8,9], where FDTD
is combined with high-frequency techniques, such as ray tracing or uniform theory of diffraction.
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Another hybrid approach was presented in [10], where integral equations were solved with physical
optics. An asymptotic technique was employed in [11]. A frequency-domain finite element method
was also proposed in [12]. All the techniques were developed on a numerical basis and approximated
to overcome limitations of long computer times and strong memory requirement needed in large
simulation environments as is typical with most through-wall applications.

In this paper, an approach for the modeling of the scattering by targets behind a wall on an
analytical basis is reviewed. The technique, called cylindrical wave approach (CWA), has been
developed to analytically solve the two-dimensional scattering by buried or hidden targets having
a circular cross-section [13–18], for applications in the geophysical analysis and remote sensing of
subsoil, in the microwave frequency range, and as a diagnostic at optical frequencies. Expansions into
cylindrical waves are used to express the fields scattered by the targets. The interactions of the scattered
fields with one or more flat interfaces, bounding a semi-infinite medium or a layered one, are solved
using the concept of plane wave spectrum of a cylindrical wave. By expressing a cylindrical wave
through its plane wave spectrum, reflected and transmitted cylindrical waves can be suitably derived to
express all the contributions to the scattered field. In [19,20], the CWA formulation has been extended
to deal with problems of scattering by cylinders below a dielectric layer, in case of a planewave source.
In this layout, three background media are considered (i.e., an air-filled half-space, a dielectric layer,
and a final half-space embedding the targets). Applications are both in the remote sensing of buried
targets in the subsoil, as well as in the simulation of the through-wall environments when the final
half-space is filled with air. In [19], the CWA was presented with an iterative scheme where all the
multiple reflections of the scattered fields occur inside the dielectric layers where described, through
a set of multiple reflection fields. The method was implemented in a faster approach in [20], where
only two sets of scattered fields were introduced that, through the definitions of the reflection and
transmission coefficients relevant to a dielectric layer [21], included all the multiple reflections in the
expressions of the scattered fields. Agreement between the two methods was also presented in [20].
Both methods have the advantage of providing an accurate analytical tool with fast computer times in
large through-wall environments. Moreover, with the non-iterative scheme in [20], execution times
were considerably reduced compared to those in [19], as proven in an extensive comparison presented
in [20]. This comparison showed the dependence of the two methods on the simulation parameters,
including as radius of the cylinder, the thickness and permittivity of the wall, and the number of
cylinders. In this paper, the non-iterative approach developed in [20] was recalled and extended to
excitation from a line source. The radiated field was expanded through a zeroth-order Hankel function,
and its reflection and transmission through the interfaces were dealt with by applying the same spectral
approach employed for the scattered fields. As for the numerical implementation, potentialities of the
CWA for the modeling in through-wall environments are presented.

This paper is organized as follows: In Section 2, the theoretical approach, applied to a line-source
excitation, is presented. In Section 3, numerical results of through-wall simulation are reported.

2. Theoretical Approach

The geometry of the problem is sketched in Figure 1. In medium 0 (air, εr0 = 1), the source of the
scattering problem, a line source with center in (xL, zL), is present. N cylinders, perfectly conducting or
dielectric, are placed in an air-filled medium with relative permittivity εr2 = 1 (medium 2), below a
dielectric layer of thickness L and relative permittivity εr1 (medium 1). The model is two-dimensional,
assuming the length of the targets is much longer than the size of their cross-section.
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Figure 1. Geometry of the scattering problem. The incident field and the relevant reflected and
transmitted fields in the absence of the targets are also highlighted.

Normalized coordinates (ξ,ζ) are employed, ξ = k0x and ζ = k0z, with k0 being the vacuum
wavenumber. N reference frames (ξp, ζp) centered on the axis of the p-th are also introduced, and
the p-th cylinder has radius aq and center in (hq, dq), the normalized radius being αp = k0ap, and the
normalized center (χp = k0hp, ηp = k0dp), with p = 1, . . . , N. Normalized thickness of the interface is Λ
= k0L. The normalized coordinates of the center of the line source are given by (χL, ηL).

A scalar function V(ξ,ζ) is used to represent the component of the electromagnetic field parallel to
the cylinders’ axis, depending on the polarization state. It is V = Ey in the TM or E polarization, and V
= Hy in the TE or H polarization.

Here, the non-iterative approach is presented in the case of excitation with a line source, defined
through an amplitude V0 and proportional to the zeroth-order first-kind Hankel function H(1)

0 (·) [22]:

Vi(ξ, ζ) = −V0H(1)
0

[√
(ξ− χL)

2 + (ζ− ηL)
2
]
. (1)

An alternative representation is now introduced for the cylindrical wave in Equation (1). With the
position CW0(ξ, ζ) = H(1)

0 (ξ, ζ), CW0 is a cylindrical wave of zeroth-order that can be defined through
a spectral representation:

CW0(ξ, ζ) =
1

2π

+∞∫
−∞

F0(ξ, n||) ein||ζdn||, (2)

where the plane wave spectrum F0(ξ, n||) is given by:

F0(ξ, n||) =
2e

iξ
√

1−n2
||√

1− n2
||

. (3)

By evaluating the reflected or transmitted plane wave on each plane wave of the spectrum
(Equation (2)), the fields originated by reflection and transmission of the incident field Vi—in the
absence of the cylinders, as highlighted in Figure 1—can be derived. The amplitudes of the plane
waves are derived through reflection and transmission coefficients, with definition dealing with the
interaction of a plane wave with a dielectric slab [21], which includes all the multiple reflections by
the flat boundaries. As for the propagation terms, they are derived from the parallel and orthogonal
components n‖ and n⊥, respectively, of the normalized wavevector n = n⊥ξ̂+ n||ζ̂ = k/k0 through the
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Snell law, being n⊥ = cosϕ and n‖ = sinϕ. In particular, the field Vt2 transmitted in the final medium
can be expressed through a transmitted cylindrical function of zeroth-order:

TW0(ξ, ζ;−χL; Λ) =
1

2π

+∞∫
−∞

T02(n||)F0(−χL, n||) ein2

√
1−(n

||
/n2)

2(ξ−Λ) ein||(ζ−ηL)dn||, (4)

where n⊥ =
√

1− (n
||
/n2)

2 and n|| are the orthogonal and parallel components, respectively, of a
generic plane wave transmitted in medium 2.

The final expression of the field Vt2 is:

Vt2(ξ, ζ) = −V0TW0(ξ, ζ). (5)

The other field contributions (Vr0, Vr1, and Vt1), relevant to reflection and transmission of the
incident field by the layer can be derived in a similar manner through suitable cylindrical functions, as
in Equation (4).

As the field Vt2 impinges on the targets in medium 2, the following scattered field contributions
are excited, as depicted in Figure 2a:

• Vs(ξ, ζ): fields scattered by the cylinders in medium 2;
• V2

sr(ξ, ζ): scattered-reflected field in medium 2, by the interface in ζ = Λ;
• V1

st(ξ, ζ): scattered-transmitted field in medium 1, by the interface in ζ = Λ;
• V1

sr(ξ, ζ): scattered-reflected field in medium 1, by the interface in ζ = 0;
• V1

st(ξ, ζ): scattered-reflected field in medium 0, by the interface in ζ = 0.
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Figure 2. Decomposition of the scattered fields in the scattering by targets in a through-wall environment:
(a) non-iterative approach [19] and (b) iterative approach [20].

With the field decomposition presented above, all the multiple interactions experienced by the
scattered fields inside the layer comprise two sets of waves. The first is a left-propagating wave, which
from medium 2 is scattered into medium 0 and decomposed into the fields Vs, V1

st, and V0
st. The

second is a right-propagating wave, which from medium 0 is scattered back in medium 2, through the
fields V2

sr and V1
sr. This compact decomposition, presented in detail in [20], leads to a faster approach

to the solution of the scattering problem, compared to the one of Figure 2b [19]. In the latter, all
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the possible interactions of the scattered fields inside the boundary are taken into account, through
multiple reflection fields V0

strt(ξ, ζ), V2,1
srt (ξ, ζ), and V2

strt(ξ, ζ). Such fields are given by infinite and
convergent series, which are truncated to a finite number of terms in the numerical implementation
depending on the desired accuracy.

In both approaches in [19,20], the scattered field Vs in medium 2 by the cylinders can be defined
through an expansion into cylindrical functions of m-th order:

CWm(n1ξq, n1ζq) = H(1)
m (n1ρq)eimθq (6)

where H(1)
m is the first-kind Hankel function of order m and eimθq is an angular factor. Employing the

basis functions in Equation (6), the scattered field by N cylinders is given by:

Vs(ξq, ζq) = V0
∞∑

`=−∞
J`(n2ρp)ei`θp

N∑
q=1

+∞∑
m=−∞

imcqm

[
CWm−`(n2ξqp, n2ζqp)(1− δqp) +

H(1)
`

(n2ρp)

J`(n2ρp)
δqpδ`m

]
(7)

where cqm are unknown expansion coefficients, and δqp and δ`m are the Kronecker symbols.
The definition in Equation (7), obtained by applying the addition theorem of Hankel functions and

the plane wave expansion of a cylindrical wave, returns an expression of the scattered fields in polar
coordinates centered on the axis of the q-th cylinder [13]. A representation in a polar reference frame
is indeed adopted for the fields propagating in medium 2, being more suitable to apply boundary
conditions on cylinders’ surfaces, as is done in the following explanation.

The scattered field contributions in both approaches [19,20] are derived through suitable cylindrical
functions from the cylindrical functions of order m in Equation (6), expressed through its plane wave
spectrum [13]:

CWm(ξ, ζ) =
1

2π

+∞∫
−∞

Fm(ξ, n||) ein||ζdn|| (8)

being:

Fm(ξ, n||) =
2e

i|ξ|
√

1−n2
||√

1− n2
||

 e−imarccosn
|| , ξ ≥ 0

eimarccosn
|| , ξ ≤ 0

(9)

with n|| and n⊥ the parallel and orthogonal component, respectively, of the normalized wavevector
n = n⊥ξ̂+ n||ζ̂ = k/k0. The expressions in Equations (8) and (9) generalize the ones in Equations (2)
and (3), respectively, to a cylindrical wave of m-th order. Therefore, with an approach analogous to
the one employed to derive the transmitted function in Equation (4) from the incident field Vi, it is
possible to derive the cylindrical waves to be used as basis functions of the reflected and transmitted
scattered fields. The further scattering contributions are presented for the decomposition of Figure 2a.
A scattered reflected field is excited by the interaction of the field Vs with the flat boundary in ξ = Λ
of separation between medium 1 and medium 2. It is expressed through an expansion into reflected
cylindrical waves in medium 2:

RWm(n2ξ, n2ζ) =
1

2π

+∞∫
−∞

Γ21(n||)Fm[n2(ξ−Λ), n||]ein1n||ζdn|| (10)

In Equation (10), the reflection coefficient Γ21(n||) at the medium 1/medium 2 boundary is the one
for a dielectric slab [21]. The cylindrical waves in Equation (10) are employed as basis functions of the
scattered reflected field in medium 2:

Vsr(ξq, ζq) = V0

+∞∑
`=−∞

J`(n2ρp) ei`θp

N∑
q=1

+∞∑
m=−∞

cqmRWm+`

[
−n2(Λ − χq + χp), n2(ηq − ηp)

]
(11)
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As explained above for the scattered field in Equation (7), the definition of the scattered–reflected
field in Equation (11) is expressed in a polar reference frame centered on the q-th cylinder.

As for the field contributions in medium 1, they are expressed through the transmitted cylindrical
waves in medium 1:

TW1
m(ξ, ζ;χq; Λ) =

1
2π

+∞∫
−∞

T21(n||)Fm[−n2(χq −Λ), n||] ein1

√
1−(n2n||/n1)

2(ξ−Λ)ein2n||(ζ−ηq)dn|| (12)

and the reflected cylindrical waves in medium 1:

RW1
m(ξ, ζ;χq; Λ) =

1
2π

+∞∫
−∞

T21(n||)Γ10(n||)Fm[−n2(χq −Λ), n||] ein1

√
1−(n2n||/n1)

2(ξ+Λ)ein2n||(ζ−ηq)dn|| (13)

Equations (12) and (13) are used as basis functions of the scattered–transmitted and
scattered–reflected field in medium 1, respectively, represented through:

V1
sr(ξ, ζ) = V0

N∑
q=1

+∞∑
m=−∞

cqmRW1
m(ξ, ζ;χq; Λ) (14)

and:

V1
st(ξ, ζ) = V0

N∑
q=1

+∞∑
m=−∞

cqmTW1
m(ξ, ζ;χq; Λ) (15)

Finally, transmitted cylindrical waves in medium 0 are introduced:

TW0
m(ξ, ζ;χq) =

1
2π

+∞∫
−∞

T10(n||)T21(n||)Fm[−n2(χq −Λ), n||] ei
√

1−(n2n||)
2ξein2n||(ζ−ηq)dn|| (16)

and they are employed as basis functions of the scattered-transmitted field in air:

V0
st(ξ, ζ) = V0

N∑
q=1

+∞∑
m=−∞

cqmTW0
m(ξ, ζ;χq) (17)

In the case of dielectric targets of relative permittivity εrc, a further field contribution must be
included (i.e., the scattered field transmitted inside the cylinders). Its representation is given through
an expansion in first-kind Bessel functions J`(·) and a second set of unknown expansion coefficients
dp`:

Vsc(ξ, ζ) = V0

N∑
q=1

+∞∑
m=−∞

dp` J`(ncρc) (18)

For the determination of the expansion coefficients cqm in the scattered fields—Equations (7), (11),
(14), (15), (17), and the coefficients dp` of the field in Equation (18)—the boundary conditions relevant
to the tangential fields to the cylinders’ surface are imposed. Therefore, only the field’s components
propagating in medium 2 are involved and are expressed in polar coordinates as already implemented
in Equations (5), (7), (11), and (18).
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In TM polarization, boundary conditions are:

Vt2 + Vs + V2
sr

∣∣∣
ρp=αp

= Vsc

∣∣∣
ρp=αp

(19)

where in the TE polarization states it is:

∂
∂ρp

(Vt2 + Vs + V2
sr)

∣∣∣∣∣∣
ρp=αp

=
∂
∂ρp

(Vsc)

∣∣∣∣∣∣
ρp=αp

(20)

with p = 1, . . . , N. In the case of PEC targets, the second member of the conditions (Equations (19)
and (20)) reduces to zero. By introducing in Equations (19) and (10) the definitions of the fields in
Equations (5), (7), (11), and (18), a linear system is obtained after some manipulation for the expansions
coefficients cqm:

N∑
q=1

+∞∑
m=−∞

D`m(1,2)
qp cqm = M`(1,2)

p

{
p = 1, . . . , N

` = 0,±1, . . . ,±∞
(21)

In Equation (21), the superscripts γ = 1,2 refer to the boundary conditions in Equations (19) and

(20), respectively, and it is Dqp
m` = Gp(1)

`
Aqp(1)

m` −Gp(1)
`

Aqp(2)
m` , Mp

`
= Bp(1)

`
Gp(1)
`
− Bp(2)

`
Gp(2)
`

and:

A`m(γ)
qp = i−`T(γ)

`
(n1ρp)

{
CWm−`(n2ξqp, n2ζqp)(1− δqp)+

+RWm+`

[
−n2(χq + χp − 2Λ), n2(ηq − ηp)

]
+

δqpδ`m

T(γ)
`

(n2ρp)

}
(22)

B`(γ)p = −T(γ)
`

(n1ρp)TW0,`(χp, ηp − ηL,−χL) (23)

being G`(1)p = −J`(ncpαp)/H(1)
`

(n1αp), G`(2)p = −gp J`(ncpαp)/H(1)′
`

(n1αp), and T(1)
`

(x) =

−J`(x)/H(1)
`

(x), T(2)
`

(x) = −J`(x)/H(1)′
`

(x), where gp = ncp/n1 or n1/ncp for TM or TE
polarization, respectively.

The coefficients dp` relevant to the scattered field transmitted inside the cylinders are found from:

dp` = i−`
J`(n1αp)H

(1)′
`

(n1αp)−J′`(n1αp)H
(1)
`

(n1αp)

n1 J`(n1αp)H
(1)′
`

(n1αp)−ncp J′`(n1αp)H
(1)
`

(n1αp) m∑
q=1

+∞∑
m=−∞

i−`cqm
{
CWm−`(n2ξqp, n2ζqp)(1− δqp)+

+RWm+`

[
−n2(χq + χp − 2Λ), n2(ηq − ηp)

]
+TW0,`(χp, ηp − ηL,−χL)0

}} (24)

With PEC targets, the final system is the same as in Equation (21), with D`m(γ)
qp equal to the matrix

A`m(γ)
qp in Equation (22), and the term M`(γ)

p corresponding to the definition B`(γ)p in Equation (23).

3. Results

The approach presented in Section 2 was solved numerically to model scattering applications of
targets hidden behind a wall, as with the through-wall radar investigations. In the system (Equation
(21)), the order p and ` of the expansions into cylindrical waves were truncated to a finite number of
terms (Mt). As a truncation rule, to give a compromise between accuracy and computational heaviness,
a number of terms Mt = b3n1αc [23] were employed in numerical computations, where α was the
radius of the largest cylinder and n1 the refraction index of medium 1. Therefore, the size of the system
(Equation (21)) was M = N × (2Mt + 1). In the modeling of human targets in the typical frequency
range of through-wall radars, the truncation number Mt = b3n1αc can assume high values. Possible
values of Mt are reported in the plots of Figure 3, for different sizes of parts of the human body,
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including knee (radius a = 6 cm), head (radius a = 10 cm), and thorax (radius a = 15 cm), evaluated at 1
GHz (Figure 3a) and 2 GHz (Figure 3b), with n1 = 2. The truncation Mt in this implementation of the
CWA for the through-wall modeling was larger than with the geophysical analysis, as in [18], where
targets like pipes and subservices were detected at the maximum frequency of 1 GHz. Instead, in the
through-wall investigations, the size of the targets was larger compared to the operational frequencies,
(i.e., a larger a/λ ratio was employed). However, the following results confirm that the results of the
CWA were stable and convergent, although a higher number of terms in the expansion of the scattered
field must be included.
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Some results showing the potentialities of the method for the simulation of through-wall layouts
are now illustrated. For target modeling, in the frequency range from 1 to 2 GHz, permittivity of
biological tissues was high and can be represented either as a dielectric medium or as a PEC. In the
dielectric modeling, a real part of the permittivity was εrc = 50, and an electrical conductivity σ = 1
S/m was assigned. In Figure 4, two-dimensional field maps are reported for the targets highlighted
in Figure 3 (i.e., two knees (plots (a–c)), head (plots (d–f)), and thorax (plots (g–i)), modeled as PEC
targets under plane wave excitation (as in [20]) in TM polarization and normal incidence. As for the
wall parameters, thickness was L = 20 and relative permittivity was εr1 = 4. The total scattered field
was evaluated in each medium, at the frequencies of 1 GHz and 2 GHz. In Figure 3b,c, effects of
constructing interference between two interacting targets can be observed.

In the results of Figure 4, the use of a plane wave as incident field was equivalent to an excitation
with a far-field source. The effect of excitation with a line source as in Equation (1) is shown in Figure 5.
The target was modeled as a dielectric one, with radius a = 10 cm, and center in (h1, d1) = (0.6 m, 0.5 m).
The center of the line source was in (xL = −0.5 m, zL), as the coordinate zL was moved from −1 m to
a position aligned with the cylinder axis, and the scattered field in medium 1 was collected along a
line parallel to interface in x = −50 cm. The geometry of the problem is reported in Figure 5a. The
results in Figure 5b show the reduction in amplitude for lateral positions of the source, for a wall with
L = 20 and εr1 = 4. This extension of the method to a line source excitation allows modeling of the
multistatic acquisition employed in multifrequency approaches [24], as explored in recent algorithms
for the imaging of targets in a through-wall environment [25].
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Figure 4. Two-dimensional field maps of the total electric field with targets modeled as PEC and plane
wave excitation in TM polarization and normal incidence [20]: (a) knee (a = 6 cm) at 1 GHz (b) and 2
GHz (c); (d) head (a = 10 cm) at 1 GHz (e) and 2 GHz (f); (g) thorax (a = 15 cm) at 1 GHz (h) and 2 GHz
(i). The dielectric layer has thickness L = 20 cm and εr1 = 4.

The far-field radar cross section (RCS) [17] as a function of the scattering θ is reported in Figure 6,
evaluated in the presence of a wall (L = 20 cm, εr1 = 4), for a dielectric cylinder with permittivity of
a biological medium (εrc = 50, σ = 1 S/m) in Figure 6, and for a low permittivity target modeling a
wood rod (εrc = 2.5, σ = 0.004 S/m), at the frequency of 1 GHz, in Figure 6b. The targets have a fixed
center in (0, 0.5 cm), and two different radii of 7.5 cm and 15 cm are simulated. The source is given
by a plane wave field. Comparison between the two dielectric targets showed a consistent reduction
in the radar cross-section in the low-permittivity case which was more pronounced for the largest
radius. The behavior of the radar cross section can also be estimated in the backscattering direction θ
= 180◦ for different values of the radius a, as in Figure 7. A PEC target was used in the plot. As with
dielectric targets, the internal reflections led to a less regular pattern. The results, calculated at three
frequencies (800 MHz, 1 GHz, and 1.2 GHz), showed that different positions of the resonances were
shifted coherently as the size of the wavelength was varied at a fixed cylinder’s radius.
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Figure 5. (a) Geometry of the problem for line-source scanning. (b) Scattered field in medium 0 along a
line in x = −50 cm, under line source excitation, with a dielectric target (εrc = 50) of radius a = 7.5 cm
and center in (0.6 cm, 0.5 cm). The layer thickness is L = 20 and relative permittivity εr1 = 4. The line
source has its center in xL = −0.5 m, and it is moved in different positions zL.
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4. Conclusions

The CWA implemented for the solution of scattering by targets in a through-wall environment
has been reviewed in its non-iterative approach, where the multiple reflections relevant to the scattered
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field are expressed through a compact and convergent definition of the fields. The approach was partly
extended to include the radiation from a line source as excitation field in the theoretical formulations.
Targets may be either dielectric or PEC, and their size and permittivity can deal with targets of
through-wall investigations. Numerical implementation is performed in an accurate way and through
fast calculations, even for deeply buried targets. Results can be evaluated in both the near and
far-field medium through the computations of the scattered field through all the media without
asymptotic or approximated approaches. Following the approach developed in [18], the method may
be extended to solve the time domain scattering from a pulsed source, and this would also allow for
modeling of frequency-dispersive media. In the presented formulation, permittivity of the wall is
purely real. A solution dealing with a lossy propagation medium may also be developed, employing
inhomogeneous waves in the spectral integral relevant to the reflected and transmitted cylindrical
waves, as in [26].
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