5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms
Abstract
:1. Introduction
2. Background and Related Work
3. System Model and Problem Statement
3.1. System Model
3.2. Problem Statement
4. Meta-Heuristic Algorithms
4.1. PSO Algorithm for Base station Planning
- Step 1:
- Initialize population in hyperspace.
- Step 2:
- Estimate the suitability of each agent.
- Step 3:
- Adjust velocities and location of each agent.
- Step 4:
- Finish some conditions or return to step 2.
Algorithm 1: Algorithm for UMa and UMi deployment |
|
4.2. Algorithm for BSs Selection with Redundant BSs Elimination
Algorithm 2: Algorithm for redundant UMa and UMi elimination |
|
5. Simulation Results and Discussions
5.1. 28G and 38G MmWave Frequencies Spectrum
5.2. Results and Analysis
5.2.1. Planning at 28 GHz Using PSO and SA
5.2.2. Planning at 38 GHz Using PSO
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave positioning for vehicular networks. IEEE Wirel. Commun. 2017, 24, 80–86. [Google Scholar] [CrossRef]
- Bergren, S. Design Considerations for a 5G Network Architecture. arXiv 2017, arXiv:1705.02902. [Google Scholar]
- El-Beaino, W.; El-Hajj, A.M.; Dawy, Z. On Radio network planning for next generation 5G networks: A case study. In Proceedings of the 2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA’15), Sharjah, United Arab, 17–19 Febrary 2015; pp. 1–6. [Google Scholar]
- Mesodiakaki, A.; Adelantado, F.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Energy and spectrum efficient user association in 5G heterogeneous networks. In Proceedings of the 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6. [Google Scholar]
- Tsai, C.-W.; Cho, H.-H.; Shih, T.K.; Pan, J.-S.; Rodrigues, J.J. Metaheuristics for the deployment of 5G. IEEE Wirel. Commun. 2015, 22, 40–46. [Google Scholar] [CrossRef]
- Ghazzai, H.; Yaacoub, E.; Alouini, M.-S.; Dawy, Z.; Abu-Dayya, A. Optimized LTE cell planning with varying spatial and temporal user densities. IEEE Trans. Veh. Technol. 2014, 65, 1575–1589. [Google Scholar] [CrossRef]
- Anthony, S. 5G Specs Announced: 20 Gbps Download, 1 ms Latency, 1M Devices Per Square km. Ars Tech. 2017, 24, 2017. [Google Scholar]
- Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Renzo, M.D.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial modulation for generalized MIMO: Challenges, opportunities and implementation. Process. IEEE 2014, 102, 56–103. [Google Scholar] [CrossRef]
- Milosevic, V.; Jokanovic, B.; Boric-Lubecke, O.; Lubecke, V.M. Key Microwave and Millimeter Wave Technologies for 5G Radio. In Powering the Internet Things 5G Netw; IGI Global: Hershey, PA, USA, 2018; pp. 70–104. Available online: https://www.igi-global.com/chapter/key-microwave-and-millimeter-wave-technologies-for-5g-radio/185922 (accessed on 18 January 2019).[Green Version]
- Checko, A.; Holm, H.; Christiansen, H. Optimizing small cell deployment by the use of C-RANs. In Proceedings of the European Wireless 2014—20th European Wireless Conference, Barcelona, Spain, 14–16 May 2014; pp. 1–6. [Google Scholar]
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Yaacoub, E.; Dawy, Z. LTE radio network planning with HetNets: BS placement optimization using simulated annealing. In Proceedings of the 17th IEEE Mediterranean Electrotechnical Conference (MELECON), Beirut, Lebanon, 13–16 April 2014; pp. 327–333. [Google Scholar]
- Gonzalez-Brevis, P.; Gondzio, J.; Fan, Y.; Poor, H.V.; Thompson, J.; Krikidis, I.; Chung, P.J. Base station location optimization for minimal energy consumption in wireless networks. In Proceedings of the Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 15–18 May 2011; pp. 1–5. [Google Scholar]
- Zhou, L.; Sheng, Z.; Wei, L.; Hu, X.; Zhao, H.; Wei, J.; Leung, V.C. Green cell planning and deployment for small cell networks in smart cities. Ad Hoc Netw. 2016, 43, 30–42. [Google Scholar] [CrossRef]
- Amine, O.M.; Sylia, Z.; Selia, K.; Mohamed, A. Optimal base station location in LTE heterogeneous network using non-dominated sorting genetic algorithm II. Int. J. Wirel. Mobile Comput. 2018, 14, 328–334. [Google Scholar] [CrossRef]
- Liang, X.; Liu, H.; Wang, Q. 4G heterogeneous networks base station planning using evolutionary multi-objective algorithm. In Proceedings of the 2015 11th International Conference on Computational Intelligence and Security (CIS), Shenzhen, China, 19–20 December 2015; pp. 248–252. [Google Scholar]
- Liu, S.-J.; Tsai, C.-W. An effective search algorithm for hyper-dense deployment problem of 5g. Procedia Comput. Sci. 2018, 141, 151–158. [Google Scholar] [CrossRef]
- Ghazzai, H.; Farooq, M.J.; Alsharoa, A.; Yaacoub, E.; Kadri, A.; Alouini, M.-S. Green networking in cellular hetnets: A unified radio resource management framework with base station on/off switching. IEEE Trans. Veh. Technol. 2016, 66, 5879–5893. [Google Scholar] [CrossRef]
- Cai, S.; Che, Y.; Duan, L.; Wang, J.; Zhou, S.; Zhang, R. Green 5G heterogeneous networks through dynamic small-cell operation. IEEE J. Sel. Areas Commun. 2016, 34, 1103–1115. [Google Scholar] [CrossRef]
- Park, Y.; Heo, J.; Kim, H.; Wang, H.; Choi, S.; Yu, T.; Hong, D. Effective small cell deployment with interference and traffic consideration. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar]
- Gazda, J.; Šlapak, E.; Bugár, G.; Horváth, D.; Maksymyuk, T.; Jo, M. Unsupervised Learning Algorithm for Intelligent Coverage Planning and Performance Optimization of Multitier Heterogeneous Network. IEEE Access 2018, 6, 39807–39819. [Google Scholar] [CrossRef]
- Qutqut, M.H.; Abou-zeid, H.; Hassanein, H.S.; Rashwan, A.M.; Al-Turjman, F.M. Dynamic small cell placement strategies for LTE heterogeneous networks. In Proceedings of the 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal, Portugal, 23–26 June 2014; pp. 1–6. [Google Scholar]
- Ikeda, Y.; Kawahara, R.; Saito, H. Homology-based metaheuristics for cell planning with macroscopic diversity using sector antennas. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 3442–3447. [Google Scholar]
- Jaziri, A.; Nasri, R.; Chahed, T. System-level analysis of heterogeneous networks under imperfect traffic hotspot localization. IEEE Trans. Veh. Technol. 2016, 65, 9862–9872. [Google Scholar] [CrossRef]
- Rezaabad, A.L.; Beyranvand, H.; Salehi, J.A.; Maier, M. Ultra-dense 5G small cell deployment for fiber and wireless backhaul-aware infrastructures. IEEE Trans. Veh. Technol. 2018, 67, 12231–12243. [Google Scholar] [CrossRef]
- Baldemair, R.; Irnich, T.; Balachandran, K.; Dahlman, E.; Mildh, G.; Selén, Y.; Parkvall, S.; Meyer, M.; Osseiran, A. Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 2015, 53, 202–208. [Google Scholar] [CrossRef]
- Santos, R.; Ghazzai, H.; Kassler, A. Optimal Steerable mmWave Mesh Backhaul Reconfiguration. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Ding, M.; Lopez-Perez, D.; Claussen, H.; Kaafar, M.A. On the Fundamental Characteristics of Ultra-Dense Small Cell Networks. IEEE Netw. 2018, 32, 92–100. [Google Scholar] [CrossRef]
- Viering, I.; Dottling, M.; Lobinger, A. A Mathematical Perspective of Self-Optimizing Wireless Networks. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–6. [Google Scholar]
- Myung, H.G.; Goodman, D.J. Single Carrier FDMA: A New Air Interface for Long Term Evolution; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 8, Available online: https:// books.google.com/books?hl=en&lr=&id=Dotsv0dfH7kC&oi=fnd&pg=PR5&dq=Myung,+H.G.%3B+Goodman,+D.J.+Single+Carrier+FDMA:+A+New+Air+Interface+for+Long+Term+Evolution%3B+John+Wiley+%26+Sons:+2008+%3B+Volume+8&ots=fIj62Kxkxy&sig=7sMFnfl9FqmJN8S2_GminSAnkWA#v=onepage&q&f=false (accessed on 10 January 2019).
- Flickenger, R. Wireless Networking in the Developing World: A Practical Guide to Planning and Building Low-Cost Telecommunications Infrastructure; Hacker Friendly LLC: Seattle, WA, USA, 2007. [Google Scholar]
- Pedersen, G.F. COST 231-Digital mobile radio towards future generation systems. In Cost 231-Digital Mobile Radio Towards Future Generation Systems; EU: Aslborg, Denmark, 1999; pp. 92–96. Available online: https:// vbn.aau.dk/en/publications/cost-action-231-digital-mobile-radio-towards-future-generation-sy (accessed on 7 March 2019).
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Matalatala, M.; Deruyck, M.; Tanghe, E.; Martens, L.; Joseph, W. Performance Evaluation of 5G Millimeter-Wave Cellular Access Networks Using a Capacity-Based Network Deployment Tool. Mob. Inf. Syst. 2017, 2017, 3406074. [Google Scholar] [CrossRef]
- Leinonen, M.E.; Destino, G.; Kursu, O.; Sonkki, M.; Parssinen, A. 28 GHz Wireless Backhaul Transceiver Characterization and Radio Link Budget. ETRI J. 2018, 40, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Amaldi, E.; Capone, A.; Malucelli, F. Planning umts base station location: Optimization models with power control and algorithms. IEEE Trans. Wirel. Commun. 2003, 2, 939–952. [Google Scholar] [CrossRef]
- Han, J.K.; Park, B.S.; Choi, Y.S.; Park, H.K. Genetic approach with a new representation for base station placement in mobile communications. In Proceedings of the IEEE 54th Vehicular Technology Conference, Atlantic City, NJ, USA, 7–11 October 2001; pp. 2703–2707. [Google Scholar]
- Yangyang, Z.; Chunlin, J.; Ping, Y.; Manlin, L.; Chaojin, W.; Guangxing, W. Particle swarm optimization for base station placement in mobile communication. In Proceedings of the International Conference on Networking, Sensing and Control, Taipei, Taiwan, 21–23 March 2004; pp. 428–432. [Google Scholar]
- Kumar, G.; Ranga, V. Meta-heuristic solution for relay nodes placement in constrained environment. In Proceedings of the 2017 Tenth International Conference on Contemporary Computing (IC3), Noida, India, 10–12 August 2017; pp. 1–6. [Google Scholar]
- Blondin, J. Particle Swarm Optimization: A Tutorial. Available online: http://cs.armstrong.edu/saad/csci8100/psotutorial (accessed on 3 April 2009).
- Richards, M.; Ventura, D. Choosing a starting configuration for particle swarm optimization. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; pp. 2309–2312. [Google Scholar]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern 2013, 43, 1656–1671. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef]
- Eberhart, R.; Simpson, P.; Dobbins, R. Computational Intelligence PC Tools; Academic Press Professional, Inc.: San Diego, CA, USA, 1996; Available online: https:// dl.acm.org/citation.cfm?id=236603 (accessed on 20 March 2019).
- Hendtlass, T. Particle Swarm Optimisation and high dimensional problem spaces. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 1988–1994. [Google Scholar]
- Sharma, A.; Lucini, B.A. Inclusión Digital en América Latina y el Caribe; Boston, USA, 2016; Available online: https://www.gsmaintelligence.com/research/?file=bc2039b5cc86be21d1299ba3a7b1bde2&download (accessed on 28 December 2018).
- MacCartney, G.R.; Zhang, J.; Nie, S.; Rappaport, T.S. Path loss models for 5G millimeter wave propagation channels in urban microcells. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3948–3953. [Google Scholar] [CrossRef]
- Nagaraj, P. Impact of Atmospheric Impairments on mmWave based Outdoor Communication. arXiv 2018, arXiv:1806.05176. [Google Scholar]
- Al-Hourani, A.; Chandrasekharan, S.; Kandeepan, S. Path loss study for millimeter wave device-to-device communications in urban environment. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 102–107. [Google Scholar]
- Faragó, Á.; Kántor, P.; Bitó, J.Z. Rain Effects on 5G millimeter Wave ad-hoc Mesh Networks Investigated with Different Rain Models. Period. Polytech. Electr. Eng. Comput. Sci. 2016, 60, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Recommendation, ITU-R P. 838: Specific Attenuation Model for Rain for Use in Prediction Methods; Geneva, Switzerland, 2005; Volume 3, Available online: https:// www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf (accessed on 29 May 2018).
- Recommendation ITU-R P. 676–10, Attenuation by Atmospheric Gases; International Telecommunications Union: Madrid, Spain, 2013; Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-10-201309-S!!PDF-E.pdf (accessed on 29 May 2013).
- Rodriguez, I.; Nguyen, H.C.; Sorensen, T.B.; Elling, J.; Holm, J.A.; Mogensen, P.; Vejlgaard, B. Analysis of 38 GHz mmWave propagation characteristics of urban scenarios. In Proceedings of the European Wireless 2015—21th European Wireless Conference, Budapest, Hungary, 20–22 May 2015; pp. 1–8. [Google Scholar]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Meng, Y.S.; Lee, Y.H. Investigations of foliage effect on modern wireless communication systems: A review. Prog. Electromagn. Res. 2010, 105, 313–332. [Google Scholar] [CrossRef]
- Dalela, C. Tuning Of Cost-231 hata Model for Radio Wave Propagation Predictions. Comput. Sci. Eng. Appl. 2012, 10, 255–267. [Google Scholar]
- Xu, X.; Saad, W.; Zhang, X.; Xu, X.; Zhou, S. Joint Deployment of Small Cells and Wireless Backhaul Links in Next-Generation Networks. IEEE Commun. Lett. 2015, 19, 2250–2253. [Google Scholar] [CrossRef] [Green Version]
- Technical Feasibility of IMT in Bands Above 6 GHz; Report ITU-R M.2376-0; International Telecommunications Union: Geneva, Switzerland, 2015; Available online: https://www.itu.int/dms_pub/itur/opb/rep/R-REP-M.2376-2015-PDF-E.pdf (accessed on 3 June 2019).
Notation | Description |
---|---|
Set of combined UMa and UMi | |
, | Set of candidate BS, UMa and UMi, respectively |
user | |
Surface occupied by one BS | |
Total surface of geographical area | |
Number of BSs for coverage constraint | |
Number of BSs for data rates constraint | |
Number of user supported by each BS | |
Required number of BS to satisfy the problem | |
Available cell capacity | |
Number of sector antenna | |
data rates satisfaction point | |
, | Tolerance to relax the data rates and coverage constraints respectively |
Initial population number | |
Number of agents ( Particles) | |
Iteration |
Parameters | Values |
---|---|
Carrier frequency (GHz) | 28 |
Channel Bandwidth (GHz) | 1 |
TX antenna Gain (dBi) | 27 |
TX power (dBm) | 30 |
EIRP (dBm) | 57 |
TX Noise Figure (dB) | 7 |
RX power (dBm) | 23 |
RX antenna Gain (dBi) | 10 |
RX Noise figure (dB) | 7 |
Target data rates (Mbit/s) | 500 |
RX noise floor (dBm) | −72.73 |
Thermal Noise (dBm/Hz) | −174 |
Atmospheric attenuation (dB/Km) | 0.06 |
Rain attenuation (dB/Km) | 3.45 |
Foliage losses (dB) | 4.34 |
Penetration losses (dB) | 28 |
Others losses (dB) | 10 |
Parameter | Value |
---|---|
Tolerance and | 99% |
Maximum velocity | 200 |
Maximum iteration | 2000 |
Accelerations = | 2 |
Meta-Heuristic Algorithms | PSO | SA | |||
---|---|---|---|---|---|
Scenario I: The area is uniformly distributed, with standalone deployment architecture | |||||
Number of users | 2000 | ||||
Initial number of BSs | 104 | 104 | |||
Redundant BSs | 5 | 2 | |||
99 | 102 | ||||
Coverage | 98% | 98% | |||
Scenario II: The area is divided into two subareas. The subarea A is uniformly distributed (40% of users) and subarea B normally distributed (60% of users), overlay deployment architecture. | |||||
Number of users | 3000 | ||||
UMa | UMi | UMa | UMi | ||
Initial number of BSs | 42 | 127 | 42 | 127 | |
Redundant BSs | Standalone | 0 | 6 | 0 | 3 |
Combined | 0 | 1 | |||
163 | 165 | ||||
Coverage | 98% | 98% |
Metrics | Coverage Efficiency | Outage Probability | Site Density | CPU Time (Second) |
---|---|---|---|---|
PSO | 98% | 0.1257% | 163 | 3010.39 |
GA | 98% | 0.1298% | 167 | 4250.96 |
SA | 98% | 0.1301% | 165 | 5360.48 |
Meta-Heuristic Algorithm | PSO at 38 GHz | ||
---|---|---|---|
Scenario III: The subarea A is uniformly distributed (40% of users) and subarea B normally distributed (60% of users), in an overlay deployment architecture. | |||
Number of users | 3000 | ||
UMa | UMi | ||
Initial number of BSs | 42 | 359 | |
Redundant BSs | Standalone | 0 | 8 |
Combined | 0 | 3 | |
390 | |||
Coverage | 98% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganame, H.; Yingzhuang, L.; Ghazzai, H.; Kamissoko, D. 5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms. Electronics 2019, 8, 1318. https://doi.org/10.3390/electronics8111318
Ganame H, Yingzhuang L, Ghazzai H, Kamissoko D. 5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms. Electronics. 2019; 8(11):1318. https://doi.org/10.3390/electronics8111318
Chicago/Turabian StyleGaname, Hassana, Liu Yingzhuang, Hakim Ghazzai, and Drissa Kamissoko. 2019. "5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms" Electronics 8, no. 11: 1318. https://doi.org/10.3390/electronics8111318
APA StyleGaname, H., Yingzhuang, L., Ghazzai, H., & Kamissoko, D. (2019). 5G Base Station Deployment Perspectives in Millimeter Wave Frequencies Using Meta-Heuristic Algorithms. Electronics, 8(11), 1318. https://doi.org/10.3390/electronics8111318