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Abstract: This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA)
approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM method applies a Uniform
Sampling Matrix (USM) criterion to sample certain columns from the obtained covariance matrix
in order to efficiently find the directions of the incident signals on an antenna array. The USM
methodology is applied to reduce the dependency between the adjacent sampled columns within a
covariance matrix; then, the sampled matrix is used to construct the projection matrix. The size of the
obtained projection matrix is reduced to minimise the computational complexity in the searching grid
stage. A theoretical analysis is presented to demonstrate that the USM methodology can increase the
Degrees of Freedom (DOFs) with the same aperture size and number of sampled columns compared
to the classical sampling criterion. Then, a polynomial root is constructed as an alternative efficient
computational solution of the UPM method in a one-dimensional (1D) array spectrum peak searching
problem. It is found that this distribution increases the number of produced nulls and enhances
noise immunity. The advantage of the RUPM method is that it is appropriate to apply for any array
configuration while the Root-UPM offers better estimation accuracy with less execution time under
a uniform linear array condition. A computer simulation based on various scenarios is performed
to demonstrate the theoretical claims. The proposed direction-finding methods are compared with
several AoA methods in terms of the required execution time, Signal-to-Noise Ratio (SNR) and
different numbers of data measurements. The results verify that the new methods can achieve
significantly better performance with reduced computational demands.

Keywords: uniform sampling distribution; signal processing; matrix sampling; direction-finding;
AoA method; projection matrix construction; DOFs; antenna array

1. Introduction

Concomitant with the progressive growth of computing power and communications bandwidth,
the size and number of communications-related datasets have also increased in many applications such
as telecommunications, social networks, military, etc. [1,2]. Massive multiple-input multiple-output
(Massive MIMO) technology is an example of such important applications, especially as applied to
fifth-generation (5G) wireless communication systems with high data-rate requirements [3]. It is
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necessary to process the obtained data in an efficient sampling method in order to extract valuable
information about the parameters of the received signals from the increasingly large covariance
matrices, which are typically too large and complex for effective manipulation with classical sampling
methods [4–6].

Estimating direction or angle of arrival (DoA/AoA) parameters has been given the most attention,
particularly in far-field signal applications, in which the wavefront of the signal may be treated as
being planar [7]. Radar systems [8], public security [9] and emergency call location [10] are examples
of these applications. Additionally, in wireless mobile communication systems, when AoA of the
desired user and interference signals are correctly estimated, an adaptive beamforming technique can
be applied to emphasise the gain towards the desired signal suppressing the noise and interference
signals [11,12]. Direction-finding systems face different challenges, caused by the propagation
environment, for instance, time-varying nature of the propagation environment, low number of
snapshots and the multipath propagation environment [13,14]. Moreover, the receiving signals usually
suffer from the fading nature of the channels, which causes a poor Signal-to-Noise Ratio (SNR).

Capon’s Method [15], Multiple Signal Classification (MUSIC) [16] and Estimation of Signal
Parameters via Rotational Invariance Technique (ESPRIT) [17] are common methods that deal with the
AoA estimation problem. Although these methods can provide good estimation, they are infeasible
with large-dimension matrices since they need inverse or matrix decomposition operations to solve
the problem. Alternatively, a Propagator Direct Data Acquisition (PDDA) method can find the AoAs
directly from the observed data matrix without the need to calculate the inverse of the Covariance
Matrix (CM) or apply the Eigen/Singular Value Decomposition (E/SVD) approach [18]. Instead,
the PDDA method calculates the cross-correlation vector that represents the cross-correlation between
the observed data from the first sensor and the other sensors. Bayesian Compressive Sensing (BCS)
theory has been utilised with array signal processing for several investigations [19,20]. BCS theory
supposes that it is possible to recover signals from fewer measurements if certain conditions are
satisfied, as presented in compressive sensing MUSIC (CS-MUSIC) [21] and subspace-augmented
MUSIC (SA-MUSIC) [22,23].

Sparse Signal Reconstruction (SSR) has also emerged as a candidate for the AoA problem,
to recover signals from a limited number of snapshots and improve robustness to noise compared
with conventional techniques [24]. An algorithm based on compressive sensing theory called Sparse
Bayesian Learning/Inference (SBL/SBI) was proposed recently for sparse signal recovery [25]: with this
algorithm, the signal recovery is constructed from a Bayesian perspective while the sparsity data is
applied by supposing prior known sparse distributions of the arrival signal for all measurements.
Generally, in this method the matrix elements are supposed to be precisely known; regrettably, this
hypothesis is invalid when the array manifold suffers from imperfections [26] or when perturbations
of the matrix elements are taken into account [27]. An Off-Grid Sparse Bayesian Inference (OGSBI)
technique was proposed in [28], by merging the quantisation error problem for point sources and the
BCS theory. The quantisation error is taken as real-valued and assumed to be uniformly distributed.
The off-grid AoA refinement can be performed optimally if the coarse AoA estimates are in the correct
number and all within the trust region [24,29]. To satisfy these conditions and obtain off-grid AoA
refinement, large numbers of initial bias hampers and earlier iterations are required, and this, in turn,
increases the computational burden and execution time.

This work proposes two new AoA methods to estimate the directions of the incident signals
on an antenna array. The first is a Reduced Uniform Projection Matrix (RUPM) method for AoA
estimation; the second is an efficient and low complexity method, representing the Root version of the
Uniform Projection Matrix (Root-UPM) method. The Root-UPM estimates the AoAs by finding the
locations of roots of the produced projection matrix instead of looking for the locations of peaks in
the pseudo-spectrum. An efficient sampling methodology to choose the positions of these columns
was undertaken to determine the optimum strategy for maximising the estimation resolution without
increasing the computational complexity. The Uniform Sampling Matrix (USM) methodology is
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adopted here to adjust the distributions of spacings between the sampled columns in order to increase
the separation distance between the eigenvalues of the sampled columns and also to maximise the
aperture size of the sampled matrix. This distribution was chosen as being a realistic set to investigate
the reduction of data processed in the PM while still giving valid AoA information and facilitating
a significant reduction in computational overhead. The chosen methodology also has an additional
benefit as it reduces the dependency on the signal time series between the adjacent sample columns,
which, in turn, enhances robustness to noise. Therefore, the directions of the incident signals can be
determined efficiently with a lower number of snapshots in the presence of poor SNRs.

The rest of the paper is organised as follows: Section 2 models AoA estimation problem with
an arbitrary array geometry. The methodology of the projection matrix construction is given in
Section 3. The idea and working principle of the proposed angle of arrival algorithms, including the
uniform sampling methodology, are given in Section 4. The theoretical analysis and the complexity
of computations are derived and presented in this Section as well. Simulation results, discussions,
and comparisons are displayed in Section 5. Finally, Section 6 summarises the results and sets
out conclusions.

2. Angle of Arrival Estimation Model with Arbitrary Array

For generality, a 3D arbitrary antenna array geometry consisting of M elements is adopted and
used to model the AoA estimation problem. L sources are assumed located in the far-field and sending
L narrowband signals, which incident on this array from different elevation angles (θj) and azimuth
angles (φj) incident, as shown in Figure 1. The incident signals are measured by the M sensors and
then down-converted to the baseband level in order to process them digitally and finding the AoAs of
the incoming signals. The vector of the received data, including the additive noise, is described below.

x(t) = A(θ, φ) s(t) + n(t) t = 1, 2, . . . . . . N (1)

where:

s(t) = [s1(t), s2(t), . . . , sL(t)]
T is a modulated signal.

n(t) = [n1(t), n2(t), . . . , nM(t)] is the Additive White Gaussian Noise (AWGN).
A(θ, φ) is a steering matrix that includes L steering vectors as described below:

A(θ, φ) = [a(θ1, φ1) a(θ2, φ2) . . . a(θL, φL) ] (2)
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To derive the steering vector of the kth plane wave that incidents on the above array, one needs
to define the unit vector that includes the elevation and azimuth angles for such kth incident signal
as follows:

uk = cosφk sinθkâx + sinφk sinθkây + cosθkâz (3)

Here, âx, ây and âz are the unit vectors for Cartesian coordinates. The second step is to define the
unit vector that represents the distance between a reference element and the other antenna elements as
follows:

vi = ri cosϕiâx + ri sinϕiây + ziâz i = 1, 2, . . . , M. (4)

Here, ϕi denotes the separated angle between the x-plane and the positions of each element. Next,
the produced angle between the uk and vi vectors for the ith element and with respect to a reference
element (i.e., element 1, see Figure 1) needs to be computed utilising the dot product between these
vectors as given below:

αik = cos−1
(

vi.uk
‖vi‖‖uk‖

)
= cos−1

(
sinθk cos(φk −ϕi) + zi cosθk

‖vi‖.‖uk‖

)
αik = cos−1(sinθk cos(φk −ϕi) + zi cosθk) (5)

The total set of αik due to L plane waves incident on M sensors can be given as a matrix with (M × L)
dimension:

Υik =


α11 α12

... α1L

α21 α22
... α2L

...
...

. . .
...

αM1 αM2 · · · αML


(6)

The time delay of the kth incident signal on M antenna elements with respect to the original reference
element, τik, as shown in Figure 1, can be calculated as follows:

τik = r cosαik = r
{
sinθk cos(φk −ϕi) + zi cosθk

}
(7)

The corresponding matrix that contains the time delays of L impinging plane waves on M antenna
elements is:

Tik =


τ11 τ12 · · · τ1L

τ21 τ22
... τ2L

...
...

. . .
...

τM1 τM2 · · · τML

 (8)

The angular phase difference (ψik) is presented below:

ψik = β τik =
2π
λ

r sinθk cos(φk −ϕi), λ is the wavelength (9)

The phase difference matrix that includes the full set of ψik can be described as follows:

ψik =


ψ11 ψ12 · · · ψ1L

ψ21 ψ22
... ψ2L

...
...

. . .
...

ψM1 ψM2 · · · ψML

 (10)
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Then, the array steering vector that can be applied to any array configuration can be given below;

a(θk, φk) =
[

e− jψ1k e− jψ2k · · · e− jψMk
]

(11)

3. The Projection Matrix Construction

The conventional sub-set sampling approach for projection matrix construction uses a crude slice
of the CM data, and it is to be expected that such sampling is non-optimal. To construct a projection
matrix, consider there are M elements receive L signals at N times, then, the collected data matrix, X(t),
can be given as follows:

X(t) =



x1(t1) x1(t2) · · · · · · x1(tN)

x2(t1) x2(t2)
...

... x2(tN)
...

...
. . .

...
...

...
...

...
. . .

...
xM(t1) xM(t2) · · · · · · xM(tN)


(12)

The array covariance matrix (Rxx) can be computed by applying the expectation process to the received
data matrix as follows [18]:

Rxx = E
[
X(t) XH(t)

]
= E

[
AS(t)SH(t)AH

]
+ E

[
N(t) NH(t)

]
= ARss AH + σn

2IM (13)

where A is the matrix of steering vectors defined in (2), Rss is the (L × L) source signal correlation
matrix,Rss = E[S(t)S(t)], σn

2 is the noise variance, IM is the (M ×M) identity matrix, and ()H represent
the conjugate transpose operation.

When the signals sources are travelling from one location to another with time (i.e., the arriving
signals are time-varied), it’s incident direction on the antenna array will alter with time as well and
this, in turn, will vary the steering vectors matrix. Then, the computations are dependent upon timed
measurements of the arrival signal. Practically, it is difficult to obtain the actual CM and, thus one
needs to use the sample-average estimated array input matrix to construct Rxx as follows [30]:

Rxx ≈
1
N

N∑
k=1

X(t)XH(t) (14)

This matrix, Rxx, includes the information of L signals and therefore, the highest rank-L matrix to
M under both the Frobenius and spectral norms can be represented by [31]:

Rxx =
L∑

i=1

qiΣiqH
i (15)

In other words, the columns of this decomposition are projections of L columns of M onto the
span (qi: 1 ≤ i ≤ L). Then, the projection matrix can be calculated, based on the signal subspace matrix
as follows [32]:

USS = IM −QSS

(
QH

SSQSS

)−1
QH

SS (16)

Here, QSS =
[
q1, q2, . . . . . . , qL

]
is the signal subspace matrix that contains the information of L

dominated eigenvalues Σ = [Σ1, Σ, . . . . . . , ΣL]. Now, one can construct the spatial spectrum of the
MUSIC method using the below formula [33]:

PSS(θ,φ) =
1

a(θ, φ)USS USS
Ha(θ, φ)H (17)
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Based on (17), the projection matrix uses the signal eigenvectors, and consequently, the CM
must be decomposed to obtain these eigenvectors, which will cost a high computational burden.
Alternatively, L rows/columns of the CM can be exploited to be fundamentally the equivalent of the
Hilbert-Schmidt or Frobenius norms without the need to decompose the CM. The over-riding problem,
however, is to find a method of picking an L-subset of rows/columns of M ∈ CM×L so that projecting
onto their span is almost as good as projecting onto span (qi: 1 ≤ i ≤ L), but with avoiding any increase
in the complexity of computations [4]. To proceed, assume that there is L plane waves incident on an
array consisting of M elements, hence the size of the CM is (M ×M). We need to sample C columns,
where L < C < M: as described below:

Rxx =


r11

r21
...

rM1

r12

r22
...

rM2

· · ·

...
. . .
. . .

r1L
r2L
...

rML

· · ·

...

r1M
r2M

. . .
...

. . . rMM

 (18)

Let us assume the required sample matrix from Rxx be assigned the symbol Q as follows:

Q =


r11

r21
...

rM1

r12

r22
...

rM2

· · ·

...
. . .
. . .

r1L
r2L
...

rML

 (19)

where Q ∈ CM×L is the signal subspace sampled matrix, having dimensions (M × L). However, there
is no optimum criterion or method to select the positions of these rows/columns. The criterion that
has been used in the state-of-art heretofore has been largely based on the information in the first L
rows/columns within the CM [34–36]. We will call this criterion the classical method and the sampled
matrix will be termed QC, where QC = [rxxc], such that rxxc represents the set of columns in the matrix
Rxx and c is the set of column numbers. The chosen columns set c from the matrix Rxx, using the
classical sampling methodology is given by;

QC = {ci|1 ≤ ci ≤ C}, C = L + 1 (20)

The distribution and locations of these columns under this method can be represented conceptually
as shown in Figure 2; the blue lines represent the locations of the selected columns in the CM.

The projection matrix can be computed as follows [37]:

UC = IM −QC

(
QH

C QC

)−1
QH

C (21)

Then, the spatial spectrum of the PM method can be formed using the following formula [32].

PC(θ, φ) =
1

‖a(θ, φ)UC‖
2 (22)

The performance of this algorithm is significantly based on the QC matrix. Thus, a new sampling
technique is given in the next section to improve and enhance the AoA estimation accuracy.
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4. The Proposed Angle of Arrival Methods

The selected sampling matrix Q gives some picture of that interdependence structure. The critical
question is: to what extent does the selected sample, Q, present a correct representation of the signal
subspace matrix? Thus, the methodology of sampling the covariance matrix and selecting the Q
columns has significant impacts on the estimation resolution, as stated by [4]. Volume sampling is
the selection l-subsets of the rows/columns of a certain matrix with probabilities proportional to the
squared volumes. It was first introduced in [38] in the context of low-rank approximation of matrices.
This means that rows or columns from the matrix can be selected essentially at random to obtain a
dimension-reduced problem with necessarily the same norm as the original. The behaviour of the
largest L eigenvalues is based mainly on the method of sampling the CM. To this end, a new sampling
matrix approach is proposed to expand the array aperture of Q in the next sub-section.

4.1. The Reduced Uniform Projection Matrix (RUPM) Method

In a previous works [32,37], the impact on the estimation accuracy and the Probability of Detection
(PoD) of AoAs of the number of sampled columns (size of the sampled matrix) that was used in
the projection matrix construction has been analysed and investigated. It was demonstrated that an
increase in the number of the sampled columns leads to increases in the estimation resolutions and
PoD. However, the computational complexity of the projection matrix construction is increased with
increasing size of the sampled matrix. Thus, it is crucial to utilise an efficient sampling method that
can extract sufficient information about the signal parameters without introducing new problems such
as grating lobes, angle estimation ambiguity and increase of the computational burden.

Instead of the straightforward approach shown in Figure 2, it is intuitively reasonable to consider
a more distributed approach to the allocation of the columns of the subspace matrix. As a first
trial, a uniform sampling distribution was applied to extract the received data in the CM efficiently.
Thus, QUSM was constructed using a uniform structure instead of utilising the first L columns of Rxx.
In this structure, the distance between the L columns was set uniformly: this can be defined by the
specification of a system of subsets of the product (M × C) as given in (23). The methodology of
selected CM columns based on this formula can be shown in Figure 3. It is clear from this figure that
the size of the obtained aperture array of QUSM is wider than that with QC as illustrated in Figure 2.

QUSM =

{
ci|ci = 1 + round

(
(i− 1)·(M− 1)

(C− 1)

)
for i = {1, 2, . . . , C}

}
(23)
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It can be also observed that the distance between the adjacent columns of QUSM is larger than
with QC. This, in turn, will minimise the correlation on the signal time series between the sampled
columns and remove the dependency with the steering vector, hence eliciting the individual AoAs.

Based on the uniform selecting criterion, the Uniform Projection Matrix (UPM) can be computed
as follows:

UUPM = IM −QUSM

(
QH

USMQUSM

)−1
QH

USM (24)

UUPM ∈ CM×M is the computed projection matrix based on the uniform sampling methodology.
To reduce the complexity of computations, it is suggested to reduce the size of the above matrix

from (M ×M) to (M × G); this can be accomplished by multiplying as follows:

URUPM =UUPM IG (25)

where IG is M × G identity matrix and defined as:

IG =



1
0
0
...
0
0

0
1
0
...
0
0

· · ·

0
. . .
0
...
. . .

0
...
0
1
0
0

︸                             ︷︷                             ︸


M

G

(26)

G is a pre-defined number, and to ensure this algorithm is applicable for an arbitrary antenna array
and suitable for 2D and 3D estimation, its value should be in this range: 2 ≤ G ≤M. Now, the pseudo
spectrum of the Reduced UPM (RUPM) approach can be formed as follows:

PRUPM(θ, φ) =
1

‖a(θ, φ)UR‖
2 (27)
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4.2. The Root-UPM Method

From a computational complexity point of view, searches to the roots that corresponding to AoAs
instead of looking to the location of peaks in the pseudo spectrum is much less computational. Thus,
the root version of the UPM method is presented here to reduce the computational burden due to the
grid searching stage. The Root-UPM technique can be described as follows:

PUPM(θ) =
1∣∣∣a(θ, φ)M a(θ, φ)H ∣∣∣ (28)

whereM = QUPM. By taking the denominator of (28), the Root-UPM becomes the following formula:

PUPM(θ)−1 = a(θ)H
Ma(θ) =

M∑
m=1

M∑
n=1

e− jβd(m−1)sinθ
Mmne jβd(n−1)sinθ (29)

Here,Mmn is the entry in the mth row and the nth column ofM. For simplicity, one can convert the
above double summation into single summation by assuming ` = m− n. The range of ` is limited by
m and n, i.e., −M + 1 ≤ ` ≤M− 1. Hence, the above equation becomes as follows:

PUPM(θ)−1 =
M−1∑

`=−M+1

e− jβd`sinθ
M` (30)

where β = 2π/λ is the propagation constant, d is the separation distance between the adjacent
elements, θ is the direction of the incident signal within the elevation plane, andM` represents the
sum of the `th diagonal elements of the matrixM. A polynomial D(z) that is equivalent to PUPM(θ)−1

can be defined as follows:

D(z) =
−M+1∑

`= −M+1

M`Z
` (31)

where Z` = e− jβd`sinθ. Since the spectrum of PUPM(θ) should have L peaks, then, the PUPM(θ)−1

spectrum should contain L nulls. To this end, D(z) should include L zeros located on the unit circle.
The other zeros of the polynomial D(z) will be located far from the unit circle.

The result of (31) represents the roots that may be corresponded to the peaks of the pseudo
spectrum of the UPM method. Every root could be complex and defined by the polar notation:

Zi = |Zi|e jarg(Zi) (32)

where arg(Zi) denotes to phase angle ofZi.
In the absence of noise, the actual zeros are located exactly on the diameter of the unit circle,

thus, the condition of the root magnitude being equal to one (i.e., |Zi| = 1) is applied. However,
this assumption is difficult to satisfy in practical applications as the arriving signals typically contain a
certain amount of noise and, therefore, the zeros may be located slightly away from the diameter of the
unit circle. To this end, it is necessary to place a threshold around them such as 0.90 to 1.1, in order to
determine the number of roots (i.e.,Zi). The arrival angles can then be computed as follows

θi = − sin−1
(

1
βd

arg(Zi)

)
(33)

Here, θi represents the direction of the incident signals that obtained from the root location (i.e.,Zi).
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4.3. Flow Chart for the Proposed AoA Methods

The whole signal processing steps needed to implement the RUPM and Root-UPM methods
started from measuring signal by an antenna array until obtaining the AoA of the incident signals can
be summarised in Figure 4.
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It can be seen from this diagram both methods share the first three stages namely: CM construction,
applying the USM methodology and UPM construction. After that, each method has a different route
to determine the direction of the received signals. If the geometry of the used array is Uniform Linear
Arrays (ULAs), both RUPM and Root-UPM can be applied in the signal processing stage to find
the AoAs. However, it is recommended to apply the Root-UPM method as it much faster and less
computational complexity than the RUPM algorithm and also can give better estimation accuracy.
If the 2D or 3D array has been used such planar, circular, cubic, etc. then only RUPM can be applied
since the Root-UPM is applicable only for ULA.

4.4. Theoretical Analysis of DOFs

For the AoA estimation, the objective is the determination of the number of nulls of the array
factor instead of the number of maxima. It is assumed for this operation that the number of sample
columns ‘C’ used to conclude the CM should satisfy the equality C = L + 1. With the classical sampling
methodology, the array factor can be formed based on the first C picked columns as follows:

AFC(θ) =
[
1 e− jψ e− j2ψ . . . e− j(C−1)ψ

]
(34)
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where ψ = π cosθ, by multiplying both sides of (34) by e− jψ, this yields:

AFC(θ) e− jψ =
[

e− jψ e−2 jψ e− j3ψ . . . e− jCψ
]

(35)

By subtracting equation (35) from (34) results in:

AFC(θ) =

(
e− jCψ

− 1
)(

e− jψ − 1
) (36)

The above equation represents the number of nulls of the array factor due to the classical sampling
criterion. With further simplifications, the above equation can be given as follows:

AFC(θ) =
sin

(
Cψ

2

)
sin

(ψ
2

) (37)

From (37), it can be seen that the maximum number of nulls is C-1 where these nulls are used to
point peaks toward the incident signals. To justify any advantage in terms of angular precision with
the proposed methodology compared to the conventional one, the possible produced nulls will be
computed using the proposed sampling methodology. For uniform sampling, the space between each
two adjacent sampled columns is set as U = round (M/L), where U is the uniform sampling factor.
Based on the uniform sampling criterion, the array factor can be given by:

AFUSM(θ) =
[
1 e− j(U−1)ψ e− j(2U−1)ψ . . . e− j(CU−1)ψ

]
(38)

By multiplying both sides of (38) by e− jUψ yields:

AFUSM(θ)e− jUψ =
[
e− jUψ e− j(2U−1)ψ . . . e− j(CU+U−1)ψ

]
(39)

Subtracting (39) from (38) results in:

AFUSM(θ) =

(
e− jTψ

− 1
)(

e− jUψ − 1
) (40)

where T = CU + U − 1.
Simplifying the above equation, it can be presented as follows:

AFUSM(θ) =
sin

(Tψ
2

)
sin

(Uψ
2

) (41)

The array nulls can occur when the numerator argument of (41) is equal to Tψ/2 = ±2nπ. Therefore,
the number of produced nulls utilising the USM approach can be given as follows:

θnull = sin−1
(
±

2nπ
(T)

)
, n = 1, 2, . . . , T (42)

The number of produced nulls using (42) is T, and this number is much more than that obtained by
(37). The number of nulls using the USM approach compared the that produced with the conventional
methodology can be calculated by dividing (41) on (37) as follows:

NR =
AFUSM(θ)

AFC(θ)
=

T
C− 1

(43)
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Based on the proposed distribution of the selected number of columns, the resolution can be varied
when the weights are changed even though the degrees of freedom are equal for both approaches.
The ratio of the number of nulls can play a substantial role in adjusting the AoA accuracy to separate
closely spaced signals incident on the array.

4.5. Computational Complexity Analysis

Most of the localisation applications look for implementing a low complexity AoA method,
especially with large array sizes. The reduction in the quantity of calculations of any system makes the
processing system efficient with less consumption power [39]. Typically, the computational complexity
of an AoA method consisting of three main stages. Firstly, constructing the CM, which costs O
(M2N). After that, based on the used method where some AoA algorithms need to decompose the CM,
which requires O (M3) or computes the projection matrix that needs to O (M2C) arithmetic operations,
etc. [18,40]. It should be noted with massive MIMO, the burden of O (M3) will suffer from infeasibly
high computational complexity. Finally, most of the current AoA system includes the searching
grid step in order to construct the spatial spectrum and then finding the location of the produced
peaks. The computational load of this stage is based mainly on three parameters namely: the matrix
dimension, the size of the searching step (δθ), and the angular range of scanning (Jθ). In the present
work, Jθ was assumed to cover the angular range [−90◦ 90◦] and δθ = 0.5◦, then Jθ = 361/δθ.

The total computational complexity of the proposed AoA methods based on the above arguments
have been calculated and compared with common and well-known AoA techniques as given the
Table 1.

Table 1. The required number of computational operations comparison.

Name of AoA Algorithm The Complexity of Computations

Capon [15] O (M2N + M3 + M2Jθ)
Min-Norm [41] O (M2N + M3 + MJθ)

MUSIC [16] O (M2N + M3 + M(M-L)Jθ)
PM [37] O (M2N + ML + M2Jθ)

ESPRIT [17] O (M2N + M3 + 3ML2 + 2L3)
Propagator [42] O (M2N + M2 L + M(M-L)Jθ)

AV [43] O (M2N + M2 LJθ)
CG [44] O (M2N + M2LJθ)

OGSBI [28] O (M2N + max (M (Jθ)2, MLJθ)) per iteration
Root SBL [45] O (M2N + M Jθ) per iteration

MVN [46] O (M2N + M3 + MDJθ)
SSS [47] O (M2N + M3 + MLJθ)

Proposed (RUPM) O (M2N + MC + MGJθ)
Proposed (Root-UPM) O (M2N + MC)

Note, the Min-Norm, Root MUSIC, ESPRIT and Root-UPM are applicable only for ULAs.

5. Numerical Simulations and Discussions

To evaluate the potential advantages of the proposed AoA method, computer simulations over
a wide range of scenarios were undertaken and the results compared with several AoA approaches.
Four main types of test are undertaken; firstly, a numerical example comparison using various
techniques is presented to show the performance of each algorithm in identifying the angles of
arriving signals. Secondly, the execution time is calculated to measure the speed and complexity of
computations. In the third scenario, the estimation accuracy of the proposed methods is compared
with several commons AoA techniques based on SNR variations, and finally, it is investigated with
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a different number of collecting the data matrix. In the last two scenarios, the Average Root Mean
Square Error (ARMSE) of AoAs was computed as follows:

ARMSE =
1
K

∑K

i=1

√
1
L

∑L

k=1

[(
θk − θ̂k

)2
]

(44)

where K is the number of Monte Carlo trials, θk and θ̂k are actual and estimated angles, respectively.

5.1. Inter-comparison: Numerical Example

A numerical scenario was implemented with different incident AoAs to illustrate the principles
developed. A ULA consisting of M = 32 with d = 0.5λ was considered and used to receive ten
narrowband signals (L = 10) from sources located in the far-field. The number of measurements
that assumed to construct the CM was set as N = 100 and SNR at the array output was set at 10 dB.
The searching step angle is δθ = 0.5◦. The directions of the ten plane waves are θ = [32◦ 36◦ 39◦

65◦ 100◦ 142◦ 149◦ 154◦ 164◦ 175◦] and indicated by red circles. Three of the received signals were
postulated to be incident at closely similar angles θ = {32◦ 36◦ 39◦}, in order to investigate the ability to
resolve and detect directions of signals under this circumstance. In addition, five signals are incident at
angles widely distant from the broadside direction, θ = {142◦ 149◦ 154◦ 164◦ 175◦}, some of them close
to each other. The RUPM and Root-UPM methods in addition to four other different AoA techniques,
are considered here and used to estimate the directions of the incident signals. The reduction projection
matrix parameter of the RUPM method is set to G = 5. For the OGSBI, For the Root-SBL and OGSBI
methods, the maximum number of iterations and the tolerance error are set at 200 and 0.001, respectively,
while the other simulation parameters are set as same as those presented in [28,45]. The performance
comparison of these algorithms is illustrated in Figure 5.Electronics 2019, 8, 1386 13 of 19 
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As shown, the RUPM estimated the directions of all incident signals by producing ten obvious
peaks towards them. The Root-UPM has also detected all the arrival angles without the need to
construct the spatial spectrum, which reduced the computational burden, memory storage and the
execution time extremely. For, the Projection Matrix (PM) based on the classical sampling criterion,
propagator, OGSBI algorithms detected the directions of only seven signals. The Root-SBL failed to
identify two plane waves. This confirms the strength and effectiveness of the proposed techniques
and demonstrates that the way of sampling obtained date has a significant effect on the signal
estimation parameters.

5.2. The Execution Time Comparison

The running time of the proposed RUPM and Root-UPM methods were compared with the
execution time of four different algorithms, namely: PM; propagator; OGSBI; Root-SBL methods.
The main simulation parameters are adjusted as follows: M = 32; N = 100; L = 10; G = 5; δθ = 0.5◦ and
Jθ = 361/δθ = 722. A MATLAB code for each method has been written and the tic and toc functions
were used to measure the execution time. The specifications of the PC that was adopted and used in
this simulation are processor: Intel(R) Core (TM) i7-4790 CPU @ 3.6 GHz, with 32 GB installed RAM
and the type of the operating Windows 8.1. A MATLAB simulation programme for each method was
run under the same computer situations with one hundred iterations; the total time of execution of
each technique was recorded and given in Table 2.

Table 2. Showing the execution time comparison of several AoA methods.

Algorithm PM Propagator OGSBI Root-SBL RUPM Root-UPM

Execution
time (sec.) 2.5752 0.7063 141.0755 922.956 0.6917 0.3629

As illustrated, the Root-SBL and OGSBI are the slowest algorithms and need extremely execution
time to achieve the estimation process. The execution time of the PM method is reasonable and much
less than the two previous algorithms. The needed execution time for the propagator and RUPM
techniques is approximately the same three times less than the time, which needed for PM method. The
Percentage of the Reduced Execution Time (PRET) using the Root-UPM was computed and compared
with other algorithms based on the following formula:

PRET(%) = (100%) −
tRoot−UPM

tcomp
× 100% (45)

To compute the percentage of the reduce execution time using the Root-UPM compared to the RUPM,
propagator, PM, OGSBI and Root-SBL methods, one can substitute the running time of these methods
(see Table 2) in the tcomp separately to obtain this percentage. The reduced execution time percentage
of the Root-UPM method compared to other techniques is shown in Figure 6.
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As illustrated, the running time of the Root-UPM method is 48% and 49% less than the RUPM and
propagator techniques, respectively. However, the running time of the Root-UPM approach is 86%,
99.74% and 99.96% less than the PM, OGSBI and Root-SBL methods, respectively. The reason of the slow
convergence of the OGSBI and Root-SBL methods is because its computational complexity not only
based on the number of snapshots and antenna elements but also on the other parameters such as the
maximum number of iterations and tolerance error, which are required to find the optimum solution.

5.3. Comparisons Based on SNR Variations

The SNR represents the ratio of the received signals power to the power of the additive noise
(i.e., SNR = 10 log

(
σ2

s /σ2
n

)
) and this ratio plays an essential role in the performance estimation of

the AoA method. Thus, the impact of the SNR on the estimation accuracy is tested and compared
by assuming the SNR varies from −10 dB to 10 dB in 2.5 dB increments. Ten plane waves (L = 10)
from different directions postulated as incident on a ULA consisting of M = 32 sensors with d = 0.5λ.
One hundred snapshots were considered and used to construct the received data matrix. The same
angles of arrival that assumed in Section 5.1 are applied in this scenario for all techniques equally to
ensure a fair comparison. The ARMSE for each SNR was computed and then plotted, as shown in
Figure 7. As depicted, the proposed methods (i.e., RUPM and Root-UPM) gives a better estimation
resolution compared to other AoA techniques. It can be observed that the Root-UPM gives the best
estimation accuracy among the compared methods through the whole the tested SNR range with the
least computational burden as justified in Section 5.2. The performance of the RUPM is better than
OGSBI, propagator and ESPRIT algorithms and comparable to the Root-SBL approach. However, the
complexity and the execution time of the RUPM is much less than Root-SBL method as verified in
Section 5.2.
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5.4. Comparisons Based on Different Number of Snapshots

The last scenario compares the effect of the performance of the RUPM and Root-UPM methods
with four popular AoA techniques based on different numbers of snapshots. Seven different numbers of
snapshots were used: N = (20, 30, 50, 75, 100, 200, 300). The other simulation parameters were set to be
the same as those given in Section 5.2 except that the SNR was set at 5 dB. The ARMSE of each method
was computed and then plotted, as shown in Figure 8. It is clear that the proposed methods present
better estimation accuracy over the simulated range of snapshot numbers, in comparison with the other
methods. The Root-UPM provides the best estimation resolution compared to the simulated methods
through the whole testing range. Furthermore, the RUPM approach gives approximately better
direction estimation accuracy than the ESPRIT and Root-SBL techniques with significant improvements
compared to the propagator and OGSBI algorithms.

This verifies that the sampling approach to select subsets of rows/columns inside the CM and the
way of constructing the projection matrices has a significant positive impact on the estimation accuracy.
It is relevant to note that these improvements were accomplished with the low computational load as
proved in Tables 1 and 2. The reason for the OGSBI gives poor estimation is this method based on
sparse signal reconstruction to deal with such an off-grid AoA estimation problem. The approximation
quality is deteriorated when the number of the iteration is not enough to construct the off-grid AoA
refinement, which, in turn, corrupt the discretised sampling grid. Thus, the location of constructed
gird can be far to the true AoA, which yields a highly significant error. However, performing large
numbers of initial bias hampers and earlier iterations will increase the computational burden and
execution time significantly.
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6. Conclusions

In this work, accurate and essay to implement AoA methods called uniform sampling matrix and
its root version have been proposed to find the arrival angles of the incident signals on an antenna
array. The proposed methodologies were chosen to test a realistic range of distributed positions of
rows/columns to be selected within the CM and use this to create the projection matrix. The bases of
these approaches and the working principle were presented and modelled. It was found that these
approaches have a significant impact in retaining all of the relevant information while reducing the
correlation between the columns of the sampled matrix and minimising the dependency with the
steering vector and thus facilitated elicitation of the individual AoAs. The theoretical analysis showed
that the proposed methodology could produce many more nulls, namely CU+U-1, compared to the
classical sampling approach, which produced only C-1 nulls. A numerical example was given to prove
the theoretical claims where the proposed approaches were able to detect and identify all the ten AoAs.
A Monte Carlo simulation was performed with different values of SNR and the number of snapshots
to illustrate the enhancement that could be realised by the use of the proposed AoA methodologies.
The simulation results showed that the proposed two methods gave significant improvements in the
estimation error and the probability of detection of the angles of arrival, compared to the other AoA
algorithms. The computational complexity and execution time are calculated and compared as well.
The results showed that the reduced execution time percentage of the Root-UPM compared to the
propagator, PM, OGSBI and Root SBL methods are 49%, 86%, 99.74% and 99.96%, respectively.
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