Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis
Abstract
:1. Introduction
2. Basic Recognition Framework
3. Propose Signal Pre-Processing Method
3.1. Signal Pre-Processing
3.1.1. Emitter Signals
3.1.2. Time-Frequency Transformation
3.1.3. Signal Feature Images Construction
3.1.4. Signal Autocorrelation Deviation Analysis
3.1.5. Signal Feature Image Enhancement
3.2. Model Input Layer Optimization
3.3. Performance Evaluation of Algorithm
4. Evaluation and Analysis of ACFICT
4.1. Simulation Environment and Data Set Generation
4.2. Signal Pre-Processing Algorithm and Classification Network Model
4.2.1. Signal Pre-Processing Algorithm
4.2.2. Network Model
4.3. Comparison of Algorithm Performance
4.3.1. Image Restoration Degree and Image Stability Degree
4.3.2. Signal Recognition Rate
4.3.3. Competitive Literature Comparison
4.4. Optimization Analysis of Proposing Method
4.4.1. Influence of Changing Input Layer on Signal Recognition Rate
4.4.2. Recognition Speed Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Martino, A. Introduction to EW Systems, 2nd ed.; Artech House: Norwood, MA, USA, 2012. [Google Scholar]
- Zhu, J.D.; Zhao, Y.J.; Tang, J. Automatic recognition of radar signals based on time-frequency image character. In Proceedings of the IET International Radar Conference, 14–16 April 2013; pp. 1–6. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Matuszewski, J. Radar signal identification using a neural network and pattern recognition methods. In Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Slavske, Ukraine, 20–24 February 2018; pp. 79–83. [Google Scholar]
- Matuszewski, J.; Huang, D.P. Recognition of electromagnetic sources with the use of deep neural networks. In Proceedings of the 12th Conference on Reconnaissance and Electronic Warfare Systems (CREWS), Oltarzew, Poland, 19–21 December 2018; pp. 98653–98667. [Google Scholar]
- Zhou, Z.; Huang, G.; Gao, J. Radar Emitter Recognition algorithm based on deep learning. J. Xidian Univ. 2017, 44, 77–82. [Google Scholar]
- Zhou, Z.; Huang, G.; Chen, H. Automatic Radar waveform recognition Based on Deep Convolutional Denoising Auto-encoders. Circuits Syst. Signal Process. 2018, 37, 4034–4048. [Google Scholar] [CrossRef]
- Kong, S.; Kim, M.; Hoang, L.M. Automatic LPI Radar waveform recognition Using CNN. IEEE Access 2018, 6, 4207–4219. [Google Scholar] [CrossRef]
- Matuszewski, J.; Sikorska-Łukasiewicz, K. Neural network application for emitter identification. In Proceedings of the International Radar Symposium, Prague, Czech Republic, 28–30 June 2017; pp. 28–30. [Google Scholar]
- Janusz Dudczyk, A.K. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network. Int. J. Antennas Propag. 2012, 2012, 935073. [Google Scholar]
- Gao, J.Z. Detection of Weak Signals; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Bismor, D.; Czyz, K.; Ogonowski, Z. Review and Comparison of Variable Step-Size LMS Algorithms. Int. J. Acoust. Vib. 2016, 21, 24–39. [Google Scholar] [CrossRef]
- Le, B.; Liu, Z.; Gu, T. Weak LFM signal detection based on wavelet transform modulus maxima denoising and other techniques. Int. J. Wavel. Multiresolution Inf. Process. 2010, 8, 313–326. [Google Scholar] [CrossRef]
- Li, J.; Meng, K.; Li, Y. Adaptive linear TFPF for seismic random noise attenuation. J. Pet. Explor. Prod. Technol. 2018, 8, 1443–1453. [Google Scholar] [CrossRef]
- Kabir, M.A.; Shahnaz, C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control. 2012, 7, 481–489. [Google Scholar] [CrossRef]
- Zilberman, E.R.; Pace, P.E. Autonomous Time-Frequency Morphological Feature Extraction Algorithm for LPI Radar Modulation Classification. In Proceedings of the International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 2321–2324. [Google Scholar]
- Hassanpour, H. A Time-Frequency Approach for Noise Reduction; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Huang, Z.; Ma, Z.Y.; Huang, G.M. Radar Waveform Recognition Based on Multiple Autocorrelation Images. IEEE Access 2019, 7, 98653–98667. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Zhao, Z. Radar waveform recognition Based on Time-Frequency Analysis and Artificial Bee Colony-Support Vector Machine. Electronics 2018, 7, 59. [Google Scholar] [CrossRef]
- Zhang, M.; Diao, M.; Guo, L. Convolutional Neural Networks for Automatic Cognitive Radio waveform recognition. IEEE Access 2017, 5, 11074–11082. [Google Scholar] [CrossRef]
- Wang, Q.; Du, P.; Yang, J. Transferred deep learning based on waveform recognition for cognitive passive radar. Signal Process. 2019, 155, 259–267. [Google Scholar] [CrossRef]
- Kishore, T.R.; Rao, K.D. Automatic Intrapulse Modulation Classification of Advanced LPI Radar Waveforms’. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 901–914. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.; Diao, M. LPI Radar waveform recognition Based on Time-Frequency Distribution. Sensors 2016, 16, 1682. [Google Scholar] [CrossRef] [PubMed]
- Lunden, J.; Koivunen, V. Automatic Radar waveform recognition. IEEE J. Sel. Top. Signal Process. 2007, 1, 124–136. [Google Scholar] [CrossRef]
- Lipton, Z.C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Bendat, J.S.; Piersol, A.G. Engineering Application of Correlation and Spectrum Analysis; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Sarkar, T.K.; Salazar-Palma, M.; Wicks, M.C. Wavelet Applications in Engineering Electromagnetics; Artech House: Norwood, MA, USA, 2002. [Google Scholar]
- Ian, G.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Huang, G.M.; Zuo, W.; Ma, J. Robust radar waveform recognition algorithm based on random projections and sparse classification. IET Radar Sonar Navig. 2014, 8, 290–296. [Google Scholar]
Modulation Mode | [Hz] | [rad] | |
---|---|---|---|
CP | constant | 1 | |
LFM | constant | 1 | |
NCPM | 1 | ||
BPSK | 0 or | 1 | |
QFSK | , , , | constant | 1 |
BFSK | , | constant | 1 |
Modulation Type | Parameter | Range |
---|---|---|
CP | ||
LFM | ||
NCPM | ||
BPSK | ||
BFSK | ||
QFSK | ||
No | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | |
---|---|---|---|---|---|---|---|---|
Procedure | One Dimension | Two Dimensions | ||||||
Dimension | ||||||||
1 | LMS | NLMS | WT | ACFICT | CWD | |||
2 | CWD | ITD | ITD | None | ||||
3 | None | None | IM | None |
Number of Feature Images | Processing Speed |
---|---|
1 | 0.0356 s |
2 | 0.0535 s |
3 | 0.0845 s |
Classifier | Processing Speed |
---|---|
CNN1 | 0.00027 s |
CNN2 | 0.00081 s |
CNN3 | 0.00089 s |
2CNN1+BiLSTM | 0.00253 s |
2CNN2+BiLSTM | 0.00341 s |
2CNN3+BiLSTM | 0.00346 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Huang, Z.; Lin, A.; Huang, G. Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis. Electronics 2019, 8, 1419. https://doi.org/10.3390/electronics8121419
Ma Z, Huang Z, Lin A, Huang G. Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis. Electronics. 2019; 8(12):1419. https://doi.org/10.3390/electronics8121419
Chicago/Turabian StyleMa, Zhiyuan, Zhi Huang, Anni Lin, and Guangming Huang. 2019. "Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis" Electronics 8, no. 12: 1419. https://doi.org/10.3390/electronics8121419
APA StyleMa, Z., Huang, Z., Lin, A., & Huang, G. (2019). Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis. Electronics, 8(12), 1419. https://doi.org/10.3390/electronics8121419