
electronics

Article

ParaLarPD: Parallel FPGA Router Using Primal-Dual
Sub-Gradient Method

Rohit Agrawal 1 , Kapil Ahuja 1 , Chin Hau Hoo 2, Tuan Duy Anh Nguyen 3 and
Akash Kumar 3,*

1 Computational Science and Engineering Laboratory, Indian Institute of Technology Indore,
Indore 453552, India; phd1501201004@iiti.ac.in (R.A.); kahuja@iiti.ac.in (K.A.)

2 Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore;
chinhau.hoo@u.nus.edu

3 Center for Advancing Electronics, Technische Universität Dresden, 01062 Dresden, Germany;
tuan_duy_anh.nguyen1@tu-dresden.de

* Correspondence: akash.kumar@tu-dresden.de

Received: 25 September 2019; Accepted: 27 November 2019; Published: 1 December 2019 ����������
�������

Abstract: In the field programmable gate array (FPGA) design flow, one of the most time-consuming
steps is the routing of nets. Therefore, there is a need to accelerate it. In a recent work by Hoo
et al., the authors have developed a linear programming (LP)-based framework that parallelizes
this routing process to achieve significant speed-ups (the resulting algorithm is termed as ParaLaR).
However, this approach has certain weaknesses. Namely, the constraints violation by the solution and
a standard routing metric could be improved. We address these two issues here. In this paper, we use
the LP framework of ParaLaR and solve it using the primal–dual sub-gradient method that better
exploits the problem properties. We also propose a better way to update the size of the step taken
by this iterative algorithm. We call our algorithm as ParaLarPD. We perform experiments on a set
of standard benchmarks, where we show that our algorithm outperforms not just ParaLaR but the
standard existing algorithm VPR as well. We perform experiments with two different configurations.
We achieve 20% average improvement in the constraints violation and the standard metric of the
minimum channel width (both of which are related) when compared with ParaLaR. When compared
to VPR, we get average improvements of 28% in the minimum channel width (there is no constraints
violation in VPR). We obtain the same value for the total wire length as by ParaLaR, which is 49%
better on an average than that obtained by VPR. This is the original metric to be minimized, for which
ParaLaR was proposed. Next, we look at the third and easily measurable metric of critical path delay.
On an average, ParaLarPD gives 2% larger critical path delay than ParaLaR and 3% better than VPR.
We achieve maximum relative speed-ups of up to seven times when running a parallel version of our
algorithm using eight threads as compared to the sequential implementation. These speed-ups are
similar to those as obtained by ParaLaR.

Keywords: linear programming; lagrangian relaxation; sub-gradient method; optimization; FPGA
routing

1. Introduction

According to the Moore’s law, the number of transistors in an integrated circuit is doubling
approximately every two years. In the field programmable gate array (FPGA) [1,2] design flow, the
routing of nets (which are a collection of two or more interconnected components) is one of the most
time-consuming steps. Hence, there is a need to develop fast routing algorithms that tackle the problem
of the increasing numbers of transistors per chip, and subsequently, the increased runtime of FPGA

Electronics 2019, 8, 1439; doi:10.3390/electronics8121439 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7731-2078
https://orcid.org/0000-0001-9640-4437
https://orcid.org/0000-0002-5108-4684
https://orcid.org/0000-0001-7125-1737
http://dx.doi.org/10.3390/electronics8121439
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/12/1439?type=check_update&version=2

Electronics 2019, 8, 1439 2 of 16

CAD (computer-aided design) tools. This can be achieved in two ways. First, by parallelizing the
routing algorithms for hardware having multiple cores. However, the pathfinder algorithm [3], which
is one of the most commonly used FPGA routing algorithm is intrinsically sequential. Hence, this
approach seems inappropriate for parallelizing all types of FPGA routing algorithms.

Second, instead of compiling the entire design together, the users can partition their design,
compile partitions progressively, and then assemble all the partitions to form the entire design.
Some existing works have proposed this approach [4,5]. However, the routing resources required
by one partition may be held by another partition, i.e., there is no guarantee to have balanced
partitions. In other words, in this approach, there is a need to tackle the difficulties arising in sharing
of routing resources.

The authors in ParaLaR [6] overcome the limitations of existing approaches by formulating the
FPGA routing problem as an optimization problem [7]. Here, the objective function is linear and the
decision variables can only have binary values. Hence, the FPGA routing problem is converted to
a binary integer linear programming (BILP) minimization problem [8–10] (generally termed as linear
programming (LP)). In this LP, the dependencies (or constraints) that prevent the nets from being
routed in parallel are examined and relaxed by using Lagrange relaxation multipliers [11]. The relaxed
LP is solved in a parallel manner by the sub-gradient method and the Steiner tree algorithm. The
complete algorithm is called ParaLaR.

This parallelization gives significant speed-ups. However, in this approach, the sub-gradient
method is used in a standard way that does not always give a feasible solution (i.e., some constraints
are violated). This directly impacts the standard metric of minimum channel width, which could also
be improved.

There are many variants of the sub-gradient method and a problem-specific method gives better
results. In this paper, we use the same framework as for ParaLaR, but use an adapted sub-gradient
method. We use a primal–dual variant of the sub-gradient method with an adapted step size in this
iterative method. Our approach substantially solves the above two problems.

By experiments on standard benchmarks, we compared our algorithm (termed as ParaLarPD)
both with ParaLaR and the commonly used non-parallelizable routing algorithm VPR (Versatile Place
and Route) [12]. We performed 100 independent experiments/runs (for all benchmarks) for both
ParaLarPD and ParaLaR, and obtained the aggregate results. We performed these experiments for two
configurations. For our best configuration, we got results as below. The number of infeasible solutions
and the minimum channel width requirement on average reduced by 20% as compared to ParaLaR (as
above, the two metrics are related). Our minimum channel width wa on average 28% better than that
obtained by VPR (there are no constraints that could be violated in VPR). When looking at the total
wire length, we obtained the same value as by ParaLaR, which was on an average 49% better than as
obtained by VPR. This is the original metric to be minimized, for which ParaLaR was proposed.

In achieving the above improvements, on an average, the critical path delay in ParaLarPD was
2% worse than that in ParaLaR and 3% better than that in VPR. When running a parallel version
of ParaLarPD with eight threads, we obtained maximum relative speed-ups of up to seven times
over ParaLarPD’s sequential implementation. These speed-ups are similar to those as obtained when
comparing parallel ParaLaR and sequential ParaLaR.

There have been some other attempts to improve the performance of VPR in the past few years.
Two of the resulting algorithms are RVPack [13] and GGAPack/GGAPack2 [13]. Although these
algorithms do not attempt to parallelize the routing process, for the completeness we compare our
algorithm to these as well. The rest of this paper is organized as follows: Section 2 describes the
formulation of the FPGA routing as an optimization problem. Section 3 explains the implementation
of our proposed approach. Section 4 presents experimental results. Finally, Section 5 gives conclusions
and discusses future work.

Electronics 2019, 8, 1439 3 of 16

2. Formulation of the Optimization Problem

The routing problem in FPGA or electronic circuit design is a standard problem that is formulated
as a weighted grid graph G(V, E) of certain set of vertices V and edges E, where a cost is associated
with each edge. In this grid graph, there are three types of vertices; the net vertices, the Steiner vertices,
and the other vertices. A net is represented as a set N ⊆ V consisting of all net vertices. A Steiner
vertex is not part of the net vertices but it is used to construct the net tree, which is the route of a net
(i.e., a sub-tree T of the graph G). A net tree is also called a Steiner tree.

Figure 1 shows an example of a 4× 4 grid graph, where the black color circles represent the net
vertices; the gray color circles represent the Steiner vertices; and the white color circles are the other
vertices. The horizontal and the vertical lines represent the edges (as above, these edges have a cost
associated with them but that is not marked here). Two net trees are shown by dotted edges.

Figure 1. A 4× 4 grid graph showing the different type of vertices and routing channels.

The number of nets and the set of vertices belonging to each net is given. The objective here is to
find a route for each net such that the union of all the routes will minimize the total wire length of the
graph G (which is directly proportional to the total path cost). The goal here is to also minimize the
channel width requirement of each edge. Both these objectives are explained in detail below, after (1).

To achieve the above two objectives, the problem of routing of nets is formulated as an LP problem
given as follows [6] (ParaLaR paper):

min
xe,i

Nnets

∑
i=1

∑
e∈E

wexe,i, (1)

Subject to
Nnets

∑
i=1

xe,i ≤W, ∀e ∈ E, (2a)

Aixi = bi, i = 1, 2, ..., Nnets and (2b)

xe,i = 0 or 1. (2c)

This optimization problem minimizes the total wire length of FPGA routing, where Nnets is the
number of nets; E is the set of edges with e denoting one such edge; we is the cost/time delay associated
with the edge e; xe,i is the decision variable that indicates whether an edge e (routing channel) is utilized
by the net i (value 1) or not (value 0); W is a constant; xi is the vector of all xe,i for net i that represents
the ith net's route tree; Ai is the node-arch incidence matrix (which represents a graph as a constraint
matrix of the minimum cost flow problem); and bi is the demand/supply vector (which signifies the
amount of cost flow to each node).

The inequality constraints are the channel width constraints that restrict the number of nets
utilizing an edge to W (which is iteratively reduced; discussed later). The equality constraints guarantee
that a valid route tree is formed for each net (these are implicitly satisfied by our solution approach;
again discussed later). To find a feasible route for each net efficiently, the above LP should be
parallelized. There are two main challenges here, which are discussed in the two sub-sections below.

Electronics 2019, 8, 1439 4 of 16

We use the same elements as used in ParaLaR [6], since we improve that existing algorithm.
These elements are discussed in the subsequent paragraphs. There is a slight change of notations,
which we have done to make the exposition of our new algorithm more easier. This change of notations
is summarized below.

• Number of nets: N in ParaLaR and Nnets in ParaLarPD.
• Cost/time delay associated to edge e: ce in ParaLaR and we in ParaLarPD.
• Node–arch incidence matrix: Ni in ParaLaR and Ai in ParaLarPD.

2.1. The Channel Width Constraints

The first challenge to parallelize the LP given in (1)–(2c) is created by the channel width
constraints. These constraints introduce dependency in the parallelizing process, and therefore,
should be eliminated or relaxed. The Lagrange relaxation [11] is a technique well suited for problems
where the constraints can be relaxed by incorporating them into an objective function. If this is not
possible, then a Lagrange heuristic can be developed [14–16].

In our ParaLarPD, similar to ParaLaR, we introduce Lagrange relaxation multipliers λe for each
channel width constraint (2a), and cumulatively these multipliers represent the cost that prevents
overuse of the routing channel. The relaxation of constraints is implemented by adding λe times the
corresponding constraint into the objective function. That is, rewriting (1)–(2c) as in ParaLaR.

min
xe,i ,λe

(
Nnets

∑
i=1

∑
e∈E

wexe,i + ∑
e∈E

λ e

(Nnets

∑
i=1

xe,i −W
))

, (3)

Subject to Aixi = bi, i = 1, 2, ..., Nnets, (4a)

xe,i = 0 or 1 and (4b)

λe ≥ 0. (4c)

After rearranging the objective function above, the modified LP is given as [6]

min
xe,i ,λe

(
Nnets

∑
i=1

∑
e∈E

(we + λ e) xe,i −W ∑
e∈E

λ e

)
, (5)

Subject to Aixi = bi, i = 1, 2, ..., Nnets, (6a)

xe,i = 0 or 1 and (6b)

λe ≥ 0. (6c)

In the above LP, (we + λe) is the new cost associated with the edge e. This LP can be easily solved
in parallel manner.

2.2. The Choice of Decision Variable

The second challenge to solve the LP given by (5)–(6c) is created by the decision variables xe,i.
As earlier, if an edge e is utilized by the net i, then xe,i = 1 else xe,i = 0. Thus, as mentioned
earlier this is a BILP that is non-differentiable, and hence, cannot be solved by conventional
methods such as the simplex method [8,17], the interior point method [18], etc. Some methods
to solve non-differentiable optimization problems include the sub-gradient-based methods [19],
the approximation method [20], etc.

The sub-gradient based methods are commonly used to minimize non-differentiable convex
functions f (x). These are iterative in nature that update the variable x as xk+1 = xk − αkgk, where αk

and gk are the step size and a sub-gradient of the objective function, respectively, at the kth iteration.
In ParaLaR, the LP given in (5)–(6c) is not solved directly by a sub-gradient based method but only the
Lagrange relaxation multipliers are obtained by it. After this, the minimum Steiner tree algorithm is

Electronics 2019, 8, 1439 5 of 16

used in a parallel manner for FPGA routing. This two-step procedure is followed because just using
a sub-gradient method will not always give binary solutions, which we need (recall xe,i can be 0 or 1).
Moreover, using a Steiner tree algorithm helps us in achieving feasible routing (equality constraints
are implicitly satisfied). In our ParaLarPD, we follow this same approach.

3. Proposed Approach

There are many variants of the sub-gradient based methods such as the projected sub-gradient
method [19], the primal–dual sub-gradient method [21], the conditional sub-gradient method [22],
the deflected sub-gradient method [22], etc. In ParaLaR [6], authors use the projected sub-gradient
method, where the Lagrange relaxation multipliers are calculated as

λk+1 = max
(

0, λk + αkh
)

. (7)

Here, λk and λk+1 are the Lagrange relaxation multipliers at the kth and the (k + 1)th iteration,
respectively; and h ∈ gk, i.e., a sub-gradient of the objective function given in (5) at the kth iteration.
Also, as above, αk denotes the size of the step taken in the direction of the sub-gradient at the kth
iterative step, and is updated as

αk = 0.01/ (k + 1) . (8)

This approach satisfactorily parallelizes FPGA routing and gives better results over VPR [12],
but there are many inequality constraints that are violated for some cases. This directly affects the
minimum channel width requirement, which can be improved further. The channel width is defined
as ∑Nnets

i=1 xe,i.
The LP given by (5)–(6c) is the dual of LP given by (1)–(2c) (see [9,22]). Hence, a sub-gradient

method that is specific to a dual problem would give better results compared to the standard one,
that is, the primal–dual sub-gradient method. Thus, we use this method with ParaLaR leading to our
ParaLarPD. This achieves our main goal of reducing violation of constraints with an added benefit of
minimization of channel width.

Next, we describe our ParaLarPD where we compare our usage of primal–dual sub-gradient
method with the projected sub-gradient as used in ParaLaR, and also briefly summarized above.
As earlier, we expand upon two aspects; iterative update of the Lagrange multipliers and the
corresponding step sizes.

Our Algorithm

We update the Lagrange relaxation multipliers in (5)–(6c) as follows [21]

λk+1
e = λk

e + αk max

(
0,

Nnets

∑
i=1

xe,i −W

)
, (9)

where ∑N
i=1 xe,i−W is a sub-gradient of the objective function at the kth iteration—the partial derivative

of the objective function in (5) (the h in the projected sub-gradient method from (7) is the same). Also,
we take λ0

e = 0 ∀e ∈ E, which is the most general initial guess [11].
Let us now compare (9) with (7). For both the methods, if the inequality constraints are violated at

the kth iteration (see (2a); ∑Nnets
i=1 xe,i −W > 0 for some e ∈ E), then the particular Lagrange relaxation

multiplier at the (k+ 1)th iteration is incremented by αk times the sub-gradient of the objective function
at the kth iteration. For the primal–dual sub-gradient method, this is obvious from (9). For the projected
sub-gradient method, this is true because λk is non-negative, and αk and h both are positive in (7).

Further, if the inequality constraints are not violated at the kth iteration (again see (2a); ∑Nnets
i=1 xe,i−

W ≤ 0 for some e ∈ E), then for the primal–dual sub-gradient method, the value of the particular

Electronics 2019, 8, 1439 6 of 16

Lagrange relaxation multiplier at the (k + 1)th iteration is the same as the kth iteration, while for the
projected sub-gradient method, it may change (again see (9) and (7), respectively). In general, this
works better because logically a Lagrange relaxation multiplier at the (k + 1)th iteration should be
equal to the value of this multiplier at the iteration when the particular (or corresponding) constraint
is not violated.

Next, we discuss the choice of the step size. If the step size is too small, then the algorithm would
get stuck at the current point, and if it is too large, the algorithm may oscillate between any two
non-optimal solutions. Hence, it is very important to select the step size appropriately. The choice of
step size can be either constant in all the iterations or can be reduced in each successive iteration. In our
proposed scheme, the computation of step size involves a combination of the iteration number as well
as the norm of the Karush–Kuhn–Tucker (KKT) operator of the objective function at that particular
iteration [22] (instead of using the iteration number only, as used in ParaLaR; see (8)). This ensures
that the problem characteristic is used in the computation of the step size. That is,

α k = (1/k) /
∥∥∥Tk

∥∥∥
2

, (10)

where k is the iteration number, Tk is the KKT operator for the objective function (5), and
∥∥∥Tk

∥∥∥
2

is the

2-norm of Tk.
The sub-gradient based methods are iterative algorithms, and hence, we need to check when to

stop. There is no ideal stopping criterion for sub-gradient based methods. However, some possible
measures that can be used are discussed below (including our choice) [19].

• If at an iteration k, the constraints violation (2a) (i.e., gk ≤ 0) is satisfied and λkgk = 0, then
we obtain the optimal point. Therefore, we stop here because there is no constraint violation
(a necessary condition of Lagrange relaxation) [11]. However, this stopping criterion is achieved
only if strong duality holds but, in case of our problem, there is weak duality. Details of strong
and weak duality can be found in [9,22].

• Let at iteration k, f ∗ and f k be the optimal function value and the available function value at the
kth iteration, respectively, then the sub-gradient iterations can be stopped when | f k − f ∗| ≤ ε

(where ε is a very small positive number). In this criterion, the optimal value of the objective
function is required in advance, which we do not have.

• Another approach is to stop when the step size becomes too small. This is, because the
sub-gradient method would get stuck at the current iteration.

As none of the above stopping criteria fit us, we stop our algorithm after a sufficient and a fixed
number of iterations, as used in ParaLaR. As earlier, we term our proposed algorithm as ParaLarPD
because we use primal–dual sub-gradient algorithm with ParaLaR.

Rest of steps of our ParaLarPD are the same as in ParaLar. We start with a constant value of W and
solve the optimization problem (5)–(6c) by combination of the sub-gradient method and the Steiner
tree algorithm. This gives us the total wire length and the constraint violation (or channel width).

Next, we reduce the value of W and again follow the above steps to obtain better local minima both
for the total wire length and the constraint violation (or channel width).

The pseudocode of our ParaLarPD is given in Algorithm 1, where the new addition to ParaLaR
are captured by lines 6 and 16.

Electronics 2019, 8, 1439 7 of 16

Algorithm 1 ParaLarPD
Input: Architecture description file and benchmark file.

Output: Route edges.

1: Run VPR with the input architecture and benchmark circuit.
2: steiner_points← ∅ . Initialize Steiner points
3: grid_graph← InitGridGraph() . Initialize grid graph
4: λe = 0, ∀e ∈ E . Initialize Lagrangian relaxation multipliers
5: for iter = 1 to max_iter do
6: Calculate the step size α using the Equation (10). . It is used to update λe
7: route_edges← ∅
8: parallel_for i = 1 to Nnets do . Nnets number of nets
9: points←

{
p : p ∈ {source and sinks of ith net}

}
10: if iter == 1 then
11: steiner_points[ith net]←MST(grid_graph, points) . MST is call to a function that executes

a Minimum Steiner Tree.
12: end if
13: route_edges[ith net]←MST(grid_graph, steiner_points[ith net] ∪ points)
14: end parallel_for
15: while e ∈ E do
16: Update Lagrangian relaxation multipliers λe using the Equation (9).
17: Update the edge weight of the grid_graph on route_edge. New edge weights are we + λe
18: end while
19: end for

In the above algorithm, initially we pack and place the benchmark circuit using VPR (as described
in the architecture file). Next, set of Steiner points are initialized as empty, the grid graph is initialized
to model an FPGA that is large enough to realize the input netlist (Nnets is the number of total nets),
and the Lagrangian relaxation multipliers (i.e., λe) are initialized to zero. Next, the routing algorithm
runs for max_iter (which is set to 50) number of iterations. In each iteration, first, we calculate the step
size. Thereafter, we initialize route_edges as empty set. Then, the for loop at line 8 routes the nets
in parallel by running the minimum Steiner tree (MST) algorithm to obtain the route edges. Finally,
edge weights of the grid_graph are updated in the while loop from line 15 to line 18. In Appendix A,
we have listed a code snippet, which is the actual code of important functions.

4. Experimental Results

We performed experiments on a machine with single Intel(R) Xeon(R) CPU E5-1620 v3 running at
3.5 GHz and 64 GB of RAM. The operating system was Ubuntu 14.04 LTS, and the kernel version is
3.13.0–100. Our code was written in C++11 and compiled using GCC version 4.8.4 with O3 optimization
flag. The resulting compiled code was run using a different number of threads.

We compared our proposed ParaLarPD with ParaLaR [6] and VPR [12]. For comparison purposes,
ParaLaR and VPR 7.0 from the verilog-to-routing (VTR) package were compiled using the same GCC
version and optimization flag.

As discussed earlier, besides ParaLaR and VPR, other commonly used routing algorithms are
random VPack (RVPack) [13] and grouping genetic algorithm pack (GGAPack/GGAPack2) [13].
We discuss the benefits of ParaLarPD over these two algorithms as well.

The architecture parameters used for our experiments are given in Table 1, which are most
commonly used [12,13,23].

Table 1. FPGA design architecture parameters used in our experiments.

N K Fcin Fcout Fs Length

10 6 0.15 0.10 {3, 6} 4

Electronics 2019, 8, 1439 8 of 16

In Table 1, the values of N and K specify that the CLBs in the architecture contained ten fracturable
logic elements (FLEs) and each FLE had six inputs, respectively. The values of Fcin and Fcout specify
that every input and output pin was driven by 15% and 10%, of the tracks in a channel, respectively.
We also performed experiments with Fcin = 1 and Fcout = 1, the results of which are not reported in this
paper. However, our algorithm still gave better results than ParaLaR and VPR. In FPGA terminology,
the value of Fs specifies the number of wire segments that can be connected to each wire segment where
horizontal and vertical channels intersect. This value can only be a multiple of 3. Here, we performed
experiments with Fs = {3, 6}. The value of length specifies the number of logic blocks spanned by
each segment. We took this as 4, although our proposed method can be used for architectures with
varying lengths, e.g., length = 1 or a mix of length = 1 and length = 4. All these parameters (i.e., N, K,
Fcin, Fcout, Fs, and length) in ParaLaR and VPR were modified according to the values given in Table 1,
to run them identical to our model.

We tested on MCNC benchmark circuits [24], which ranged from small sized to large sized logic
blocks. Initially, the circuits were packed and placed using VPR. After that, routing was performed
by all three methods (i.e., our proposed ParaLarPD, ParaLaR, and VPR). For parallelization, we used
Intel threading building blocks (TBB) libraries. To examine the behavior of ParaLarPD and ParaLaR,
we performed 100 independent runs of each of ParaLarPD and ParaLaR (for all benchmarks) and then
collected the aggregate results of these 100 runs.

There is no general rule of choosing the initial value of the channel width for experimental
purposes. However, a value of 20% to 40% more than the minimum channel width obtained from
VPR is commonly used [6,23]. For our experiments, both ParaLarPD and ParaLaR are initialized with
initial channel width (W) as 1.2Wmin, where Wmin is the minimum channel width obtained from VPR.
We also do experiments with initial W as 1.4Wmin, which does not change the results. We use an upper
limit of 50 for the number of iterations for all the three methods because this is the limit chosen in the
experiments of ParaLaR from [6]. The best results out of all these iterations are reported.

Also, in our proposed model, routing of individual nets is independent and we update the cost of
utilizing the edges at the end of each routing iteration. Thus, there is no race condition leading to no
randomness. Hence, our executions are deterministic.

In Tables 2 and 3, we compare the channel width (also called the minimum channel width),
the total wire length, and the critical path delay as obtained by our proposed ParaLarPD with ParaLaR
and routing-driven VPR. These metrics are independent of the number of threads used, therefore, here
we give results for a single thread only. The results of ParaLarPD and ParaLaR are the average values
of their 100 independent runs. In the tables, we report the geometric mean (Geo. Mean) of all the
values obtained for different benchmark circuits. It indicates the central tendency of a set of numbers
and is commonly used [6].

It is important to emphasize that ParaLaR is sensitive to the system configuration of the machine
used for experiments (in fact, ParaLarPD is equally sensitive). Hence, the ParaLaR data in Tables 2 and 3
is slightly different than that reported in the original ParaLaR paper.

In Table 2 (i.e., for Fs = 3), if we look at the channel width, then ParaLarPD gives on an average
20.16% improvement over ParaLaR. As discussed earlier, constraints violation (which is a problem
in ParaLaR) is directly related to the minimum channel width. Hence, ParaLarPD proportionally
improves the constraints violation of ParaLaR. Further, ParaLarPD gives on an average 27.71%
improvement in the channel width when compared with VPR (in VPR, there is no concept of constraints
violation). If we look at the total wire length, then ParaLarPD achieves the same value as obtained by
ParaLaR, which is on an average 48.86% better than the one obtained by VPR.

While the focus of this work is minimizing the maximum channel width, we did measure the
impact of the algorithm on the critical path delay. The average critical path delay of ParaLarPD
is 1.52% worse as compared to ParaLaR and 2.55% better as compared to VPR. Considering the
significant improvements in minimum channel width, i.e., 20.16%, and almost the same speed-up

Electronics 2019, 8, 1439 9 of 16

(when compared to ParaLaR), we believe this trade-off is still reasonable since the critical path delay is
not deteriorated significantly.

Table 2. Comparison of quality of results, i.e., channel width, total wire length, and critical path delay
(in nanoseconds) between our proposed algorithm (ParaLarPD), the algorithm from which we have
extended (ParaLaR [6]), and the standard algorithm used for routing (VPR [12]). These results are
reported for the configuration parameter Fs equal to 3, which signifies the number of wire segments that
can be connected to each wire segment where horizontal and vertical channels intersect. The results
of ParaLarPD and ParaLaR are the average values of their 100 independent runs (rounded to 2 and 0
decimal places, respectively).

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
circuits [24] ParaLarPD ParaLaR VPR ParaLarPD ParaLaR VPR ParaLarPD ParaLaR VPR

Alu4 35.54 45.27 48 5030 5029 10,480 7.30 7.01 7.50
Apex2 50.07 68.06 64 7935 7934 15,881 7.41 7.16 7.26
Apex4 45.57 53.48 62 5630 5632 10,746 7.08 6.73 6.92
Bigkey 19.03 23.27 50 3896 3896 7052 4.01 4.44 3.53
Clma 81.44 96.00 94 49,278 49,284 87,398 15.46 16.31 15.08
Des 31.17 40.10 40 6952 6952 14,739 5.54 5.54 5.83

Diffeq 37.52 49.23 54 4349 4350 9140 5.65 5.72 7.09
Dsip 25.63 32.33 38 4778 4778 9742 3.62 3.45 4.20

Elliptic 57.42 81.00 74 15,124 15,124 28,271 10.83 10.91 13.98
Ex5p 48.82 57.00 70 4889 4881 10,169 6.94 6.28 7.69

Ex1010 63.31 75.00 82 23,596 23,950 43,919 14.57 12.71 10.05
Frisc 68.71 106.38 86 19,484 19,484 35,664 13.13 12.84 15.38

Misex 42.27 48.67 58 5194 5192 10,061 6.49 6.68 6.08
Pdc 73.67 91.00 92 30,423 30,425 53,661 12.63 12.49 11.75
S298 39.00 46.29 48 5250 5250 10,291 12.71 12.08 16.62

S38417 50.48 72.00 64 21,907 21,906 42,597 10.43 10.03 8.82
Seq 48.85 59.00 70 7654 7653 14,203 6.14 6.18 6.09

Spla 59.41 74.33 80 20,117 20,117 37,384 10.43 10.69 10.11
Tseng 39.65 41.67 58 2484 2484 6148 5.78 5.78 6.75

Geo. Mean 45.55 57.05 62.75 9041 9047 17,679 8.03 7.91 8.24

Table 3. Comparison of quality of results, i.e., channel width, total wire length, and critical path delay
(in nanoseconds) between our proposed algorithm (ParaLarPD), the algorithm from which we have
extended (ParaLaR [6]), and the standard algorithm used for routing (VPR [12]). These results are
reported for the configuration parameter Fs equal to 6, which signifies the number of wire segments that
can be connected to each wire segment where horizontal and vertical channels intersect. The results
of ParaLarPD and ParaLaR are the average values of their 100 independent runs (rounded to 2 and 0
decimal places, respectively).

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
circuits [24] ParaLarPD ParaLaR VPR ParaLarPD ParaLaR VPR ParaLarPD ParaLaR VPR

Alu4 35.71 46.11 44 5118 5118 9545 8.05 7.59 6.82
Apex2 50.80 59.62 60 7933 7933 15,629 7.40 7.79 7.29
Apex4 45.50 64.21 58 5609 5607 10,620 7.01 7.05 6.94
Bigkey 18.50 24.75 52 3919 3919 6680 4.58 3.92 3.40
Clma 77.02 96.00 88 49,606 49,592 84,684 16.48 15.05 13.50
Des 34.38 37.54 50 7010 7011 12,977 6.30 6.30 6.08

Diffeq 38.30 52.73 50 4424 4426 9109 6.44 6.27 6.63
Dsip 24.41 29.65 34 4733 4733 9086 4.47 3.95 4.25

Elliptic 57.69 78.00 70 15,072 15,069 27,483 10.26 10.20 11.78
Ex5p 46.25 57.75 62 4817 4815 9003 6.81 6.32 6.36

Ex1010 64.52 80.00 74 23,014 23,012 40,995 12.89 12.46 10.75
Frisc 67.50 82.84 78 19,483 19,487 34,065 12.97 13.18 14.91

Misex 45.42 50.56 52 5223 5223 9513 6.06 6.27 5.75
Pdc 74.27 85.13 84 30,401 30,396 53,924 13.27 13.27 11.75
S298 39.81 45.00 44 5330 5330 9237 12.70 10.99 10.99

S38417 51.38 75.87 60 21,949 21,952 39,836 10.99 9.44 9.71
Seq 55.23 58.00 64 7651 7650 13,620 7.31 6.74 6.75

Spla 60.38 71.75 74 20,471 20,471 36,146 11.40 11.09 9.24
Tseng 35.70 38.73 50 2472 2472 5226 5.25 5.25 6.04

Geo. Mean 45.81 56.19 58.74 9057 9058 16,653 8.36 7.98 7.86

Electronics 2019, 8, 1439 10 of 16

Similarly, in Table 3 (i.e., for Fs = 6), if we look at the channel width, then ParaLarPD gives on
an average 18.47% improvement over ParaLaR (as above, this gives the same improvement in the
constraints violation). The improvement in comparison to VPR is on average 22.01%. If we look at
the total wire length, then ParaLarPD achieves the same value as obtained by ParaLaR, which is on
an average 45.61% better than the one obtained by VPR. Similar to Table 2, the critical path delay
obtained by using ParaLarPD is only slightly worse than ParaLaR and VPR; about 4.76% worse than
ParaLaR and 6.36% worse than VPR.

To better demonstrate the improvements of ParaLarPD over ParaLaR, we compare them on
an average and in percentage terms separately in Table 4. In this table, we give percentage improvement
of ParaLarPD over ParaLaR, where all the results (i.e., the channel width, wire length, and critical path
delay) are obtained as the geometric mean of the maximum, minimum, average, and standard values
of 100 independent runs for all benchmarks. As above, and also evident from this table, ParaLarPD
performs substantially better on channel width and almost the same on total wire length and critical
path delay. We see from Table 4 that for Fs = 3, the average standard deviation value of critical path
delay of ParaLarPD is 86.9% lower as compared to ParaLaR, while for Fs = 6, ParaLarPD has 111.11%
higher critical path delay as compared to ParaLar. However, the standard deviation is just a measure
of the amount of variation. It does not imply that ParaLarPD has this much percentage of lower or
higher delay.

Table 4. The percentage improvement of our proposed algorithm (ParaLarPD) over ParaLaR [6] for
100 independent runs. Here, the terms Max., Min., Ave., and STD denote the maximum, minimum,
average, and standard deviation values, respectively.

Value of Fs
Channel Width Total Wire Length Critical Path Delay

Max. Min. Ave. STD Max. Min. Ave. STD Max. Min. Ave. STD

3 19.98 16.7 20.16 52.63 0.09 0.03 0.07 20.69 −0.86 −1.67 −1.52 86.9

6 18.2 16.49 18.47 39.73 0.05 0.09 0.011 −9 −5.9 −3.55 −4.76 −111.11

In addition to above tables, we also represent the maximum, minimum, average, and standard
deviation values of the channel width (for all the benchmarks, and when obtaining them for
100 independent runs) of ParaLarPD and ParaLaR [6] (for the configuration Fs = 3, length = 4,
Fcin = 0.15 and Fcout = 0.10). This result is shown by the box plot graph, shown in Figure 2. In this
figure, all the values are normalized to VPR (given in Table 2). From this figure, we can see that
ParaLarPD is always better than VPR, since all values are below 1, even in the worst cases observed
in 100 runs. Hence, from the above discussion and this figure, we can see that ParaLarPD performs
better than ParaLaR and VPR. We have not included the figures for the wire length and the critical
path delay since the values of these metrics are almost the same for both ParaLarPD and ParaLaR.

Recall, the underlying goal of ParaLaR and this work is to efficiently parallelize the routing process.
Hence, next we report results when using different number of threads in Table 5. The benchmark
dataset used (first column in Table 5) is the same as discussed in the earlier paragraphs.

First, we discuss the speed-ups obtained when using different number of threads for ParaLarPD.
The absolute execution time (in seconds) for different threads is given in columns two through five
and is represented as 1X, 2X, 4X, and 8X. The relative speed-ups are given in columns six through eight
and are calculated as below.

Speedup =
Execution time with 1 thread

Execution time with n threads
.

It can be observed from this data that when we used ParaLarPD with 2 threads, on an average,
speed-up of up to 1.80 times was observed (over the single thread execution). Similarly, when using

Electronics 2019, 8, 1439 11 of 16

4 threads and 8 threads, on an average, speed-up of up to 3.11 times and 5.11 times, respectively,
was observed (over the single thread execution).

Alu4 Apex2 Apex4 Bigkey Clma Des Diffeq Dsip Elliptic Ex5p Ex1010 Frisc Misex Pdc S298 S38417 Seq Spla Tseng

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
in

.
C

h
a
n

n
e
l
W

id
th

 (
N

o
rm

a
li
z
e
d

 t
o

 V
P

R
)

Figure 2. The box plot graph of maximum, minimum, average, and standard deviation values of the
channel width obtained by our proposed algorithm (ParaLarPD) and by the algorithm from which
we have extended (ParaLaR [6]). All the values are normalized to VPR. This plot graph is for all the
benchmarks, and when executing them for 100 independent runs. The left hand side box of each
benchmark corresponds to ParaLarPD and the right hand side box of each benchmark corresponds
to ParaLaR.

Table 5. Execution time (in seconds) of our proposed algorithm (ParaLarPD) when running it with
multiple threads, its relative speed-ups, and comparison of ParaLarPD’s execution time (when runnig
it with one thread) with VPR’s [12] execution time. These results are reported for the configuration
parameter Fs equal to 3, which signifies the number of wire segments that can be connected to each
wire segment where horizontal and vertical channels intersect.

Benchmark Execution Time of ParaLarPD (s) ParaLarPD’s Speed-Ups Comparison with VPR
Circuits [24] 1X 2X 4X 8X 2X vs. 1X 4X vs. 1X 8X vs. 1X VPR(s) 1X vs. VPR

Alu4 8.47 4.7 2.58 1.38 1.8 3.28 6.14 12.8 1.51
Apex2 32.9 17.18 9.12 4.77 1.92 3.61 6.90 15.88 0.48
Apex4 6.93 3.74 2.09 1.16 1.85 3.32 5.97 11.69 1.69
Bigkey 1.02 0.71 0.59 0.58 1.44 1.73 1.76 18.9 18.53
Clma 84.78 43.87 23.2 13.18 1.93 3.65 6.43 496.53 5.86
Des 2.55 1.5 0.92 0.60 1.70 2.77 4.25 25.87 10.15

Diffeq 3.18 1.85 1.04 0.65 1.72 3.06 4.89 8.57 2.69
Dsip 0.77 0.57 0.43 0.41 1.35 1.79 1.88 17.31 22.48

Elliptic 25.06 12.98 6.95 3.83 1.93 3.61 6.54 57.31 2.29
Ex1010 27.95 14.36 7.8 4.27 1.95 3.58 6.55 91.38 3.27
Ex5p 4.12 2.28 1.3 0.81 1.81 3.17 5.09 9.54 2.32
Frisc 11.65 6.34 3.6 2.09 1.84 3.24 5.57 10.52 0.90

Misex 19.71 10.2 5.47 2.93 1.93 3.60 6.73 9.77 0.50
Pdc 94.9 48.06 25.44 13.33 1.97 3.73 7.12 202.43 2.13
S298 4.95 2.75 1.67 1.06 1.80 2.96 4.67 16.61 3.36

S38417 10.1 5.4 3.21 2.01 1.87 3.15 5.02 115.95 11.48
Seq 14.66 7.82 4.22 2.38 1.87 3.47 6.16 15.41 1.05
Spla 109.22 55.58 28.96 14.79 1.97 3.77 7.38 78.47 0.72

Tseng 1.45 0.88 0.53 0.35 1.65 2.74 4.14 5.78 3.99

Geo. Mean 9.86 5.49 3.17 1.93 1.80 3.11 5.11 26.62 2.70

To show the dependency between the size of the benchmark circuits and their speed-ups, we plot
a bar graph (Figure 3). In this figure, on the x-axis, we have the benchmark circuits in the increasing

Electronics 2019, 8, 1439 12 of 16

order of their execution time when running them with one thread, which is directly proportional to the
size of the benchmark circuits [6]. On the y-axis, we have the speed-ups of these benchmark circuits
when running them with different threads. We use three different colored bars to represent speed-ups
with two threads, four threads, and eight threads. From this figure, it can be observed that for large
benchmark circuits, the speed-ups of ParaLarPD nearly match the ideal speed-ups (proportional to the
number of threads used). For example, the last circuit or “spla” has speed-ups of 1.97, 3.77, and 7.38,
which are very close to their corresponding ideal speed-ups of 2, 4, and 8, respectively.

Dsip Bigkey Tseng Des Diffeq Ex5p S298 Apex4 Alu4 S38417 Frisc Seq Misex EllipticEx1010 Apex2 Clma Pdc Spla

Benchmarks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

S
p

e
e
d

u
p

s

Figure 3. Speed-ups of each benchmark when running it with two, four, and eight threads. These
benchmarks are arranged from left to right in their increasing order of execution time when running
them with one thread, which is directly proportional to the size of the benchmark.

To compare the speed-up of ParaLarPD and ParaLaR, we perform experiments with the same
number of threads for both of them. We obtain almost the same execution times for both, and hence,
we do not report this data.

Next, we compare ParaLarPD’s execution time with VPR’s execution time. This data is given in
columns nine and ten of Table 5. We can observe from these columns that on an average ParaLarPD
(when executed using a single thread) is 2.70 times faster than VPR. Since in VPR, there is no concept
of using multiple threads, we could not compare ParaLarPD’s data for a higher number of threads
with it. Next, we compare the performance of ParaLarPD with RVPack [13] and GGAPack2 [13]
algorithms. We do not perform a direct comparison between our ParaLarPD and these two algorithms.
Rather, we use VPR as an intermediate algorithm for comparison. Thus, in Table 6, we give the
percentage improvement of ParaLarPD over VPR, and improvement of RVPack and GGAPack2 over
VPR. We follow this strategy for two reasons. First, the architecture parameters as used in these two
algorithms are different from ours, and using our parameters for executing them and their parameters
for executing ParaLarPD would lead to an unfair comparison. Second, these two algorithms have
randomness associated with them, and hence, the results are difficult to replicate. As evident from
Table 6, ParaLarPD outperforms these two algorithms in-terms of all metrics.

Table 6. Performance comparison of ParaLarPD with VPR [12], as well as RVPack [13] and
GGAPack2 [13] with VPR [12].

Algorithms % Improvement over VPR
Channel Width Total Wire Length Critical Path Delay Speed-Ups

ParaLarPD 27.71 48.86 −6.36 2.7

RVPack 12.37 7.19 −31.64 1.28

GGAPack2 2.23 −5.78 −35.94 <−100

Electronics 2019, 8, 1439 13 of 16

5. Conclusions and Future Work

In this work, we extend the work of [6] (ParaLaR algorithm) in proposing a more effective
parallelized FPGA router. We use the LP framework of [6] and use the primal–dual sub-gradient
method with a better update of the Lagrange relaxation multipliers and the corresponding step sizes.

Experiments on MCNC benchmark circuits show that for our best configuration ParaLarPD
outperforms not just ParaLaR, but VPR too, which is a commonly used standard algorithm for
FPGA routing. That is, ParaLarPD gives 20% average improvement in the standard metric of the
minimum channel width and the constraints violation (both of which are related) when compared to
ParaLaR. When compared to VPR, we see an average improvement of 28% in the minimum channel
width (in VPR, there is no concept of constraints violation). We obtained the same value for another
standard metric of total wire length as obtained by ParaLaR. This is 49% better on an average than the
corresponding data for VPR.

While achieving the above improvements, the critical path delay in ParaLarPD was on average
about 2% worse than that in ParaLaR and about 3% better than that in VPR. When running ParaLarPD
in parallel manner with eight threads, we attained peak relative speed-ups of up to seven times over
its sequential execution. These speed-ups are similar to those as obtained when comparing parallel
ParaLaR and sequential ParaLaR.

The Lagrange relaxation technique that we use is not always guaranteed to satisfy the
corresponding constraints (as observed in Sections 3 and 4). Hence, one future direction is to
develop a Lagrange heuristic [14–16] specific to our problem to avoid this behavior. Another future
direction involves finding more efficient algorithms for solving this BILP, which we know is an
NP-complete problem.

Author Contributions: Investigation, R.A.; writing—original draft, R.A. and K.A.; supervision, K.A.; formal
analysis, C.H.H.; software, T.D.A.N.; project administration, A.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Code Snippet of ParaLarPD

Including complete code will take lot of space and increase the length of paper. So, instead of
this, we give code snippet of our ParaLarPD. It highlights the Steiner tree part of our ParaLarPD,
and provides only the definition of other functions, which are self-explanatory. Other components of
this code are given in the comment sections within the code, which are also self-explanatory.

include " pch . hpp"
include " router . hpp"
include " n e t l i s t . hpp"
include " mst . hpp"
include " t iming . hpp"
include <cmath>
GridGraph create_gr id_graph (i n t nx , i n t ny)
{
/ / C r e a t e a g r i d graph .
}
extern i n t MAX_ITER ;
void Router : : p a r a l l e l _ r o u t e _ t b b _ n e w _ n e t l i s t (N e t l i s t &n e t l i s t , i n t num_threads)
{

Mst<GridGraph> mst ;
i n t max_iter = MAX_ITER ;
boost : : t imer : : nanosecond_type t o t a l _ r o u t i n g _ t i m e = 0 ;
for (const auto &e : grid . edges ()) {

/ / I n i t i a l i z a t i o n o f v a r i a l b e s .

Electronics 2019, 8, 1439 14 of 16

}
vector <Net> nets ;
nets . reserve (n e t l i s t . ne ts . s i z e ()) ;
i n t temp = 0 ;
for (const auto &net : n e t l i s t . ne ts) {

Net temp_net ;
temp_net . index = temp++;
temp_net . name = net . second−>name ;
temp_net . points . emplace_back (net . second−>source−>port−>block−>p o s i t i o n) ;
for (const auto &sink : net . second−>s inks) {

temp_net . points . emplace_back (sink−>port−>block−>p o s i t i o n) ;
}
nets . emplace_back (std : : move(temp_net)) ;

}
vector < l i s t <Point >> p r e v i o u s _ s t e i n e r s (nets . s i z e ()) ;
for (i n t i t e r = 0 ; i t e r < max_iter ; ++ i t e r) {

for (const auto &e : grid . edges ()) {
GridGraphEdgeObject &obj = get (edge_object , grid , e) ;
ob j . u t i l = 0 ;
a s s e r t (ob j . delay == 1) ;
put (edge_weight , grid , e , ob j . delay + obj . mult) ;

}
mst . i n i t (gr id) ;
vector < l i s t <GridGraph : : edge_descr iptor >> route_edges (nets . s i z e ()) ;
boost : : t imer : : cpu_timer t imer ;
c l o c k _ t i t e r _ b e g i n = c lock () ;
t imer . s t a r t () ;
i n t t o t a l _ w i r e l e n g t h = 0 ;
const bool nes ted_ze l = t rue ;
i f (i t e r == 0) {

i f (! nes ted_ze l) {
i n t net_num = 0 ;

for (const auto &net : nets) {
mst . para l le l_ze l_new_reduce (grid , net . points , p r e v i o u s _ s t e i n e r s [net_num]) ;
net_num++;

}
} e lse {

tbb : : p a r a l l e l _ f o r (tbb : : blocked_range < int >(0 , nets . s i z e ()) ,
[&mst , &nets , &p r e v i o u s _ s t e i n e r s , t h i s]
(const tbb : : blocked_range < int > &range) −> void

{
for (i n t i = range . begin () ; i != range . end () ; ++ i) {

i f (nets [i] . points . s i z e () <= 70) {
mst . para l le l_ze l_new_reduce (grid , nets [i] . points , p r e v i o u s _ s t e i n e r s [i]) ;

}
}

}) ;
}

}
tbb : : spin_mutex mutex ;
tbb : : p a r a l l e l _ f o r (tbb : : blocked_range < int >(0 , nets . s i z e ()) ,
[&mutex , &route_edges , &t o t a l _ w i r e l e n g t h , &mst , &nets , &p r e v i o u s _ s t e i n e r s , t h i s]
(const tbb : : blocked_range < int > &range) −> void

{
for (i n t i = range . begin () ; i != range . end () ; ++ i) {

Electronics 2019, 8, 1439 15 of 16

{
tbb : : spin_mutex : : scoped_lock lock (mutex) ;
t o t a l _ w i r e l e n g t h += route_edges [i] . s i z e () ;
}

for (const auto &e : route_edges [i]) {
GridGraphEdgeObject &obj = get (edge_object , grid , e) ;

{
tbb : : spin_mutex : : scoped_lock lock (mutex) ;
ob j . u t i l += 1 ; / / c h a n n e l width
}

}
}
}

) ;
/ / C a l c u l a t e 2−norm o f t h e KKT o p e r a t o r o f t h e o b j e c t i v e f u n c t i o n .
/ / Update t h e s t e p s i z e .

for (const auto &e : grid . edges ()) {
/ / Update Lagrang ian r e l a x a t i o n m u l t i p l i e r s , c h a n n e l width and wir e l e n g t h .

}
/ / Do t imi ng a n a l y s i s (c a l c u l a t e t h e c r i t i c a l pa th d e l a y and t h e e x e c u t i o n t ime) .
/ / P r i n t r e s u l t s o f e a c h i t e r a t i o n .
/ / Update t h e b e s t r e s u l t s .

}
/ / P r i n t t h e b e s t r e s u l t s a t t h e end o f a l l i t e r a t i o n s
}

References

1. Yu, H.; Lee, H.; Lee, S.; Kim, Y.; Lee, H.M. Recent advances in FPGA reverse engineering. Electronics 2018,
7, 246. [CrossRef]

2. Jiang, Y.; Chen, H.; Yang, X.; Sun, Z.; Quan, W. Design and Implementation of CPU & FPGA Co-Design
Tester for SDN Switches. Electronics 2019, 8, 950.

3. McMurchie, L.; Ebeling, C. PathFinder: A negotiation-based performance-driven router for FPGAs.
In Proceedings of the 3rd International Symposium on Field-Programmable Gate Arrays, Napa VA, USA,
12–14 February 1995; pp. 111–117.

4. Cabral, L.A.F.; Aude, J.S.; Maculan, N. TDR: A distributed-memory parallel routing algorithm for FPGAs.
In Proceedings of the 12th International Conference on Field-Programmable Logic and Applications (FPL),
Montpellier, France, 2–4 September 2002; pp. 263–270.

5. Gort, M.; Anderson, J.H. Accelerating FPGA routing through parallelization and engineering enhancements
special section on PAR-CAD 2010. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 61–74.
[CrossRef]

6. Hoo, C.H.; Kumar, A.; Ha, Y. ParaLaR: A parallel FPGA router based on Lagrangian relaxation.
In Proceedings of the 25th International Conference on Field-Programmable Logic and Applications (FPL),
London, UK, 2–4 September 2015; pp. 1–6.

7. Lee, H.; Kim, K. Real-Time Monte Carlo Optimization on FPGA for the Efficient and Reliable Message Chain
Structure. Electronics 2019, 8, 866. [CrossRef]

8. Bartels, R.H.; Golub, G.H. The Simplex method of linear programming using LU decomposition.
Commun. ACM 1969, 12, 266–268. [CrossRef]

9. Hashemi, S.M.; Modarres, M.; Nasrabadi, E.; Nasrabadi, M.M. Fully fuzzified linear programming, solution
and duality. J. Intell. Fuzzy Syst. 2006, 17, 253–261.

10. Ali, H.; Ali, Y.M.; Mashaalah, M. Linear programming with rough interval coefficients. J. Intell. Fuzzy Syst.
2014, 26, 1179–1189.

11. Fisher, M.L. The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 1981,
27, 1–18. [CrossRef]

http://dx.doi.org/10.3390/electronics7100246
http://dx.doi.org/10.1109/TCAD.2011.2165715
http://dx.doi.org/10.3390/electronics8080866
http://dx.doi.org/10.1145/362946.362974
http://dx.doi.org/10.1287/mnsc.27.1.1

Electronics 2019, 8, 1439 16 of 16

12. Betz, V.; Rose, J. VPR: A new packing, placement and routing tool for FPGA research. In Proceedings
of the 7th International Workshop on Field-Programmable Logic and Applications (FPL), London, UK,
1–3 September 1997; pp. 213–222.

13. Wang, Y. Circuit Clustering for Cluster-Based FPGAs Using Novel Multiobjective Genetic Algorithms.
Ph.D. Thesis, University of York, York, UK, 2015.

14. Czibula, O.G.; Gu, H.; Zinder, Y. A Lagrangian relaxation-based heuristic to solve large extended graph
partitioning problems, In WALCOM: Algorithms and Computation; Kaykobad, M., Petreschi, R., Eds.; Lecture
Notes in Computer Science 9627; Springer: Cham, Switzerland, 2016; pp. 327–338.

15. Holmberg, K.; Joborn, M.; Melin, K. Lagrangian based heuristics for the multicommodity network flow
problem with fixed costs on paths. Eur. J. Oper. Res. 2008, 188, 101–108. [CrossRef]

16. Deleplanque, S.; Sidhoum, S.K.; Quilliot, A. Lagrangean heuristic for a multi-plant lot-sizing problem with
transfer and storage capacities. RAIRO-Oper. Res. 2013, 47, 429–443. [CrossRef]

17. Polo-López, L.; Córcoles, J.; Ruiz-Cruz, J. Antenna Design by Means of the Fruit Fly Optimization Algorithm.
Electronics 2018, 7, 3. [CrossRef]

18. Lustig, I.J.; Marsten, R.E.; Shanno, D.F. Interior point methods for linear programming: Computational state
of the art. ORSA J. Comput. 1994, 6, 1–14. [CrossRef]

19. Boyd, S.; Xiao, L.; Mutapcic, A. Subgradient methods. Notes for EE392o Stanford University. Available online:
https://web.stanford.edu/class/ee392o/ (accessed on 24 January 2019).

20. Bertsekas, D.P. Nondifferentiable optimization via approximation. In Nondifferentiable Optimization;
Balinski, M.L., Wolfe, P., Eds.; Mathematical Programming Studies 3; Springer: Berlin/Heidelberg, Germany,
1975; pp. 1–25.

21. Boyd, S. Primal-Dual Subgradient Method. Notes for EE364b Stanford University. Available online:
https://stanford.edu/class/ee364b/lectures/ (accessed on 24 January 2019).

22. Guta, B. Subgradient Optimization Methods in Integer Programming with an Application to a Radiation
Therapy problem. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserlautern, Germany, 2003.

23. Moctar, Y.; Stojilović, M.; Brisk, P. Deterministic parallel routing for FPGAs based on Galois parallel
execution model. In Proceedings of the 28th International Conference on Field-Programmable Logic and
Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 21–25.

24. Yang, S. Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0; Microelectronics Center of North
Carolina (MCNC): Research Triangle Park, NC, USA, 1991.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2007.04.029
http://dx.doi.org/10.1051/ro/2013050
http://dx.doi.org/10.3390/electronics7010003
http://dx.doi.org/10.1287/ijoc.6.1.1
https://web.stanford.edu/class/ee392o/
https://stanford.edu/class/ee364b/lectures/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Formulation of the Optimization Problem
	The Channel Width Constraints
	The Choice of Decision Variable

	Proposed Approach
	Experimental Results
	Conclusions and Future Work
	myvioletCode Snippet of ParaLarPD
	References

