Design and Development of MIMO Antennas for WiGig Terminals
Abstract
:1. Introduction
2. Antenna Modelling
2.1. Antenna Design
2.2. Parametric Analysis
2.2.1. Stepwise Design
2.2.2. Parameter ‘b’
2.2.3. Parameter ‘p’
2.2.4. Parameter ‘k’
2.2.5. Parameter ‘e’
3. Results and Discussions
3.1. Reflection Coefficient (VSWR)
3.2. Isolation (SXY)
3.3. Current Distribution
3.4. Radiation Pattern
3.5. Gains and Efficiencies
4. MIMO Performance Analysis
4.1. Envelope Correlation Coefficient ‘ρ’ (ECC)
4.2. Mean Effective Gain (MEG)
4.3. Effective Diversity Gain (EDG)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, C.H.; Ng, K.B.; Wang, D.; Wong, H.; Qu, S.W. Antennas for 60 GHz high-speed radio systems. In Proceedings of the 2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, Chengdu, China, 6–9 August 2012; pp. 1–2. [Google Scholar]
- Mopidevi, H.; Hunerli, H.V.; Cagatay, E.; Biyikli, N.; Imbert, M.; Romeu, J.; Jofre, L.; Cetiner, B.A. Three-Dimensional Micro-fabricated Broadband Patch Antenna for WiGig Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Hunerli, H.V.; Mopidevi, H.; Cagatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Cetiner, B.A.; Biyikli, N. Three dimensional micro fabricated broadband patch and multifunction reconfigurable antennae for 60 GHz applications. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 12–17 April 2015; pp. 1–5. [Google Scholar]
- Wang, D.K.; Ng, B.; Chan, C.H. Higher-order mode microstrip antennas for WiGig applications. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar]
- Wang, J.; Li, Y.; Ge, L.; Wang, J.; Luk, K.M. A 60 GHz Horizontally Polarized Magnetoelectric Dipole Antenna Array with 2-D Multibeam Endfire Radiation. IEEE Trans. Antennas Propag. 2017, 65, 5837–5845. [Google Scholar] [CrossRef]
- Jun, S.; Chang, K. A 60 GHz monopole antenna with slot defected ground structure for WiGig applications. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 2139–2140. [Google Scholar]
- Wang, J.; Li, Y.; Ge, L.; Wang, J.; Chen, M.; Zhang, Z.; Li, Z. Wideband Dipole Array Loaded Substrate Integrated H-Plane Horn Antenna for Millimeter Waves. IEEE Trans. Antennas Propag. 2017, 65, 5211–5219. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Sorkherizi, M.S.; Kishk, A.A.; Denidni, T.A. Single-element antenna loaded with artificial mu-near-zero structure for 60 GHz MIMO applications. IEEE Trans. Antennas Propag. 2016, 64, 5012–5019. [Google Scholar] [CrossRef]
- Pilard, R.; Gianesello, F.; Gloria, D. 60 GHz antennas and module development for WiGig applications: “Mm-wave antenna-systems” convened session. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 2595–2598. [Google Scholar]
- Saravanya, B. A miniaturized wearable button antenna for WiGig applications. In Proceedings of the 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–4. [Google Scholar]
- Wang, J.; Li, Y.; Wang, J. Two-dimensional multi-beam end-fire antenna array of magneto-electric dipoles with horizontal polarization. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2565–2566. [Google Scholar]
- Rabbani, M.S.; Ghafouri-Shiraz, H. A dual band patch antenna designed with size improvement method for 60 GHz-band duplexer applications. Microw. Opt. Technol. Lett. 2017, 59, 2867–2870. [Google Scholar] [CrossRef]
- Wang, D.; Chan, C.H. Multiband Antenna for WiFi and WiGig Communications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 309–312. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Sorkherizi, M.S.; Denidni, T.A.; Kishk, A.A. Passive Beam Switching and Dual-Beam Radiation Slot Antenna Loaded with ENZ Medium and Excited Through Ridge Gap Waveguide at Millimeter-Waves. IEEE Trans. Antennas Propag. 2017, 65, 92–102. [Google Scholar] [CrossRef]
- Raj, J.S.K.; Schoebel, J. Switched beam antennas as elements of 2 × 2 MIMO in indoor environment at 60 GHz. In Proceedings of the IEEE Microwave Conference, Munich, Germany, 16–18 March 2009; pp. 1–4. [Google Scholar]
- Lahmadi, S.; Tahar, J.B.H. Optimization of 60 GHz MIMO antenna by adding ground stub to reduce mutual coupling for WPAN applications. In Proceedings of the 25th IEEE International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 21–23 September 2017; pp. 1–4. [Google Scholar]
- Jo, O.; Kim, J.J.; Yoon, J.; Choi, D.; Hong, W. Exploitation of Dual-Polarization Diversity for 5G Millimeter-Wave MIMO Beamforming Systems. IEEE Trans. Antennas Propag. 2017, 65, 6646–6655. [Google Scholar] [CrossRef]
- Farahani, M.; Pourahmadazar, J.; Akbari, M.; Nedil, M.; Sebak, A.R.; Denidni, T.A. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2324–2327. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Zarghooni, B.; Virdee, B.S.; Denidni, T.A.; Kishk, A.A. Mutual Coupling Reduction in Dielectric Resonator Antennas Using Metasurface Shield for 60-GHz MIMO Systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Ziolkowski, R.W. Compact, omni-directional, circularly-polarized mm-Wave antenna for device-to-device (D2D) communications in future 5G cellular systems. In Proceedings of the 10th Global Symposium on Millimeter-Waves, Hong Kong, China, 24–26 May 2017; pp. 115–116. [Google Scholar]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Wang, K.; Kornprobst, J.; Eibert, T.F. Microstrip fed broadband mm-wave patch antenna for mobile applications. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 1637–1638. [Google Scholar]
- Nezhad-Ahmadi, M.R.; Fakharzadeh, M.; Biglarbegian, B.; Safavi-Naeini, S. High-Efficiency On-Chip Dielectric Resonator Antenna for mm-Wave Transceivers. IEEE Trans. Antennas Propag. 2010, 58, 3388–3392. [Google Scholar] [CrossRef]
- Jarufe, C.; Rodriguez, R.; Tapia, V.; Astudillo, P.; Monasterio, D.; Molina, R. Optimized Corrugated Tapered Slot Antenna for mm-Wave Applications. IEEE Trans. Antennas Propag. 2018, 66, 1227–1235. [Google Scholar] [CrossRef]
- Kornprobst, J.; Wang, K.; Hamberger, G.; Eibert, T.F. A mm-Wave Patch Antenna with Broad Bandwidth and a Wide Angular Range. IEEE Trans. Antennas Propag. 2017, 65, 4293–4298. [Google Scholar] [CrossRef]
- Da Costa, I.F.; Cerqueira, S.A.; Spadoti, D.H.; da Silva, L.G.; Ribeiro, J.A.J.; Barbin, S.E. Optically Controlled Reconfigurable Antenna Array for mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2142–2145. [Google Scholar] [CrossRef] [Green Version]
- Alreshaid, A.T.; Hussain, R.; Podilchak, S.K.; Sharawi, M.S. A dual-element MIMO antenna system with a mm-wave antenna array. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Baniya, P.; Bisognin, A.; Melde, K.L.; Luxey, C. Chip-to-Chip Switched Beam 60 GHz Circular Patch Planar Antenna Array and Pattern Considerations. IEEE Trans. Antennas Propag. 2018, 66, 1776–1787. [Google Scholar] [CrossRef]
- Computer Simulation Technology (CST). Microwave Studio®, Version, 2016.00, Release Date Jan 22, 2018. Available online: http://www.cst.com (accessed on 22 January 2018).
- Wireless Gigabit Alliance. IEEE 802.11 ad, Wikipedia. Available online: https://en.wikipedia.org/wiki/Wireless_Gigabit_Alliance (accessed on 19 June 2018).
- Balanis, C.A. Antenna Theory Analysis and Design, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Pozar, D.M.; Kaufman, B. Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans. Antennas Propag. 1988, 36, 136–139. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Andersen, J.B. Antenna Diversity in Mobile Communications. IEEE Trans. Veh. Technol. 1987, 36, 149–172. [Google Scholar] [CrossRef]
- Karaboikis, M.P.; Papamichael, V.C.; Tsachtsiris, G.F.; Soras, C.F.; Makios, V.T. Integrating Compact Printed Antennas onto Small Diversity/MIMO Terminals. IEEE Trans. Antennas Propag. 2008, 56, 2067–2078. [Google Scholar] [CrossRef]
- Fijimoto, K.; James, J.R. Mobile Antenna System Handbook; Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Shoaib, S. MIMO Antennas for Mobile Handsets and Tablet Application. Ph.D. Thesis, Queen Mary University of London, London, UK, May 2016. Available online: https://qmro.qmul.ac.uk/xmlui/handle/123456789/12921 (accessed on 2 December 2019).
- Bisognin, A.; Titz, D.; Ferrero, F.; Jacquemod, G.; Pilard, R.; Gianesello, F. PCB Integration of a Vivaldi Antenna on IPD Technology for 60-GHz Communications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 678–681. [Google Scholar] [CrossRef]
- Bisognin, A.; Cihangir, A.; Luxey, C.; Jacquemod, G.; Pilard, R.; Gianesello, F.; Costa, J.R.; Fernandes, C.A.; Lima, E.B.; Panagamuwa, C.J.; et al. Ball Grid Array-Module with Integrated Shaped Lens for WiGig Applications in Eyewear Devices. IEEE Trans. Antennas Propag. 2016, 64, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.S. Low-Cost, Circularly Polarized, and Wideband U-Slot Microstrip Patch Antenna with Parasitic Elements for WiGig and WPAN Applications. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Chi, P.; Chou, Y. Planar Quasi-Yagi Antenna for Future 5G and WiGig Applications. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1213–1214. [Google Scholar]
- Bisognin, A. BGA organic module for 60 GHz LOS communications. In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 1038–1039. [Google Scholar]
Freq. (GHz) | Half Power (3 dB) Beamwidth | |||
---|---|---|---|---|
Simulated | Measured | |||
Theta Plane | Phi Plane | Theta Plane | Phi Plane | |
58 | 25 | 11 | 29 | 8 |
60 | 64 | 10 | 45 | 14 |
62 | 53 | 23 | 36 | 16 |
65 | 56 | 19 | 36 | 16 |
Freq. (GHz) | Gain (+ dBi) | |||||||
---|---|---|---|---|---|---|---|---|
Simulated | Measured | |||||||
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | |
58 | 9.6 | 9.6 | 9.6 | 9.6 | 9.66 | 9.35 | 9.35 | 9.45 |
60 | 10.9 | 10.9 | 10.9 | 10.9 | 11.4 | 11.6 | 11.7 | 11.8 |
62 | 13.2 | 13.2 | 13.2 | 13.2 | 12.9 | 12.8 | 12.4 | 12.7 |
65 | 10.5 | 10.5 | 10.5 | 10.5 | 13.3 | 13.6 | 13.7 | 13.8 |
Freq. (GHz) | Efficiency (%) | |||||||
---|---|---|---|---|---|---|---|---|
Simulated | Measured | |||||||
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | |
58 | 66 | 66 | 66 | 66 | 56 | 54 | 55 | 57 |
60 | 84 | 84 | 84 | 84 | 73 | 74 | 75 | 75 |
62 | 94 | 94 | 94 | 94 | 85 | 84 | 84 | 84 |
65 | 52 | 52 | 52 | 52 | 66 | 65 | 65 | 67 |
MIMO Pair | Average and Peak Values of ECC | |||
---|---|---|---|---|
Simulated | Measured | |||
Average | Peak | Average | Peak | |
1–2 | 0.00056 | 0.00515 | 0.00035 | 0.00254 |
1–3 | 0.00013 | 0.00161 | 0.00019 | 0.00119 |
1–4 | 0.00001 | 0.00013 | 0.00003 | 0.00021 |
Freq. (GHz) | MEG (− dB) | |||||||
---|---|---|---|---|---|---|---|---|
Simulated | Measured | |||||||
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | |
58 | 4.8 | 4.8 | 4.8 | 4.8 | 5.5 | 5.7 | 5.6 | 5.5 |
60 | 3.8 | 3.8 | 3.8 | 3.8 | 4.4 | 4.3 | 4.3 | 4.3 |
62 | 3.3 | 3.3 | 3.3 | 3.3 | 3.7 | 3.8 | 3.8 | 3.8 |
65 | 5.8 | 5.8 | 5.8 | 5.8 | 4.8 | 4.9 | 4.9 | 4.7 |
Frequency (GHz) | EDG (+ dB) | ||
---|---|---|---|
ρe | Average Efficiency % | EDG | |
58 | 0.0012864 | 66 | 9.894 |
60 | 0.0005950 | 84 | 12.60 |
62 | 0.0014505 | 94 | 14.09 |
65 | 0.0061122 | 52 | 7.776 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, S.; Shoaib, N.; Y. Khattak, R.Y.; Shoaib, I.; Ur Rehman, M.; Yang, X. Design and Development of MIMO Antennas for WiGig Terminals. Electronics 2019, 8, 1548. https://doi.org/10.3390/electronics8121548
Shoaib S, Shoaib N, Y. Khattak RY, Shoaib I, Ur Rehman M, Yang X. Design and Development of MIMO Antennas for WiGig Terminals. Electronics. 2019; 8(12):1548. https://doi.org/10.3390/electronics8121548
Chicago/Turabian StyleShoaib, Sultan, Nosherwan Shoaib, Riqza Y. Y. Khattak, Imran Shoaib, Masood Ur Rehman, and Xiaodong Yang. 2019. "Design and Development of MIMO Antennas for WiGig Terminals" Electronics 8, no. 12: 1548. https://doi.org/10.3390/electronics8121548
APA StyleShoaib, S., Shoaib, N., Y. Khattak, R. Y., Shoaib, I., Ur Rehman, M., & Yang, X. (2019). Design and Development of MIMO Antennas for WiGig Terminals. Electronics, 8(12), 1548. https://doi.org/10.3390/electronics8121548