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Abstract: Location technology is playing an increasingly important role in urban life. Various active
and passive wireless positioning technologies for mobile terminals have attracted research attention.
However, positioning signals experience serious interference in high-density residential areas or
in the interior of large buildings. The main type of interference is that caused by non-line-of-sight
(NLOS) propagation. In this paper, we present a new method for optimizing the angle of arrival
(AOA) measurement to obtain high accuracy location results based on proximal policy optimization
(PPO). PPO is a new family of policy gradient methods for reinforcement learning, which can be used
to adjust the sampling data under different environments using stochastic gradient ascent. Therefore,
PPO can correct the NLOS propagation errors to produce a clear AOA measurement data set without
building an offline fingerprinting database. Then, we used the least square method to calculate
the location. The simulation result shows that the AOA passive location algorithm based on PPO
produced more accurate location information.
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1. Introduction

Location technology plays an important role in a variety of services, from mobile phone navigation
in personal life, to search and rescue in natural disasters, and precision strikes in military applications.
With the rapid development of location services, user demand is growing. Therefore, various active
and passive wireless positioning technologies have attracted increasing attention and research [1–3].

In wireless positioning systems, positioning accuracy is the most fundamental index used to
evaluate positioning performance. However, many factors affect the positioning accuracy, such as
multipath propagation, multi-access interference, and non-line-of-sight (NLOS) propagation [4].
All these factors lead to errors in signal measurement information, resulting in decreased positioning
accuracy. The main factor influencing positioning error is NLOS propagation [5]. NLOS propagation is
caused by various obstacles between the mobile station (MS) and the base station (BS), interfering with
the straight path of the signal wireless transmission, and the signal can only be transmitted through
refraction or reflection, resulting in NLOS error. Compared with line-of-sight (LOS) propagation, signal
propagation in a NLOS environment requires extra time and distance, resulting in signal arrival angle
deviation and additional power loss. The NLOS error is generally only related to the environment in
which the signal is propagated.

In wireless communication, many passive positioning technologies are used in research and
applications, such as angle of arrival (AOA) [6], time of arrival (TOA) [7], and time difference of
arrival (TDOA) [8]. Among them, the AOA does not require strict time synchronization, which is a
necessary condition for TOA and TDOA. Therefore, the passive AOA location algorithm has wide
and flexible application prospects. According to the current research situation, the AOA has a high
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positioning accuracy in the line of sight (LOS) environment [9]. However, like other localization
methods, the accuracy of localization algorithms based on AOA methods are also greatly affected in
NLOS environments [10,11].

When NLOS propagation occurs between the MS and BS, if the signal is not processed in
advance and the measurement information transmitted by the signal NLOS is directly adopted for
localization, localization accuracy is substantially reduced [12]. NLOS propagation problems exist
in many application scenarios, such as urban environments, inside buildings, and in underground
tunnels. Many studies have been conducted to eliminate NLOS effects, and various algorithms have
been proposed to eliminate NLOS errors from different perspectives.

To mitigate the effects caused by NLOS, in [13–15] the researches have proposed some methods
to correct the errors by adding anchors. Because of the need for additional nodes, these methods
are not applicable to a wide range of outdoor environments. Shikur and Weber [16] presented a
localization algorithm in NLOS environments using the Monte Carlo method. The limitation of the
Monte Carlo method is that the average result is calculated through many cycles, which decreases
the computational efficiency. Li et al. [17] proposed a hybrid TOA/AOA target localization method
that can relax the stringent time synchronization requirement. The limitation is that, in the simulation
environment, only Gaussian noise is introduced, which does not agree with the channel model in
actual urban environments. Zhang et al. [18] proposed a novel TDOA/AOA wireless position scheme
in the NLOS environment using Kalman filters to obtain a stable signal source, which reduced the
location error. In [19,20], the researches proposed a geometrically model based single bounce circular.
The model is just suitable for macro cell scenarios with large coverage where BS is very high relative to
the detected object. The limitation of these methods [17–19] is that researchers only compensated for
error in channel propagation models. They eliminated the error by changing the design of the receiver
filter. These methods cannot be flexibly applied in the complex and changeable channel environment.

In the rapid deep learning development, some researchers used the iteration algorithm to mitigate
the NLOS error. Wang et al. [21] proposed the mixed filter location method-based hierarchical
voting. Before the traditional signal filtering, they carried out conditional detection and distance
correction based hierarchical voting. This is a preliminary application of policy-based algorithm.
Cheng et al. proposed an alternating optimization algorithm for localizing a mobile non-cooperative
target using a wireless sensor network through AOA measurements in NLOS environments [22].
However, this algorithm is only suitable for centralized applications, and its computational complexity
is largely dependent on the size of the network, so it cannot adapt to scenarios with high NLOS.
An effective constrained weighted least squares (CWLS) algorithm was proposed [23]. This algorithm
adopts the Newton iteration method that selects the least squares solution as the initial value to avoid
premature convergence to the local minimum. Although this method is based on the pseudo-linear
model, an appropriate initial guess is needed to ensure the convergence of the global optimal solution.
This method provides a closed form solution for the estimation of emitter position and velocity.
The method is based on the assumption that the location of the sensor is known, which is unrealistic.
Wang et al. [24] proposed a fingerprinting system based on deep convolutional neural networks
(DCNNs) for indoor localization. In this method, the AOA images are created and input to the DCNN
to train the weights in the offline phase. The location result can be predicted based on the trained
DCNN. Although the accuracy has been considerably improved, the calculation process still relies
on pre-trained fingerprint database. A method based on deep neural network was proposed that
allows a faster computation and lower memory usage [25]. However, this method improves the
detection performance by learning a robust fingerprint representation in noisy and always changing
environments without jointly addressing the issues related to noise and sparsity.

These researchers [22–25] adopted the iteration algorithm to reduce the error caused by the
NLOS environment. However, these methods rely on a large amount of training data and an offline
database, and the quality of training data determines the training effect of deep learning network,
therefore, it is very important to obtain the best training database. For these problems, we present
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a new method to optimize the AOA based on deep reinforcement learning in a NLOS environment.
Reinforcement learning can be broadly divided as value-based and policy-based. Different from the
value-based algorithm, the policy-based algorithm is suitable for learning data with continuous time.
Among the policy-based algorithms, trust domain strategy optimization (TRPO) and proximal strategy
optimization (PPO) are typical strategy optimization methods. And PPO, which is evolved from
TRPO, is a simpler and more general approach than TRPO [26,27]. So, we extend the state-of-the-art
reinforcement learning algorithm, proximal policy optimization [28–30] to our error corrected training
framework. The convergence problem of the policy gradient method is solved using the natural policy
gradient method. In practice, however, the natural policy gradient involves a second-derivative matrix,
which makes it non-scalable to large-scale problems. The computational complexity is too high for
real tasks. PPO formalizes the constraint as a penalty in the target function instead of imposing a
hard constraint. By avoiding constraints at all costs, a first-order optimizer, like gradient descent,
can be used to optimize the target. Even though we sometimes violate the constraint, the effect
is lessened and the calculation is much easier. The policy uses all the data gathered from parallel
measurements for training. The parallel training framework not only considerably reduces the time
cost of sample collection, but also enables the algorithm to be applied to various user equipment
training in various scenarios.

The remainder of this paper is organized as follows: Section 2 describes the basic theory of
multi-input multi-output (MIMO) system scenario, the AOA measurement in the MIMO, traditional
AOA localization algorithm based on LS methods, the theory of proximal policy optimization, and the
new AOA passive location algorithm for MIMO system based on PPO. Section 2 also gives the main flow
chart of the proposed methods. Section 3 presents the simulated results. The simulation experiment
includes the PPO training, the performance with different number of service base stations, cell radius,
channel environment, and MS velocity. The experiment data is obtained from the AOA measurement
error model and the actual NLOS communication scenario. The experimental results show that the
algorithm proposed in this paper can produce high accuracy location results. Section 4 provides a
summary, our conclusions, and recommendations for future research.

2. Materials and Methods

2.1. Scenarios

Assume that the base station has M transmit antennas, the mobile terminal has N receiver antennas,
and the propagation path of the wireless channel has L propagation paths, then the receiver signal of
the j receive antenna at time t can be defined as [31,32]:

y j =
M∑

i=1

xi(t)hl
i, j(t) + ni, j(t) (1)

where hl
i, j(t) is the channel model of i transmit antenna, j receive antenna at time t, t0 is the delay time

of multi-path. Each multi-path subchannel model of the of MIMO system can be defined as:

hl
i, j(τ− t) = hl

i, j(t)δ(τ− t0) (2)

Equation (2) shows that in the non-ideal channel environment, the signal delay is always caused by
refraction, scattering, reflection, and the influence of NLOS propagation. Therefore, the measurement
of AOA between the mobile station(MS) and base station(BSi) can be expressed as:

αi, j = α0,i, j + αn,i, j + αe,i, j (3)
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where α0,i, j is the AOA value in the LOS environment, αn,i, j is the environment error, αe,i, j is the
additional angle error caused by the NLOS, i is the number of transmitting antenna, and j is the number
of receiving antenna.

2.2. AoA Passive Location Based on PPO

To solve this problem, we propose a new AOA passive location algorithm for a MIMO system
based on PPO. PPO is used to modify the AOA measurement signal in the NLOS environment to
reduce the NLOS error in the data. Then, the least squares (LS) method is used for location, which can
effectively improve the positioning accuracy of the system. In this section, we introduce the new AOA
passive location algorithm.

2.2.1. Traditional AOA Localization Algorithm

Assuming that the number of base stations is K, the position of MS is (x,y) and the position of BSp

is (xp,yp). The AOA values of each measured base station between ith transmission antenna and jth
receiving antenna is θp,i, j, which can be defined as:

θp,i, j = arctan
y− yp,i, j

x− xp,i, j
(4)

Then, we obtain the following formula:

tan
(
θp,i, j

)
x− y = tan

(
θp,i, j

)
xp,i, j − yp,i, j (5)

When errors exist in the measured AOA data, the measurement error Ψ can be defined as:

Ψ = h−Gax (6)

where h, Ga, x are defined as follows:

h =


x1 tanθ1,i, j − y1

x2 tanθ2,i, j − y2

. . . . . .
xM tanθM,i, j − yM

 (7)

Ga =


tanθ1,i, j −1
tanθ2,i, j

...
tanθM,i, j

−1
...
−1

 (8)

x =

[
x
y

]
(9)

Therefore, the MS position can be estimated by the LS algorithm as follows:

x =
(
GT

a Ga
)−1

GT
a h (10)

The error of the LS algorithm of AOA is relatively small, which produces excellent performance
in LOS environment. However, the error caused by the LS algorithm is relatively large in the
NLOS environment.
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2.2.2. Proximal Policy Optimization

The PPO algorithm proposed by OpenAI, which is a new policy gradient algorithm [27],
algorithm has much lower implementation complexity than the trust region policy optimization
(TRPO) algorithm [26]. The PPO algorithm mainly includes two implementation methods. The first
PPO algorithm is realized by CPU simulation, and the second PPO algorithm is realized by GPU
simulation. Its simulation speed is more than three times that of the first PPO algorithm. Compared
with the traditional neural network algorithm, the PPO method achieves the best optimal balance in
algorithm complexity, precision, and ease of implementation.

The basic PPO algorithm theory can be defined as:

Jθ
k

PPO(θ) ≈
∑
(st,at)

min



pθ(at|st)

p
θk (at

∣∣∣st)
Aθ

k
(st, at),

clip

 pθ(at|st)

p
θk (at

∣∣∣st)
,

1− ε, 1 + ε


×Aθ

k
(st, at)


(11)

where the output of the policy action in PPO is a set of discrete probability distribution, pθ(at
∣∣∣st) is

the probability value of the policy action in current state, and pθk(at
∣∣∣st) is the probability value of the

policy action in new state. Therefore, the ratio of the probability under the new and old policies can be
defined as

R =
pθ(at

∣∣∣st)

pθk(at
∣∣∣st)

(12)

where θ is the policy parameter.
Clip(*) is an amplitude limiting function; its maximum value is 1+ ε,the minimum value 1− ε. ε is

a hyper parameter, the range is always from 0.1 to 0.2, which reflects the difference between the new
and old policies. The function of trust zone update can be implemented using this objective function,
which is compatible with random gradient descent. The equation of Clip(*) is defined as follows:

clip

 pθ(at|st)

p
θk (at

∣∣∣st)
,

1− ε, 1 + ε

 =


1− ε, pθ(at|st)

p
θk (at

∣∣∣st)
≤ 1− ε

1 + ε, pθ(at|st)

p
θk (at

∣∣∣st)
≥ 1− ε

pθ(at|st)

p
θk (at

∣∣∣st)
, other

(13)

where Aθ
k
(st, at) is the estimated advantage at time t. When Aθ

k
(st, at) > 0, the state action of the PPO

algorithm has a positive advantage, so the contribution of Equation (11) to the target can be simplified
as:

Jθ
k

PPO,1(θ) ≈
∑
(st,at)

min

 pθ(at
∣∣∣st)

pθk(at
∣∣∣st)

, 1 + ε

Aθ
k
(st, at) (14)

At this time, due to the advantage being positive, the target will increase. When
pθ(at

∣∣∣st) > (1 + ε)pθk(at
∣∣∣st) , starting from the minimum value, the value of Equation (14) can reach

the upper limit (1 + ε)Aθ
k
(st, at), which ensures that the new strategy is not too different from the old

strategy. Then, for this state, the algorithm encourages new strategies to increase the corresponding
probability of action as shown in Figure 1.
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2.2.3. Amendment of AOA Measurement Based on PPO

Here, we use the PPO method to correct the NLOS error and the measurement error, which make
the AOA value to close the real value. The operation process is as follows:

Step 1: Sample the N1 set of AOA measurement value {NAOAi, i = 1, ..., N1} under the NLOS
environment. Sample the N2 set of the AOA measurement value {AOAi, i = 1, ..., N1} without any
interference under the LOS environment. Take the NAOAi as the PPO training data and take the AOAi
as the PPO training target data. The relationship between NAOAi and AOAi can be defined as:

NAOAi = AOAi + ni + αe,i (16)

where ni is system measurement error and αe,i is the additional angle error caused by NLOS.
Step 2: PPO Training. Assume that NAOAi and AOAi are sampled from ten related base stations.

Therefore, the input of PPO can be represented as:

P = [NAOAi,1, NAOAi,6, ..., NAOAi,10]. (17)

The output of PPO can be expressed as:

T = [AOAi,1, AOAi,6, ..., AOAi,10] (18)
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The variable P represents the training input data of PPO. The variable T represents the training
target data of PPO.

The PPO training process is as follows. Figure 3 shows that the input unit produces a feedback
action when the environmental state is perceived through the P data, then the environment can send
a reinforcement signal r(t) to the PPO unit. Simultaneously, the PPO unit updates the knowledge
database of the policy module. The actor module selects a certain action a(t) in the range of ε according
to the current state P(t) and reinforcement information r(t), and then acts on the current environment
to change the environment. In this paper, the certain action a(t) is the value, which can make the
AOA value is as close to the real value as possible. The state P(t) is the value, which expresses the
current AOA value, and the reinforcement information r(t) can control the PPO model whether the
AOA value should be corrected or not. After multiple iterations of the actor and critic, we can obtain
an optimal policy.
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According to PPO theory, when the advantage of the state-action pair is positive, the PPO increases
the amendment value of the AOA measurement. When the advantage of the state–action pair is
negative, the PPO decreases the amendment value of AOA measurement:

ξi =


ξi + γi, Aθ

k
(st, at) > 0

ξi, Aθ
k
(st, at) = 0

ξi − γi, Aθ
k
(st, at) < 0

(19)

where ξi is the amendment value and γi is the increase or decrease part of ξi. After several iterations,
the action at ensures the output P of the environment module is close to the value of T.

A trained PPO model is used to correct the measurement data of AOA. The revised AOA is used
to estimate the position using Equation (10).

In the process, the PPO policy update can be defined as:

θk+1 = argmax
θ

E
s,a∼πθk

[
Jθ

k

PPO(θ)
]
. (20)

Finally, the PPO training process is finished.
According to the above introduction, the main flow of the AOA passive location algorithm for a

MIMO system based on PPO is shown in Figure 4.
In summary, the training PPO model can modify the AOA measurement data, and then reduce

the NLOS error of the AOA measurement value.
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3. Experiment

In this study, the proposed AOA passive location algorithm for an MIMO system based on PPO
was simulated to estimate the location accuracy.

In this experiment, 1000 MS were located with uniform distribution as the target data. The training
analog measurement data were obtained according to the AOA measurement error model, the testing
analog measurement data includes two parts, the first part of testing data were obtained according to
the AOA measurement error model, the second part of testing data were obtained from real data in the
actual NLOS communication scenario.

We used the COST259 model to create the scenario and determined the additional delay error
caused by NLOS, which follows Gaussian distribution [33]. The AOA error follows Gauss distribution
with a mean value of 0 and standard deviation of 0.04 rad/s. The delay error caused by NLOS obeys
the general COST259 urban model.

3.1. Simulation Experiment Parameters

The parameters of the simulation scenarios are listed in Table 1 and the PPO methods parameters
are shown in Table 2. The system performance of the algorithm proposed in this paper was simulated
and analyzed.

Table 1. Scenario simulation parameters.

No. Performance Index Value

1 Number of multi-input multi-output (MIMO) transmitting
antennas 4

2 Number of MIMO receiving antennas 4
3 Number of service base stations 4
4 Position of service base stations (0,0)
5 Number of Moblie Station (MS) 1000

6 Initial position of MS Random distribution in 400 × 400
region

8 Observation period 1 s
9 Cellradius 2500 m

10 Distribution of AOA error Gaussian(0,0.04)
11 Channel model COST259 model

12 Number of training data 10000 sets of training data from
COST259 model

13 Number of testing data 1000 sets of testing data from
actual NLOS scenario

- - 5000 sets of testing data from
COST259 model

14 Number of Monte Carlo cycles 1000

Table 2. PPO simulation parameters.

No. Performance Index Value

1 PPO training iteration number 5000
2 Actor learning rate 0.0001
3 Critic learning rate 0.0002
4 Actor iteration number 10
5 Critic iteration number 10

The PPO training iteration number affects the training performance of PPO, when if iteration
number is small, the training performance of PPO will be bad, otherwise the training performance of
PPO will be better. Considering the training performance and training time of PPO, the number of
iterations is 5000 in this paper. The Actor and Critic learning rate affects the learning efficiency of PPO,
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lower learning rate will cause pool learning efficiency, while the large learning rate will cause training
can’t converge. Considering the efficiency and convergence of PPO training, we set Actor and Critic
learning rate is 0.0001 and 0.0002 respectively.

We placed 7 base stations on the campus of Beijing university of posts and telecommunications
for real NLOS data collection, as shown in Figure 4:
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The proposed method has been validated utilizing a dual channel receiver using Universal
Software Radio Peripheral (USRP) X310 as shown in Figure 5. The USRP X310 contains 2Tx and 2Rx
ports with fully coherent 2 × 2 MIMO capabilities. The coherency between the Rx ports is an essential
feature for extracting accurate phase difference between the received signals. Moreover, the USRP
X310 covers RF frequencies from DC to 6GHz with a maximum ADC sample rate 200MS/s. Thus the
USRP X310 was an ideal candidate for this project. The USRP X310 was configured with the GNU
radio companion (GRC) interface. GRC is a graphical user interface to build GNU radio flow graphs
or the software circuits. The GNU radio flow graph enables the SDR card to receive signals from
the antennas, spectrally isolate them, and then calculate the phase difference between the received
signals. Aziz [34] have completed the AOA data acquisition model based on USRP device. According
to his model, we completed the collection of the original data and used it for the subsequent PPO
algorithm verification.



Electronics 2019, 8, 1558 10 of 17

Electronics 2019, 8, x FOR PEER REVIEW  9  of  16 

The  proposed  method  has  been  validated  utilizing  a  dual  channel  receiver  using  Universal  

Software Radio Peripheral (USRP) X310 as shown in Figure 5. The USRP X310 contains 2Tx and 2Rx 

ports with fully coherent 2 × 2 MIMO capabilities. The coherency between the Rx ports is an essential 

feature for extracting accurate phase difference between the received signals. Moreover, the USRP 

X310 covers RF frequencies from DC to 6GHz with a maximum ADC sample rate 200MS/s. Thus the 

USRP X310 was an ideal candidate for this project. The USRP X310 was configured with the GNU 

radio companion (GRC) interface. GRC is a graphical user interface to build GNU radio flow graphs 

or the software circuits. The GNU radio flow graph enables the SDR card to receive signals from the 

antennas,  spectrally  isolate  them,  and  then  calculate  the  phase  difference  between  the  received 

signals. Aziz [34] have c

(a)  (b) 

Figure 5. Universal Software Radio Peripheral X310: (a) the front of X310; (b) the reverse side of X310. 

3.2. Simulation and Experimental Analysis 

According to the basic flow chart in Figure 6 and the simulation parameters in Tables 1 and 2, 

we analyzed the influence of position performance, including the iteration times of PPO training, the 

cell  radius,  the  number  of  service  base  stations,  the  number  of MIMO  antennas,  the  channel 

environment, the MS velocity, and the number of training measurement data. 

Figure 5. Universal Software Radio Peripheral X310: (a) the front of X310; (b) the reverse side of X310.

3.2. Simulation and Experimental Analysis

According to the basic flow chart in Figure 6 and the simulation parameters in Tables 1 and 2,
we analyzed the influence of position performance, including the iteration times of PPO training,
the cell radius, the number of service base stations, the number of MIMO antennas, the channel
environment, the MS velocity, and the number of training measurement data.
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The measurement error ϕi of AOA measurement data obeys Gaussian distribution. The joint
probability distribution of measurement errors can be defined as:

P =
1

(2π)
N
2 δ1...δN

exp

−1
2

N∑
i=1

ϕ2
i

δ2
i

dϕ1...ϕN (21)

where δi is the standard deviation of the measurement error.
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In the simulation process, we also compared our method with other algorithms, such as the CWLS
algorithm [35] and traditional AOA methods.

3.2.1. PPO Training

During the PPO training, a high performance computer is necessary. In this study, the whole
training process was conducted on a 6-core and 4 GHz computer with an Intel i7-8700K processor (Intel,
Santa Clara, State of California, United States) CPU, 42 G memory, and a GeForce GTX 1080(NVIDIA,
Santa Clara, State of California, United States) graphics card. We defined the evaluation index of the
final location effect as location error, which is the location error through AOA measurement value
corrected by PPO. If the location error is 0 after training, the training is complete and the goal is reached.
When the error after training is large, the training target has not been reached. In the training process,
since it is impossible to guarantee that each training error will reach 0%, in the actual training process,
we set the training target to within 5% of the positioning error.

To present the performance of PPO training, we use the reinforcement signal r(t) (Figure 3) as the
reward value. The simulation result is as follows. In Figure 7, the abscissa is the number of iterations
and the ordinate is the return value of the algorithm. We calculated the average of the reward of
each simulation training period, then analyzed the average reward value obtained during the whole
training process, and finally normalized the simulation result values to [−1,0]. The simulation result
shows that the actor can search for the preset target position target within 300 steps in the first training
period, ensuring that the PPO algorithm always maintains a high performance in the training process.
A stable reward value leads the actor to the target position to complete the PPO training goal.
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Figure 8 compares AOA data before PPO and collected AOA data after PPO. The result shows
that the NLOS and measurement error are corrected by PPO, so that the corrected AOA value is as
close to the real value as possible.
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Figure 9 shows that with increasing training data length, the PPO performs better. The testing
data obtained from the actual NLOS scenario is more complex than the testing data from the COST259
model, therefore the performance of actual NLOS scenario is worse than the performance of COST259
model. When the training data length is longer than 4000, the PPO training performance tends to be
stable because the PPO can make an optimal adjustment decision with a large set of training AOA
measurement data.
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3.2.2. Number of Service Base Stations

Figure 10 shows the performance with different number of service base stations, and the
performance of actual NLOS scenario is worse than the performance of COST259 model. With increasing
number of service base stations, the root-mean-square error (RMSE) location gradually decreases.
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The AOA method is considerably influenced by the number of base stations because of the NLOS error.
The CWLS method has a lower RMSE; however, both of them perform poorly when the number of
service base stations is less than four. The method proposed in this paper produces the most accurate
performance because the PPO model can constantly correct the AOA measurements and reduce the
influence of NLOS and measurement error.
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3.2.3. Cell Radius

Figure 11 depicts the performance of different methods when the cell radii range from 500 m to 3000
m, and the performance of actual NLOS scenario is worse than the performance of COST259 model.
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Figure 11 shows that with the increasing of cell radius, the RMSE location is increasing gradually,
this is because large cell always has a large NLOS. When the cell radius is only 1000 m, these five
methods have a similar performance, especially the methods of CWLS and the proposed one. When
the cell radius is larger than 2000 m, the differences begin to grow, the methods of AOA has a bad
performance, because these three algorithm are location through the AOA data directly. Compared
with these three methods, the CWLS has a lower RMSE. The proposed method in this paper can
obtain the best performance, this is because the PPO model can reduce the influence of NLOS and
measurement error.
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3.2.4. Channel Environment

Figure 12 depicts the performance of different channel environments, such as the additive white
Gaussian noise (AWGN) channel and Rayleigh multi-path channel.
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constrained weighted least squares (CWLS) method in this paper, 3 is the AOA method in this paper.

In the AWGN channel, both of the proposed algorithm and the CWLS method produce good
location results. In a Rayleigh multi-path channel, because of the additional multi-path influence,
the location RMSE increases. However, the proposed method also produces the best performance
because the PPO can eliminate the multipath influence to some extent.

3.2.5. MS Velocity

Figure 13 depicts the performance of different methods with different MS speeds, and the
performance of actual NLOS scenario is worse than the performance of COST259 model.
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Figure 13. The performance of different algorithms with different MS speeds: (a) the performance of
COST259 model; (b) the performance of actual NLOS scenario.
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Figure 13 shows that with increasing of MS speed, the location RMSE gradually increases. The AOA
methods are considerably influenced by MS speed; the trend is a geometric increase. The CWLS
methods can reduce the location error of different MS speeds to a certain extent. The method proposed
in this paper produces the best performance because the PPO model can reduce the influence of
multiple paths.

4. Conclusions

To address the problem of AOA location, in this paper, we presented a new AOA passive location
algorithm for an MIMO system based on PPO. This method uses PPO methods to correct the NLOS and
measurement errors, and then determines the passive AOA location based on the least squares method.
The experimental results showed that the proposed algorithm can determine the AOA location high
accuracy. With the increasing of training data lengths and the number of base station, the RMSE of the
proposed methods can be lower than 3 m. On the other hand, the RMSE of the proposed methods is
almost less than 10 m at different MS velocity. PPO uses the ability of approximate arbitrary non-linear
mapping and the fast learning property of deep reinforcement learning to effectively overcome the
shortcomings of the traditional methods, such as AOA. In the future, we will apply the localization
algorithm based on PPO to more complex sensor networks and channel environments.
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