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Abstract: In order to improve the survivability of active sensors, the problem of low probability of
intercept (LPI) for a multi-sensor network system is studied in this paper. Two kinds of operational
requirements are taken into account, the first of which is to ensure the survivability of sensors and the
second is to improve the tracking accuracy of targets as much as possible. Firstly, the sensor tracking
model and the posterior Carmér-Rao lower bound (PCRLB) of the target are presented to evaluate the
sensor tracking benefits in next time. Then, a novel intercept probability factor (IPF) is proposed for
multi-sensor multi-target tracking scenarios. At the basis of PCRLB and IPF, a myopic multi-sensor
scheduling model for target tracking is set up to control the intercepted probability of sensors and
improve the target tracking accuracy. At last, a fast solution algorithm based on an improved particle
swarm optimization (PSO) algorithm is given to obtain the optimal scheduling actions. Simulation of
experimental results show that the proposed model can effectively control the intercepted risk of
every sensor, which can also obtain better target tracking performance than existing multi-sensor
scheduling methods.

Keywords: multi-sensor scheduling; low probability of intercept; PCRLB; intercept probability factor;
particle swarm optimization

1. Introduction

In recent decades, multi-sensor networks have been widely used in many fields [1–5], such as
battlefield surveillance, traffic control, healthcare, and environment monitoring. As a typical
application in battlefield surveillance, target tracking by multi-sensor networks has been a research
hotspot in recent years, especially in modern network warfare. Multi-sensor resource management
has been proved to improve the performance of multi-sensor systems effectively. Multi-sensor
resource management technology is able to make full use of sensor ability by scientific and
reasonable scheduling of sensor resources [3]. By collaborative management of multi-sensor resources,
the detection range and target tracking accuracy of the sensor network can be expanded.

However, when the active sensor detects a target, it will radiate the electromagnetic wave outward,
which can expose itself [6]. At the same time, with the development of electronic technology, many
anti-radiation weapons have been invented to attack active sensors, which poses a great challenge to
the battlefield survivability of active sensors, especially radars. Therefore, the traditional sensor
scheduling method, which only maximizes target tracking accuracy in most research, can no longer
meet the operational requirements of the complex battlefield environment. When improving target
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tracking accuracy, the survivability of sensor network should also be considered. It requires us to study
new sensor scheduling methods considering both target tracking accuracy and battlefield survivability.

Currently, there are four existing methods for active sensors to counter anti-radiation weapons:
LPI waveform design technology [6–8], bistatic and distributed sensor technology [9,10], decoy and
jamming technology [11], and sensor management technology [12–14]. Among them, the sensor
management technology works through the cooperative work of multiple sensors. To realize the low
intercepted probability of sensors, the key idea of sensor management technology is dynamically
managing the existing sensor resources. It gives anti-radiation weapons difficulty in identifying the
sensor or tracking the sensor for a long, continuous time. In this way, the anti-radiation weapon will
not be able to position sensors or attack sensors further. This technology can reduce the intercepted
probability of active sensors without increasing the hardware cost, which has become a research hotspot
in this field. Reference [13] proposed a LPI controlling method based on Bhattacharyya distance and
Jeffreys divergence, which can effectively control the intercepted risk of the whole radar network
by reasonably allocating the radar working power. In [14], a low interception probability control
method for multi-sensor networks based on mutual information entropy was presented. In [15,16],
the radiation degree is used to quantify the intercepted risk of sensors. The radiation risk and the
tracking accuracy are considered by information fusion method. However, combination of radiation
risk and tracking precision is a single index. It is difficult to ensure that both of them can reach the ideal
value. Secondly, the selection of the balance coefficient is very difficult without a priori knowledge.

However, previous work has focused only on controlling the intercepted risk of the whole sensor
network without considering the survivability of single sensors. When the intercept probability of a
multi-sensor network is small, the intercept probability of single sensor may already be very great,
which is a potential security hazard. Besides, the target tracking accuracy is usually ignored in
existing methods.

In view of the above problems, considering the survivability of every sensor, the problem of LPI
controlling for multi-sensor multi-target tracking is addressed in this paper. This paper introduces
a multi-sensor scheduling method based on posterior Carmér-Rao lower bound (PCRLB) and novel
intercept probability factor (IPF). The method can ensure low intercept risk of every sensor while
minimizing the target tracking accuracy as much as possible. Simulation results show that the proposed
method can effectively control the intercepted probability of sensors within the security threshold, and
can also maintain the target tracking accuracy at a higher level.

The rest of this paper is organized as follows. Firstly, the problem formulation is described
in Section 2, and the target tracking model and PCRLB of the target state are given in Sections 2.1
and 2.2, respectively. In Section 3, a novel intercept probability factor is proposed. Based on the
analysis in Sections 2 and 3, we present a multi-sensor scheduling model in Section 4. Then, a fast
solution algorithm of sensor scheduling problems is put forward in Section 5. Section 6 presents
some simulation results for different scenarios. Finally, conclusions and future works are discussed in
Section 7.

2. Problem Formulation

With the development of electronic technology, there are many sensors in air defense systems,
such as radar, infrared detectors, and video trackers. As is shown in Figure 1, the main objective of
this paper is to investigate the multi-sensor scheduling method for multi-target tracking. We assume
that the centralized management method is utilized to manage multi-sensor resources, and the target
information obtained by every sensor can be shared with the control center. The following parts in this
section are the target tracking model and optimization objectives of multi-sensor scheduling.
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Figure 1. Description of sensor scheduling problem.

2.1. Target Tracking Model

Supposing that there are N active sensors distributed in a sensor field to track M targets in
two-dimensions space. Then, the target tracking mode in discrete time can be described as Equation (1).

xm(k) = Fm · xm(k− 1) + Γm · νm(k) (1)

where the x is target state, the state of target m (m = 1, 2, . . . M) at time k is xm(k) =

[xm(k)
.
xm

(k) ym(k)
.
ym

(k) ]
T

, and xm(k),
.
xm

(k) denotes the position and speed at x direction;
ym(k),

.
ym

(k) denote the position and speed at y direction, respectively. Fm is the state transition matrix,
Γm and νm are the noise gain matrix and target state transition noise, which is Gauss white noise with
zero mean and covariance Q. For a maneuvering target, the motion model of the target is unknown.
Thus, the system state transition law is described by a mixed motion model set

{
Fi
}

i = 1, 2, . . . , η,

where η is the number of motion models, and there is Fm ∈
{

Fi
}

. There are three common motion
models: the nearly constant velocity (NCV) model, nearly left constant turn (NLCT) model, and nearly
right constant turn (NRCT) model. The state transition matrices of NCV model and NCT model can be
described as

Fcv =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

, FCT =


1 sin ωTs/ω 0 −(1− cos ωTs)/ω

0 cos ωTs 0 sin ωTs

0 (1− cos ωTs)/ω 1 sin ωTs/ω

0 − sin ωTs 0 cos ωTs

 (2)

where Ts is the sampling interval, ω denotes the turn rate of the target.
In general, the slope distance and azimuth angles are usually chosen as the measurement values of

active sensors, and the measurement equation is as follows:

zm,n(k) = hn(xm(k)) + wn(k) =

[
rm,n(k)
θm,n(k)

]
+

[
wn,r(k)
wn,θ(k)

]
(3)

where z represents the target measurement, hn is a nonlinear measurement equation sensor
n (n = 1, 2, . . . N), w is measurement noise which is also Gauss white noise with zero mean and
covariance R; wn,r

k , wn,θ
k denote the measurement noise of slope distance rm,n(k) and azimuth angle

θm,n(k), respectively. In particular, the calculation methods of rm,n(k), θm,n(k) are as shown in
Equations (4) and (5), respectively.

rm,n(k) =
√
(xm(k)− xn

s )
2 + (ym(k)− yn

s )
2 (4)
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θm,n(k) = tan−1 ym(k)− yn
s

xm(k)− xn
s

(5)

where xn
s and yn

s are position coordinates of sensor n.

2.2. PCRLB of Target State

The purpose of the sensor optimization scheduling in this paper is to reduce the risk of interception
and achieve higher target tracking accuracy during the sensor scheduling process. Therefore, in order to
select appropriate sensors to track targets in advance, it is necessary to predict and analyze the future
tracking performance of sensors. By this approach, the control center can make a decision ahead of
time. According to Equation (6), PCRLB can provide a lower bound of the estimation error of the target
state without knowing the sensors real measurements in the future, which is suitable for the problem of
sensor scheduling. Compared with Carmér-Rao lower bound (CRLB), PCRLB is more precise. That is
because the measurement value can provide more target information. Therefore, PCRLB is used to
evaluate the sensor tracking benefits in our study. In [17], PCRLB is defined to be the inverse of the
posterior Fisher information matrix (FIM). Let x̂m

k+1 be an unbiased estimator of xm
k+1, and the PCRLB

for the estimator xm
k+1 satisfies the following inequality.

E
{[

x̂m
k+1 − xm

k+1
][

x̂m
k+1 − xm

k+1
]T} ≥ (Jm

k+1
)−1 (6)

where Jm
k+1 is the posterior FIM, which meets the following recursive Equation (7).

Jm
k+1 = Dm,22

k −Dm,21
k

(
Jm

k + Dm,11
k

)−1
Dm,12

k (7)

and 

Dm,11
k = E [−∇xm

k
xm

k
log p

(
xm

k+1

∣∣∣xm
k

)
]

Dm,12
k = [Dm,21

k ]
T

= E [−∇xm
k+1

xm
k

log p
(

xm
k+1

∣∣∣xm
k

)
]

Dm,22
k = E [−∇xm

k+1
xm

k+1
log p

(
xm

k+1

∣∣∣xm
k

)
]+

E [−∇xm
k+1

xm
k+1

log p
(

zm,n
k+1

∣∣∣xm
k+1

)
]

(8)

where ∇xm
k

xm
k

denotes the second-order partial derivatives, E [−∇xm
k+1

xm
k+1

log p
(

zm,n
k+1

∣∣∣xm
k+1

)
] is the future

information gain by the sensor measurements. For the model in Section 2.1, Dm,11
k , Dm,12

k , Dm,22
k can be

calculated by the following equations.
Dm,11

k = (Fm)T(Qm)−1Fm

Dm,12
k = −(Fm)T(Qm)−1

Dm,22
k = (Qm)−1 +

(
Hn

k+1
)T
(Rn)−1Hn

k+1

(9)

where Hn
k+1 is the Jacobi matrix of nonlinear measurement equation hn. Assuming that sensor n

is used to track target m, the nonlinear measurement function is hn(xm(k + 1)). It is known from
Equations (2)–(4) that hn(xm(k + 1)) can be rewritten as

hn(xm(k + 1)) =

[
rm,n(k + 1)
θm,n(k + 1)

]
=

 √
(xm(k + 1)− xn

s )
2 + (ym(k + 1)− yn

s )
2

tan−1 ym(k+1)−yn
s

xm(k+1)−xn
s

 (10)
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and then the Hm,n
k+1 can be given by

Hm,n
k+1 =

 ∂rm,n(k+1)
∂x

∂rm,n(k+1)
∂y

∂θm,n(k+1)
∂x

∂θm,n(k+1)
∂y

 =

 xm(k+1)−xn
s

dmn

ym(k+1)−yn
s

dmn
ym(k+1)−yn

s
(dmn)

2
xm(k+1)−xn

s
(dmn)

2

 (11)

where dmn is the Euclidean distance between sensor n and target m, and calculated method is given by

dmn =

√
(xm(k + 1)− xn

s )
2 + (ym(k + 1)− yn

s )
2 (12)

However, xm(k + 1) and ym(k + 1) are not known at time k. We can use x̂m(k + 1) and ŷm(k + 1)
instead of xm(k + 1) and ym(k + 1). In this paper, according to the Equation (1), we use the one-step
prediction value to approximate xm(k + 1) and ym(k + 1), and

x̂m(k + 1) = Fmxm(k) (13)

For maneuvering target, target motion model is unknown. Considering the continuity of target
motion, the motion model corresponding to the maximum distribution probability at the current time
is used as the target motion model, that is

Fm = Fi = arg max
i=1,...,η

µi
k (14)

where µi
k represents distribution probability of target motion model i at time k.

Here, the posterior FIM Jm,n
k+1 of target m from sensor n can be obtained by Equation (7).

Furthermore, when N sensors are used to track the target m at the same time, assuming that the
processes of sensor measurement are independent to each other, the measurement results will not
interfere with each other. Then, the total posterior FIM Jm

k+1 can be expressed as

Jm
k+1 =

N

∑
n=1

Jm,n
k+1 (15)

In the process of target tracking, we pay more attention to the position of targets. Hence, the error
boundary component of target position in Jm

k+1 is selected as the tracking benefits. Let Υk
(
Xk, Ak+1

)
be

the predicted tracking benefit function, which is given by

Υk
(
Xk, Ak+1

)
=

M
∑

m=1

{(
Jm

k+1
)−1

[1, 1] +
(
Jm

k+1
)−1

[3, 3]
}

=
M
∑

m=1

{(
N
∑

n=1
amnJm,n

k+1

)−1

[1, 1] +
(

N
∑

n=1
amnJm,n

k+1

)−1

[3, 3]

} (16)

where Xk =
{

X1
k , X2

k , . . . , XM
k
}

, and Ak+1 represent the scheduling actions of sensors at time k+1,
Ak+1 = [amn]MN , amn ∈ {0, 1}, which denotes that the sensor n is used to track target m when amn = 1;
the sensor n is not used to track target m when amn = 0.

3. Novel Intercept Probability Factor

In an actual battlefield environment, even the signal power of a sensor is very high, and an
anti-radiation weapon may not be able to intercept the sensor signal. As is shown in Figure 2,
an interception event will occur only when overlaps happen to multiple window functions [18,19].
Here, in the process of intercepting, four window functions are considered for experimentation, which
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include the window functions of search direction and pulse signal for a sensor, and the window
functions of search direction and search frequency for an anti-radiation weapon.Electronics 2019, 1, x FOR PEER REVIEW  7 of 24 
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It is assumed that the width of each window is τi and the repetition interval of each window is Ti.

Then, the coincident width of L windows at the same time is 1
τ0

=
L
∑

i=1

1
τi

, and the coincident repetition

interval is given by

T0 =
L

∏
i=1

(Ti/τi)/
L

∑
i=1

(1/τi) (17)

We now analyze the probability of an interception event for a sensor. Because the interception
event has independence and is without after-effect, Poisson distribution can effectively describe the
process of an interception event. Assuming that k coincidental events of L windows happened in t
time, the probability of an interception event is obtained by P(T0, k) = P0

(P0/T0)
k−1

(k−1)! e−t/T0 s + (1− P0)
(t/T0)

k

k! e−t/T0

P(t, 0) = (1− P0)e−t/T0 , t ≥ 0, k = 1, 2, 3 . . .
(18)

where P0 is the probability of an interception event in the initial time. When the number of coincidental
events is k or more than k, the interception event will happen, then the probability Pk(t) of k
interception events can be calculated as

Pk(t) =
∞

∑
i=k

P(t, i) = 1−
k−1

∑
i=0

P(t, i) (19)

On further simplification in actual cases, when k = 1, the interception event will happen. Let the
novel interception probability factor (IPF) ηnew be equal to Pk(t) when k = 1, the ηnew is given by

ηnew = P1(t) =
∞

∑
i=1

P(t, i) = 1− P(t, 0) = 1− (1− P0)e−t/T0 (20)

In general, P0 ≈ 0, then ηnew can be simplified as ηnew ≈ 1− e−t/T0 . When T0 = 5, the change
curve of ηnew is shown in Figure 3. It can be seen that the new IPF ηnew is a time-dependent function.
The longer the tracking time is, the greater the ηnew is. Moreover, if the target number is M, the joint
IPF

_
η new is given by

_
η new = 1−

M

∏
i=1

(1− ηi
new) ≈ 1−

M

∏
i=1

[1− (1− e−t/T0)] = 1− e−Mt/T0 (21)
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Figure 4 shows change curves of joint IPF
_
η new when a sensor is used to track more than one

target at the same time. It can be seen that the intercepted probability by anti-radiation weapon will
further increase when the targets number increases. Therefore, in the process of target tracking, we
should not only control the tracking time of the same sensor, but also try to avoid tracking multiple
targets with the same sensor.
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4. Multi-Sensor Scheduling Model

Based on the research in the above sections, considering PCRLB and the novel IPF, a multi-sensor
scheduling model is set up. The basis of the proposed model is evaluating the joint IPF

_
η new of sensors

at each time. If the
_
η new is greater than the intercepted probability threshold ηth, this sensor will quit

tracking targets and maintain silence for a period of time. After the silence, this sensor will return to
tracking targets. It is noted that the silence time is set up according to the actual battlefield requirement.
Then, in the rest sensor group, the sensor scheduling scheme which has the smallest PCRLB will be
selected in next time. At this point, the multi-sensor scheduling problem has been converted into the
following optimization mathematical problem.

Aopt
k+1 = arg min

Ak+1
Υk
(
Xk, Ak+1

)
=

M
∑

m=1

{(
N
∑

n=1
amnJm,n

k+1

)−1

[1, 1] +
(

N
∑

n=1
amnJm,n

k+1

)−1

[3, 3]

}

s.t.


N
∑

n=1
ak

mn ≤Cn,
M
∑

m=1
ak

mn ≤Cm,
_
η

n
new ≤ ηth

m = 1, 2, . . . , M , n = 1, 2, . . . , N

(22)
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where Υ
(
Xk, Ak+1

)
is the comprehensive tracking benefit, ηth is the intercepted probability threshold,

_
η

n
new is the intercepted probability of sensor n, and Cm is the maximum number of sensors allowed to

track the same target m, Cn is the tracking ability of sensor n. The specific steps of the multi-sensor with
IPF scheduling model is shown in Algorithm 1, and the diagram of the multi-sensor scheduling process
at time k is shown in Figure 5. To remind the reader, the sensor scheduling model proposed in this
section is a myopic scheduling method, which only judges the tracking cost in next time. Compared
with the non-myopic scheduling method, this method has less computation complexity and shorter
optimization time, which can effectively meet the real-time requirement.

In order to quickly get the optimal scheduling actions Aopt
k+1, we will use a heuristic search

algorithm [20] to deal with it in next section.

Algorithm 1 Multi-sensor scheduling algorithm

Input: target state Xk, sensor scheduling actions Ak
Output: sensor scheduling actions Ak+1

Determine whether the silent sensors have reached the silence time
For (sensor in silent group)
If (off-time> silence time)
silent sensors start work
else
silent sensors keep silence
End
End
Predict the IPF of sensors which do not keep silence
For (sensor which don’t keep silence)

IF (Predictive IPF
_
η

n
new > ηth)

Sensor will be not selected and turn to silence
End
End
Select the sensor-target combination which has the smallest PCRLB
Use particle swarm optimization (PSO) algorithm to search the optimal scheduling actions Aopt

k+1
Output sensor scheduling actions Ak+1
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5. Solution Algorithm of Multi-Sensor Scheduling Problem

According to Equation (22), by modeling, the sensor scheduling problem has been transformed
into a nonlinear, multi-constrained NP-hard problem. In particular, when the numbers of sensors and
targets are great, the computation complexity will increase greatly. It is very hard for traditional
programming and analytic methods to solve this problem. Besides, the on-line planning must
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meet the real-time requirements. Therefore, a fast solution algorithm is needed. In response to
the above problems, a fast solution algorithm based on the improved particle swarm optimization
(PSO) algorithm is proposed. The PSO algorithm [21] is a kind of intelligent searching algorithm,
which can obtain the optimal or suboptimal solution in a short time.

5.1. Solution Algorithm Based on Improved PSO Algorithm

The PSO algorithm [22] approximates the optimal solution by iterating a large number of particles.
The renewal equation of particles is shown as

Vi(k + 1) = wVi(k) + c1r1[Pi
b(k)− Pi(k)] + c2r2[Pi

gb(k)− Pi(k)] (23)

Pi(k + 1) = Pi(k) + Vi(k + 1) (24)

where Pi(k) is the position (hence the solution) of the ith particle at k time. It is a formal representation
of the problem solution, which can be a vector or matrix. Vi(k + 1) is the movement speed of the ith
particle, Pi

b(k) is the best of ith particle in the iterative history, Pi
gb(k) is the global best of all particles

in the iterative history. w, c1, c2 are weight coefficients, and w + c1 + c2 = 1, where c1 represents
the important degree of the individual experience during the iterative process, and c2 represents the
important degree of the group experience.

In PSO, the convergence of particles is so strong that particles are easy to fall into the local optimal
trap. In response to the problem, a multi-population cooperative search strategy [23] is introduced to
improve the optimization performance of the PSO algorithm. This strategy improves the PSO algorithm
from a new perspective, whose key idea is using L(L ≥ 2) particle populations to search cooperatively.
The L particle swarm is divided into two parts. The former L − 1 particle populations search
independently to expand the searching range, and the last particle population chases the global best
solution of all particle populations to accelerate the convergence speed. Through cooperative searching
by different populations, the global optimization ability of PSO will be improved significantly.

Here, we divide the particle swarm into four particle populations, as shown in Figure 6. Weight
coefficients w, c1, c2 in particle populations 2, 3, and 4 are set up differently. Under the circumstances,
different particle populations will have different searching ability. In particle population 2, the w
is greater than c1, c2, which means paying more attention to the value of the current particle itself.
In particle population 3, the c1 is greater than w, c2, which means that the individual experience of
the particle is considered greater. In particle population 4, the c2 is greater than w, c1, which means
that the population experience is considered greater. Additionally, different particle populations can be
computed in the parallel computing mode. In this way, a lot of computing time will be saved.
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5.2. Particle Encoding in Improved PSO Algorithm

Particle encoding is the key technology in the improved PSO algorithm. A good encoding
technique is helpful to improve the solving speed of the algorithm. Here, Pi(k) is the exact
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sensor scheduling actions Ak = [amn]MN . Therefore, we can get Aopt
k+1 through iterative searching.

It is important to note that the sensor scheduling actions are a binary discrete matrix. When the
numbers of sensors and targets are both 3, the tracking capability Cn of each sensor is 2, and the
maximum number Cm of sensors allowed to track the same target is 1; a legal example of Ak is shown
in Equation (24).

Ak =

 0 0 1
0 0 1
1 0 0


3×3

(25)

The sensor scheduling actions in Equation (25) denote that sensor 1 is used to track target 3,
sensor 3 is used to track target 1 and target 2, and sensor 2 is not used. However, because
Equations (23) and (24) are calculated in the real number space, the elements of Ak may become
a real number out of {0, 1} during the iteration process. Therefore, the elements should be discretization
and legalization during the iteration process. To solve the above problem, as is shown in Figure 7,
a method of discretization and legalization is put forward. It can be seen that this method consists of
two steps: discretization and legalization. The specific steps of discretization and legalization are
shown in Algorithm 2. Through discretization and legalization, the illegal sensor scheduling actions
can be legalized, which can reduce unnecessary searches and improve the searching speed effectively.
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Algorithm 2 Multi-sensor scheduling algorithm

Input: illegal Ak
Output: legal Ak

For (each column of Ak)
Sort elements in each column of the scheduling actions matrix Ak from great to small.
Select the previous Cn elements and then change the element value to 1
Change the rest elements value to 0
End
For (each row of Ak)
Calculate the number Mm

1 of the elements whose value is 1 in each row
If (Mm

1 > Cm)
Randomly select Mm

1 − Cm elements and then change the element value from 1 to 0
End
End
Output legal scheduling actions matrix Ak

6. Simulations

Effectiveness of the proposed sensor scheduling policy is validated through Monte Carlo
simulations. In our simulations, the sampling interval is T = 1s, the simulate period is 80 s, and
the silence time is 1 s. The coincident repetition interval is T0 = 8 s, and the security threshold is
ηth = 0.5. The improved PSO algorithm is used to solve the optimal scheduling actions Aopt

k+1.
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6.1. Scenario 1

In this scenario, the number of targets is assumed to be M = 2 and the target motion model is a
constant velocity model. Without loss of generality, the initial positions of 2 targets are (33 km, 37.5 km)
and (35 km, 30 km), respectively, and the other experimental parameters are set up as follows

x1
0 =

[
33000 90 37500 0

]T
m, x2

0 =
[

35000 100 30000 50
]T

m

P1
0 = P2

0 = diag(1000, 25, 1000, 25) m

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, Γ =


T2/2

T
0
0

0
0

T2/2
T

,
Q1 =

[
20 0
0 20

]

Q2 =

[
20 0
0 20

]

where Q1, Q2 are covariance matrices of state transition noise. The number of sensors is assumed
to be N = 3, which are placed at (31 km, 39 km), (38 km, 27 km), and (42 km, 40 km), respectively.
The covariance matrices of measurement noise of the 3 sensors are set up as follows. It is shown that
the tracking ability of sensor 1 and 3 is better than sensor 2. The sensor positions and target trajectories
in the battlefield are shown in Figure 8.

R1 = diag([502, 0.022]), R2 = diag([1002, 0.022]), R3 = diag([502, 0.022])
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Meanwhile, to prove the advantages of our proposed IPF based sensor scheduling policy (IPFSP),
the other two scheduling policies are used for comparison experiments. (1) Stationary scheduling
policy (SSP): In this method, the sensor is fixed to track the specific target. (2) Bhattacharyya distance
based scheduling policy (BDSP): It is proposed in [13] that the method can keep a small intercept
probability of the whole sensor network by maximizing Bhattacharyya distance. Without loss of
generality, sensor 1 is used to track target 1 and sensor 3 is used to track target 2 in SSP. Additionally,
sensor 1 is used to track target 1 and sensor 2 is used to track target 2 at the beginning in BDSP
and IPFSSP.

The number of Monte Carlo experiments is 150, and experimental results are shown in
Figures 9–12.
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The sensor selection sequences obtained by BDSP and IPFSP methods for the 2 targets are shown
in Figures 9 and 10. The horizontal coordinate is the simulation time, and the vertical coordinate is
the sensor number. It can be seen that the proposed IPFSP model can realize reasonable selection of
sensors for tracking target. Moreover, the sensor switching frequency of IPFSP method is greater than
BDSP method. The reason is that the sensor cannot track a target for a long time due to the limitation of
IPF. In this way, the intercepted probability of sensors by enemies will be reduced greatly.
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Figure 11. RMSE of the target position under different scheduling policies. (a) Target 1; (b) Target 2.

Figure 11 shows the root mean-square error (RMSE) curves of the target position under the SSP,
MSP, and BDSP methods. We can see that the tracking accuracy under BDSP and IPFSP are better than
that under SSP. The RMSE averages of target 1 under SSP, BDSP, and IPFSP are 34.27 m, 7.03 m and
8.56 m, respectively. It proves that although the sensor is frequently selected and switched in IPFSP
method during the tracking process, the tracking accuracy of targets is still at a high level compared
with SSP method.
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Figure 12 shows the variation curves of sensor intercepted probability under different scheduling
policies. The average intercepted probabilities of the sensor system under SSP, BDSP, and IPFSP are 0.60,
0.35 and 0.16, respectively. Besides, the intercepted probability of SSP increases over the simulation
period, which is more than the security threshold ηth at most time. The intercepted probability of BDSP
sometimes goes beyond the security threshold ηth. On the contrary, the IPFSP can effectively control
the intercepted probability of the 3 sensors within the security threshold ηth the whole time, which
shows the advancement of the proposed sensor scheduling method.

6.2. Scenario 2

In this scenario, the numbers of sensors and targets are set up in order to analyze the
effectiveness of the proposed model and solving algorithm for large-scale tracking scenarios.
The number of targets is assumed to be M = 4 and the target motion model is also the CV model.
The initial states of 4 targets are set up as in Equation (26), and the other parameters are the same as in
Scenario 1. 

x1
0 =

[
37300 −80 40000 −60

]T
m

x2
0 =

[
37000 60 29000 70

]T
m

x3
0 =

[
43000 −60 35000 80

]T
m

x4
0 =

[
32000 80 30000 −60

]T
m

(26)

In addition, the sensor numbers are assumed to be N = 6, which are placed at (31 km, 39 km),
(37.5 km, 35 km), (37 km, 43 km), (32 km, 27 km), (44 km, 33 km), and (38 km, 27 km), respectively, and
the measurement covariance matrices of the 6 sensors are set up as R1 = R2 = R3 = R4 = R5 = R6 =

diag([502, 0.022]). In SSP method and at the beginning of BDSP and IPFSP methods, sensor 1, sensor 2,
sensor 3, and sensor 4 are used to track target 1, target 2, target 3, and target 4, respectively. Sensor
positions and target trajectories in the battlefield are shown in Figure 13.
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Furthermore, the number of Monte Carlo experiments is 150, and the simulation results are shown
in Figures 14–17.
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Figures 14 and 15 show the sensor selected sequence for target 2 and target 3 by BDSP and IPFSP
methods, respectively. It can be seen that for sensor and target scheduling problems, the proposed
method can also realize the effective scheduling of sensors to track targets in this scenario. Compared
with BDSP, the sensor switching frequency of IPFSP is also greater than BDSP method, which is due to
the limitation of novel IPF. In this way, the intercept probability of the sensors will be reduced greatly,
which we can see in Figure 16. The results are the same for target 1 and target 4.
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(c) Sensor 3; (d) Sensor 4; (e) Sensor 5; (f) Sensor 6.

Figure 16 shows the variation curves of sensor intercept probability under different scheduling
policies. The average intercept probabilities of the sensor system under SSP, BDSP, and IPFSP are 0.60,
0.37, and 0.15, respectively. Moreover, it can be seen from Figure 16 that when using SSP method,
the intercept probabilities of sensor 1, 2, 3, and 4 are more than the security threshold at most times.
When using BDSP method, the intercept probability of all sensors will be more than the security
threshold sometimes. On the contrary, the proposed IPFSP method can control the intercept probability
of all sensors within the security threshold ηth. It can be concluded that the proposed IPFSP method
can effectively improve sensor battlefield survivability for different target tracking scenarios.
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Figure 17 shows the running time of an experiment under different solution algorithms. Compared
with the exhaustive search algorithm and traditional PSO algorithm, some experiments with different
numbers of sensors and targets are carried out to verify the advancement of the proposed solution
algorithm. We can see that with the increase of sensor and target numbers, the running time of
the exhaustive search algorithm will grow rapidly, which cannot match the real-time requirement.
However, the running time of the proposed algorithm in this paper is always less. Besides, Figure 16
shows that the running time of the improved PSO algorithm is less than that of the traditional PSO
algorithm, which proves the effectiveness of the improvement strategy. Compared with the traditional
PSO algorithm, when the sensor number is 4 and target number is 3, the running time is reduced
by 14.87%. When the sensor number is 6 and target number is 4, it is reduced by 30.32%. When the
sensor number is 10 and target number is 8, it is reduced by 47.51%. It can be concluded that the more
complex the problem is, the more time will be saved by the proposed solution algorithm.
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6.3. Scenario 3

In this scenario, two maneuverable targets are considered to verify the applicability of the
proposed sensor scheduling method for the problem of maneuverable target tracking. As is shown in
Figure 18, the initial position of target 1 is (34 km, 36 km), and target 1 turns left with ω = −2rad/s
during 30 s~50 s and maintains uniform motion during the other time. The initial positions of
target 2 is (35 km, 30 km), and target 1 turns right with ω = 2rad/s during 30 s~50 s and
maintains uniform motion during the other time. The initial states of 2 targets are set up as

x1
0 =

[
34000 110 36000 60

]T
m, x2

0 =
[

35000 80 30000 70
]T

m. The other parameters
are the same as in Scenario 1.
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Figure 18. Sensor positions and target trajectories.

There are 4 sensors which are placed at (33 km, 28 km), (33 km, 42 km), (42 km, 28 km), and (42 km,
42 km). The measurement covariance matrices of the 4 sensors are set up as R1 = R2 = R3 = R4 =

diag([502, 0.022]). In the SSP method and at the beginning of the BDSP and IPFSP methods, sensor 1 and
sensor 2 are used to track target 1 and target 2, respectively. The number of Monte Carlo experiments
is 150, and the simulation results are shown in Figures 19–22.
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Figures 19 and 20 show the sensor selected sequence for the two maneuverable targets by BDSP
and IPFSP methods, respectively. Obviously, in this scenario, the proposed method can also realize the
effective scheduling of sensors to track maneuverable targets, which proves the wide applicability of
the proposed sensor scheduling method.
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Figure 21. RMSE of target position under different scheduling policies. (a) Target 1; (b) Target 2.

Figure 21 shows the root mean-square error (RMSE) curves of the target position under the
SSP, BDSP, and IPFSP methods in this scenario. The RMSE averages of target 1 under SSP, BDSP,
and IPFSP are 74.20 m, 20.56 m, and 32.42 m, respectively. Compared with the uniform moving
targets in scenario 1 and scenario 2, the tracking error under IPFSP method is still less than that under
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SSP method, but it is greater than that under BDSP method. Therefore, it can be concluded that for
maneuvering targets, the target tracking accuracy of the proposed method will be declined.
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(c) Sensor 3; (d) Sensor 4.

Figure 22 shows the variation curves of sensor intercept probability under different scheduling
policies in this scenario. The average intercept probabilities of the sensor system under SSP, BDSP, and
IPFSP are 0. 49, 0.36, and 0.16, respectively. It can be seen from Figure 22 that the proposed IPFSP
method can also control the intercept probability of all sensors within the security threshold ηth.
The intercept probability of the other two methods will be more than the security threshold at
most times. It is proved that the proposed method can perform well for maneuvering target
tracking scenarios.

7. Conclusions

In this paper, in order to reduce the intercept risk and maintain the target tracking accuracy of
radar sensor networks, an active multi-sensor scheduling method based on PCRLB and a novel
IPF is proposed. Firstly, the target moving model and sensor measurement model are introduced.
Then, the calculation methods of PCRLB for uniform moving targets and maneuvering targets are
presented. Next, to accurately assess the intercepted risk of sensors, a novel intercept probability
factor is given based on multiple window functions. Simulation results show that the proposed
method can reasonably evaluate the intercept risk of all sensors in the future for different multi-target
tracking scenarios. The minimum average intercept probability of the sensor network system is
only 0.15 with better target tracking accuracy, which is much better than the existing SSP and BDSP
methods. In addition, in order to quickly get the optimal scheduling actions, a fast solution algorithm
based on the improved PSO algorithm is proposed. When the sensor number is 6 and target number
is 5, the running times can be reduced by 30.32%, and more time will be saved by the proposed



Electronics 2019, 8, 140 21 of 22

solution algorithm when the sensor and target numbers increase. For the other optimization problems,
the improved PSO algorithm also has certain application value.

In the future, with combat situations becoming more complex and more diverse, sensor
scheduling models aiming at an individual combat mission seem unlikely to meet combat requirements.
The multi-task sensor scheduling problem will need to be considered, and further study will need to
be conducted on combinations of target detection, target tracking, and target recognition. Besides,
in actual situations, different targets have different threat levels, so the problem of target priority
assessment will also need to be studied with the sensor scheduling problem.
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