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Abstract: Information about the vehicle sideslip angle is crucial for the successful implementation of
advanced stability control systems. In production vehicles, sideslip angle is difficult to measure within
the desired accuracy level because of high costs and other associated impracticalities. This paper
presents a novel framework for estimation of the vehicle sideslip angle. The proposed algorithm
utilizes an adaptive tire model in conjunction with a model-based observer. The proposed adaptive
tire model is capable of coping with changes to the tire operating conditions. More specifically,
extensions have been made to Pacejka’s Magic Formula expressions for the tire cornering stiffness
and peak grip level. These model extensions account for variations in the tire inflation pressure,
load, tread depth and temperature. The vehicle sideslip estimation algorithm is evaluated through
experimental tests done on a rear wheel drive (RWD) vehicle. Detailed experimental results show
that the developed system can reliably estimate the vehicle sideslip angle during both steady state
and transient maneuvers.
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1. Introduction

Precise information about critical tire–vehicle dynamic states is vital for the effective execution of
vehicle control systems. There is unequivocal agreement that knowledge about additional states of a
vehicle can significantly reduce the risk of accidents through effective design and implementation of
advanced chassis control systems. As a result, the problem of vehicle state estimation has attracted
much attention from researchers. In the realm of methods for estimating vehicle sideslip angle (β), there
exist two fundamental groups of methodologies: (a) model-based observers and (b) kinematics-based
observers (Table 1).

Table 1. Vehicle sideslip estimation techniques.

Approach Underlying Principle Reference

Model Based Observer

The sideslip angle model is typically based on the bicycle
model. The model can further include feedback of error
signals (the differences between the measured signals
and the ones predicted by the model), thus forming a

closed loop observer

[1]

Kinematic Based Observer

Rely on kinematic equations correlating the vehicle
longitudinal and lateral velocities with longitudinal and
lateral accelerations and the yaw-rate. These methods do
not depend on vehicle or tire–road friction parameters

[2]
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The formulation for a typical model-based observer is as follows [1]:

β =
−may −

2aC f −2bCr
vx

r + 2C f δ

2C f + 2Cr
(1)

where β is the vehicle sideslip angle, m is the vehicle mass, δ is the road wheel angle, vx is the vehicle
longitudinal speed, a and b are the distances of the front and rear axles from the vehicle center of
gravity, Cf and Cr are the front and rear tire cornering stiffness, r is the measured yaw-rate and ay is
the measured lateral acceleration.

The formulation for the kinematic based observer is as follows [2]:

β =
∫ ay + g sin θ

vx
− r (2)

where θ is the vehicle body roll angle.
To get a stable estimation of sideslip angle, the integration must be stabilized by a feedback error

signal, e.g., the difference of measured lateral acceleration and the modeled one.
The performance of both these observers was experimentally evaluated on a rear-wheel drive

(RWD) vehicle. The test vehicle was equipped with an automotive grade inertial measurement unit
(IMU) and a global positioning system (GPS) - inertial navigation system (INS) of RT3000 class (specific
model: RT3100) from the Oxford Technical Solutions Ltd for sideslip angle measurement (Figure 1).
Inputs for the observers come from the automotive grade IMU. Measurement taken from the RT3000
unit is assumed to be the actual value, i.e. the ground truth for the vehicle sideslip angle.
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Figure 1. Instrumentation equipment: (a) Racelogic Inertial Measurement Unit (IMU) (RLVBIMU04)
and (b) Oxford Technical Solutions RT3000.

Figure 2 shows measurements recorded during a sine-sweep test. Recorded signals were filtered
using a low pass filter with a cut-off frequency of 5 Hz.
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These measurements were thereafter used to assess the performance of sideslip estimators
using Equation (1) and Equation (2). Figure 3 presents the results for the kinematics-based observer.
The observer is prone to drift due to bias errors in the accelerometer and gyroscope signals. This is
despite the lateral acceleration signal (ay) being compensated for by the vehicle body roll angle (θ).
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Figure 3. Performance of the kinematics-based observer.

In [2], the authors explain how the drift could be because of offset errors, i.e., the inertial
measurement unit not being placed at the center of mass and possibly being misaligned with the
vehicle axes. Correction of the offset error is crucial for avoiding the signal drift issue, particularly
when integration is involved for state estimation [3]. The use of a forgetting factor in integration
or a high pass filter may help, but only at the cost of severe phase lag and a deterioration in the
estimation accuracy.

Figure 4 plots the results for the model-based observer. Estimates for the observer tend to deviate
from the actual values because of mismatch between the actual vehicle/tire parameters and those used
by the model.
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Figure 4. Performance of the model-based observer.

A key tire related parameter used in model-based estimators (based on the bicycle model) is the
tire cornering stiffness. The tire cornering stiffness is known to be affected by several factors (Table 2)
and consequently affects the accuracy of model-based estimators.
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Table 2. Factors affecting the tire cornering stiffness.

Influencing Factor Effect on the Tire
Cornering Stiffness Reasoning

Inflation Pressure Moderate Caused by a variation in the carcass stiffness
and tread stiffness

Tire Wear High Caused by a variation in the tread stiffness
Tire Temperature High Caused by a variation in the rubber elasticity

Tire Aging High Caused by stiffening on tread rubber

Researchers through the years have proposed many algorithms for online estimation/adaptation
of the tire cornering stiffness. For instance, in [4,5], algorithms for estimation of the tire cornering
stiffness during high excitation maneuvers (steering frequency > 0.5 Hz) are presented. Among all the
methods studied, the beta-less method (Figure 5) has been found to have the highest potential for field
implementation [6].
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Figure 5. Formulation of the beta-less cornering stiffness estimator [4].

However, for most techniques presented in the literature [7], the estimation accuracy of the
algorithm is only limited to transient maneuvers. This is also validated in the benchmarking work
conducted as part of this study (Figure 6). The algorithm used applies the discrete-time Unscented
Kalman filter (UKF) [8] for state estimation. To build a model-based UKF, the nonlinear bicycle
model equations and linear tire model equations are converted to the discrete form by the first-order
Euler method.

• The state vector xk, at each time instant k comprises of sideslip angle, yaw rate, front tire cornering
stiffness and rear tire cornering stiffness.

• The measurement vector yk comprises of yaw rate and front and rear axle lateral forces.

Correct knowledge of process (Q) and measurement noise (R) covariance is crucial for the
satisfactory working of the UKF estimator. The yaw rate and sideslip angle are modeled using
system dynamic equations; therefore, low uncertainty is assigned to them. However, the front and rear
tire cornering stiffness is not modeled at all; hence, they are given high uncertainties.

The observer estimation results are shown in Figure 6. The estimation accuracy of the observer
is only restricted to transient maneuvers. It does not give satisfactory results during a steady state
cornering maneuver. The estimates diverge from the actual measurements.

More recently, in [9,10], an online cornering stiffness observer for low frequency maneuvers on
public roads is presented. The estimation method presented shows good estimation results even under
less extreme maneuvers on public roads. However, the relative error of the cornering stiffness estimate
is still about 15%.

In view of the above analysis, it is reasonable to conclude the following:

• Accurate knowledge of the tire cornering stiffness is crucial for ensuring good estimates of vehicle
sideslip angle using model-based observers.
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• Observers for cornering stiffness estimation do not give satisfactory estimates during steady
state maneuvers.

• The availability of a high-fidelity cornering stiffness model would facilitate the online computation
of the vehicle sideslip angle.

The idea of simply utilizing a model-based estimate of the tire cornering stiffness might not have
been very practical previously for the following reasons:

• Tires have a service life and get changed on a vehicle every few years. There is no way for the
vehicle to know the properties of the new tire purchased by the customer.

• Customers in European countries typically have different tires mounted based on the season
(summer or winter), mainly due to government mandated requirements. Tires built with
different rubber compounds and structural properties (e.g. summer versus winter tires) behave
very differently.

• During its normal service life, a tire is subjected to large variations in operating conditions such
as ambient temperature, inflation pressure and changes in tread depth. The force and moment
characteristics of the tire changes significantly due to each of these operating conditions.

Tire mounted sensors [11–14] are emerging as a promising technology capable of addressing
these issues by uniquely identifying the tire on the vehicle and providing information about the tire
operating conditions. Consequently, this presents opportunities for utilizing a model-based estimate of
the tire cornering stiffness in vehicle state estimation. However, the model-based estimate of cornering
stiffness needs to be very precise.
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Figure 6. Cornering stiffness observer estimation performance. (a) Maneuver: sine-sweep
0.25–4 Hz—good convergence seen. (b) Maneuver: steady state circular test—no convergence.

This paper first addresses technical challenges associated with adapting the cornering stiffness
expression of Pacejka’s Magic Formula tire model [15] to tire inflation pressure, temperature, load
and tread depth simultaneously. The rationale behind the selection of inflation pressure, temperature,
load and tread depth is the availability of these signals from first-generation tire mounted sensor
systems. Inflation pressure and temperature are available as direct sensor readings. Most tire mounted
sensors [16–20] also include an accelerometer which enables estimation of the tire load based on a
contact patch length based model (Figure 7). The contact patch length information is extracted from the
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radial acceleration signal by determining the distance between the zero crossing points of the signal,
where the crossing points correspond to the leading and the trailing edge of the tire. More details
regarding the load estimation algorithm can be found in a previous publication [21] by the author.
Alternatively, in [22], an empirical model is used to describe the shape of the radial acceleration signal.
Tire load is treated as an unknown parameter and is estimated to use an extended Kalman filter (EKF)
observer. Accurate load estimation is demonstrated in cases of constant as well as changing forward
velocity of the vehicle.
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Figure 7. Tire load estimation using a tire mounted accelerometer.

The remaining tire tread depth can also be extracted by employing time and frequency domain
feature extraction techniques to the tire accelerometer signal (Table 3).

Table 3. Proposed techniques for tread depth estimation using tire mounted sensors.

Measured Signal Underlying Physics Reference

Tangential acceleration
Monitors change in the tire

vibrational characteristics between
the frequency range 1000–3000 Hz

U.S. Patent 8061191 [23]

Radial acceleration
Monitor radial acceleration in the

pre-footprint region between
frequency range 1000–1700 Hz

U.S. Patent 8775017 [24]

Radial acceleration Monitors change in the tire
internal radius U.S. Patent 9764603 [25]

Hence, tire mounted sensors are expected to deliver key inputs required for adaptation of the
cornering stiffness model. Once adaptation of the cornering stiffness model is achieved, estimation of
vehicle sideslip angle is realized through usage of the adapted tire model.

The main contributions of this paper are as follows:

• Quantification of influence of operating conditions on tire cornering stiffness.
• Extension of cornering stiffness expression for Pacejka’s Magic Formula to inflation pressure,

temperature, load and tread depth.
• A novel framework for estimating vehicle sideslip angle.

The contents of this paper are organized as follows: Section 2 presents experimental results
quantifying the influence of tire inflation pressure, tread depth, load, and temperature on the tire
cornering stiffness. Section 3 presents details about an improved Magic Formula (MF) cornering
stiffness model adapted to cope with changes in the tire operating conditions. Section 4 proposes an
estimation procedure for vehicle sideslip angle using the cornering stiffness adaptation model, and
conclusions are finally given in Section 5.
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2. Quantifying the Influence of Variations in the Tire Inflation Pressure, Tread Depth, Load and
Temperature on the Tire Cornering Stiffness

Over the years, various developments have been made to extend tire models to improve their
prediction capabilities under various operating conditions [26–31]. With the objective of quantifying
the influence of variations in the tire inflation pressure, tread depth, load, and temperature on the tire
cornering stiffness, experiments were conducted on the Flat-Trac®machine (Figure 8).
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The sensitivity study was conducted for a high-performance summer tire. In addition to this,
the influence of different constructions such as summer and all-season tires were also analyzed as
vehicles in European countries typically have different tires mounted based on the season (summer or
winter), mainly due to government mandated requirements. In the first round of tests, the influence of
temperature was eliminated by keeping the slip angle sweep rate and the tire speed constant (Table 4).

• To evaluate the influence of the inflation pressure on the tire characteristics, four levels of pressure
were analyzed: (a) 33 psi, (b) 37 psi, (c) 41 psi and (d) 45 psi.

• To evaluate the influence of the tire tread depth on the tire characteristics, three levels of tread
depth were analyzed: (a) full tread depth, (b) 60% of full tread depth and (c) 30% of full
tread depth.

• To evaluate the influence of the tire load on the tire characteristics, five levels of normal load were
analyzed: (a) 33% of nominal load, (b) 67% of nominal load, (c) 100% of nominal load. (d) 133% of
nominal load and (e) 167% of nominal load.

Table 4. Variable dependency chart.

Tire Surface
Temperature

Tire Bulk
Temperature

Inflation
Pressure

Normal
Load Speed Tread Depth

Cornering
Stiffness

x
(∼constant)

x
(∼constant) X X

x
(constant) X

X: varied. x: kept constant.

The following sub-sections present results of the sensitivity analysis study.

2.1. Influence of Inflation Pressure

Figure 9 shows the cornering stiffness–inflation pressure dependency curves. The key conclusion
reached about the cornering stiffness of a tire is that an increase in the tire inflation pressure has two
counteracting effects:
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• A lower cornering stiffness at low vertical loads and a higher cornering stiffness at high vertical
loads. These effects are clearly visible in Figure 9. The first effect is caused by the decreasing
contact length because of the increased vertical stiffness from the increased inflation. A decrease
of contact length (smaller surface area) results in a decrease of cornering stiffness. In the range of
high vertical loads, this effect may also be present, but it is not dominant.

• A lower inflation pressure, and consequently a less stiff carcass, results in more rotation of the
contact patch. This leads to lower lateral force for the same slip angle, which results in a lower
cornering stiffness at high vertical loads. Conversely, a higher inflation pressure, and consequently
a stiffer carcass, results in less rotation of the contact patch. This leads to higher lateral force for
the same slip angle, which results in a higher cornering stiffness at high vertical loads.
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Figure 9. Influence of inflation pressure on the tire cornering stiffness.

2.2. Influence of Tread Depth

As expected, a change in the tire tread depth significantly influences the cornering stiffness
characteristics of the tire (Figure 10).

The key conclusions reached about the tread depth effects are captured in Figures 11 and 12.

• Lower tread depth results in a higher cornering stiffness.
• At higher loads, carcass stiffness is the dominant component of cornering stiffness. Hence, even a

large change in the tread depth only results in a smaller change in the cornering stiffness.
• For a tire with a lower tread depth, the cornering stiffness properties are dominated by the carcass

stiffness characteristics.
• As explained previously, lowering the tire inflation pressure decreases the carcass stiffness, which

explains the saturation trends seen in the CS curve.
• Furthermore, the saturation starts even earlier for a tire with a lower tread depth due to the

dominant effect of carcass stiffness.
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Figure 10. Cornering stiffness versus inflation pressure—influence of tire tread depth. (a) Full tread
depth, (b) 60% tread depth, (c) 30% tread depth.
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Figure 11. Wear dependency effects under constant inflation pressure conditions.
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Figure 12. Wear dependency effects under constant inflation pressure conditions.

2.3. Influence of Normal Load

The tire cornering stiffness exhibits a non-linear dependence on the tire load (Figure 13). There are
two load-dependent parameters affecting the tire cornering stiffness. The first load-dependent
parameter is the tire contact patch length. Typically, the tire patch length changes with tire load
in an order between 1 and 2. The second load-dependent parameter is the lateral elastic stiffness,
which in turn is due to both the rubber tread elasticity and tire structure lateral compliance.
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Figure 13. Influence of normal load on the tire cornering stiffness.

2.4. Influence of Temperature on the Tire Characteristics of Interest

A second set of tests were run on the Flat-Trac®machine to include the influence of temperature.
The procedure consisted of running the test on new tires without a warm-up or break-in procedure.
The tires were tested through 23 slip sweeps at one load and one camber condition. IR pyrometers
were installed on the Flat-Trac®machine, allowing tire temperatures to be recorded throughout each
test (Figure 14).
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Figure 14. Tire temperature apparatus installed on the Flat-Trac®test machine.

The IR pyrometers give the machine the capability to record tire shoulder and centerline surface
temperatures. Figure 15 shows the cornering stiffness temperature dependency curves.
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Figure 15. Influence of temperature on the tire cornering stiffness.

The influence of temperature can be mainly attributed to two main visco-elastic properties of
rubber, which change with temperature.

• The storage modulus or tread rigidity, which influences cornering stiffness. This changes due to
the bulk temperature of the tire.

• The coefficient of friction decides the peak lateral grip of the tire. This parameter is only influenced
by the surface temperature of the tire at the road interface.

Table 5 presents a summary of the sensitivity analysis, determining the influence of variations in
the tire inflation pressure, tread depth, normal load, and temperature on the tire cornering stiffness.

Table 5. Summary of dependencies.

Tire Surface
Temperature

Tire Bulk
Temperature

Inflation
Pressure

Normal
Load

Rolling
Speed

Tread
Depth

Cornering
Stiffness (CS)

High
Dependency

High
Dependency

High
Dependency

High
Dependency

Negligible
Dependency

High
Dependency

A quantifiable measure of the influence of the tire operating conditions on the cornering stiffness
is summarized in Table 6.
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Table 6. Sensitivity analysis—summary.

Tire Type Factors Influencing Tire Characteristics
Pressure Tread Depth Temperature

Summer Tire
(High

Performance)
Cornering Stiffness

10% increase with a
20% change in

inflation pressure
from nominal

conditions

30% increase with a
60% decrease in

tread depth

20–25% drop from
cold to hot tire

conditions
(* strongly
influenced

by the tire bulk
temperature)

The next section of this paper presents details about an improved Magic Formula (MF) tire model
adapted to cope with changes in the tire operating conditions.

3. Magic Formula (MF) Cornering Stiffness Adaptation

This section describes an extension to the widely used Magic Formula tire model. More specifically,
an extension has been made to the Magic Formula expression for tire cornering stiffness, the details of
which are described below.

Based on the Pacejka tire model formulation, the expression for tire cornering stiffness (BCD) is
given as:

BCD = a3 sin
(

2arctan
(

Fz

a4

))
(3)

where a3 = maximum cornering stiffness (at camber angle (γ) = 0), a4 =

load at maximum cornering stiffness, Fz = load on the tire.
In this study, the parameters ‘a3’ and ‘a4’ were calculated using the nonlinear least-squares (NLLS)

curve fitting algorithm. The curve fitting results are shown in Figure 16.
To capture the pressure dependency, a second-order pressure scaling term was used for the

parameter ‘a3’ and a first-order pressure scaling term was used for the parameter ‘a4’, as shown in the
expression below.

BCD =
(

a31 x2 + a32 x + a33

)
sin
(

2arctan
(

Fz

a41 x + a42

))
(4)

where x = pressure.
Model fitting results are shown in Figure 17.
The above analysis was repeated for tires with different levels of tread depth, with the underlying

objective of capturing both the inflation pressure and tread depth effects simultaneously. To capture
the tread depth dependency, second-order scaling terms were used to adapt the parameters ‘a31’, ‘a32’,
‘a33’, ‘a41’ and ‘a42’ to tread depth changes.

Shown below in Equation (10) is the modified expression for cornering stiffness with inflation
pressure and tread depth adaptation terms.

BCD =

(
( a311 y2 + a312 y + a313) x2 + ( a321 y2 + a322 y + a323) x+

( a331 y2 + a332 y + a333)

)
.

sin
(

2arctan
(

Fz
(( a411 y2 + a412 y + a413) x+( a421 y2 + a422 y+ a423))

)) (5)

where x = pressure and y = tread depth.
The performance of the adapted model was tested against measurement data and it showed good

performance for the full range of inflation pressures and tread depths. As an illustrative example,
model fitting results for a high-performance summer tire are shown in Figure 18.
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Figure 18. Tire cornering stiffness: actual (measurement) versus estimated (using adapted model).
Model fitting performance at: (a) 45 psi, (b) 41 psi, (c) 37 psi and (d) 33 psi.

As a final step, a second-order temperature dependent scaling factor was used to cope with the
changes in the tire temperature (Figure 19). More specifically, the term “tire temperature” as used
herein refers to the tire surface temperature.
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information available from tire mounted sensor systems typically consists of tire cavity air pressure 
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for model adaptation purposes is the tire surface temperature, i.e. the temperature at the tire–road 
interface. It is proposed to use an empirical model to predict the tire surface temperature. The model 
requires the following inputs: 
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• Ambient temperature (from the vehicle controller area network (CAN)) 
• Frictional energy (estimated using the vehicle CAN signals) 
• Forward velocity and vehicle yaw-rate (from the vehicle CAN) 
• Temperature at previous time-step (internal model calculation) 

An artificial neural network (ANN) based model was used to fit the empirical model for tire 
surface prediction. Previously, researchers have used ANNs for estimating tire parameters such as 
tire load, tire tread depth and tire–road friction coefficient [32–34]. As an illustrative example, a two-
layer recurrent neural network model with 14 neurons is shown here. This model has been trained 
per-axle using experimental data from hot laps to estimate tire surface temperature. In this study, the 
carcass (i.e., the tire inner-liner) temperature was collected from wheel-mounted IR sensors for 
experimental purposes. Other parameters such as ambient temperature, vertical load, forward 
velocity and slip angles are assumed to be available from vehicle-based sensors and estimators. 
Frictional energy (𝐸௫, 𝐸௬ ) input is based on lateral, longitudinal sliding forces and slip velocities 
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The slip velocities are calculated from approximate values of slip angles and slip ratios. The 
lateral and longitudinal forces are approximated based on accelerations from the vehicle IMU and 
vertical load calculated based on load transfer as shown below. 

Figure 19. Model fitting results—temperature dependency.
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The final expression for the adapted cornering stiffness term for the Pacejka tire model formulation
is shown below.

BCD =

(
( a311 y2 + a312 y + a313) x2 + ( a321 y2 + a322 y + a323) x

+( a331 y2 + a332 y + a333)

)
×

sin
(

2arctan
(

Fz
(( a411 y2 + a412 y + a413) x+( a421 y2 + a422 y+ a423))

))
×

( b11 z2 + b12 z + b13)

(6)

where x = pressure, y = tread depth and z = temperature.
The model inputs include: tire inflation pressure, tread depth, tire load, tire inner liner

temperature, and tire ID (required for using tire specific model coefficients). The temperature
information available from tire mounted sensor systems typically consists of tire cavity air pressure
temperature and/or the tire inner-liner temperature. The temperature measurement of interest here
for model adaptation purposes is the tire surface temperature, i.e. the temperature at the tire–road
interface. It is proposed to use an empirical model to predict the tire surface temperature. The model
requires the following inputs:

• Inner liner temperature (available from tire attached sensor systems)
• Ambient temperature (from the vehicle controller area network (CAN))
• Frictional energy (estimated using the vehicle CAN signals)
• Forward velocity and vehicle yaw-rate (from the vehicle CAN)
• Temperature at previous time-step (internal model calculation)

An artificial neural network (ANN) based model was used to fit the empirical model for tire
surface prediction. Previously, researchers have used ANNs for estimating tire parameters such as tire
load, tire tread depth and tire–road friction coefficient [32–34]. As an illustrative example, a two-layer
recurrent neural network model with 14 neurons is shown here. This model has been trained per-axle
using experimental data from hot laps to estimate tire surface temperature. In this study, the carcass
(i.e., the tire inner-liner) temperature was collected from wheel-mounted IR sensors for experimental
purposes. Other parameters such as ambient temperature, vertical load, forward velocity and slip
angles are assumed to be available from vehicle-based sensors and estimators. Frictional energy (Ex, Ey)
input is based on lateral, longitudinal sliding forces and slip velocities (Vsx, Vsy) as shown below.

Ex = Fsx Vsx, Ey = Fsy Vsy (7)

The slip velocities are calculated from approximate values of slip angles and slip ratios. The lateral
and longitudinal forces are approximated based on accelerations from the vehicle IMU and vertical
load calculated based on load transfer as shown below.

Vsx = Vx−rω, Vsy = Vy = Vx tan(α) (8)

Fx = Fz
ax

g
, Fy = Fz

ay

g
(9)

The proposed structure of the model is shown in Figure 20.



Electronics 2019, 8, 199 16 of 23

Electronics 2018, 7, x FOR PEER REVIEW  16 of 24 

 

𝑉௦௫ = 𝑉௫ −rω, 𝑉௦௬ = 𝑉௬ = 𝑉௫ tan (𝛼) (8) 

𝐹௫ = 𝐹௭ ೣ  , 𝐹௬ = 𝐹௭    
(9) 

The proposed structure of the model is shown in Figure 20.  

 

Figure 20. Surface temperature prediction model—flowchart. 

For the purpose of experimental validation of the model, vehicle data from a maximum speed 
lap performed on another day was utilized and the results of the prediction model are shown in 
Figure 21 for the front-right tire and the rear-left tire, respectively. Although this approach can yield 
a satisfactory prediction of surface temperature as shown in Figure 21, the accuracy of the model is 
highly dependent on the availability of reliable training data. The measurement of carcass 
temperature by tire attached sensors also plays a crucial role as any errors can accumulate errors in 
the system. A more robust approach would involve utilizing a semi-empirical model that can be fitted 
to experimental data. 
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For the purpose of experimental validation of the model, vehicle data from a maximum speed lap
performed on another day was utilized and the results of the prediction model are shown in Figure 21
for the front-right tire and the rear-left tire, respectively. Although this approach can yield a satisfactory
prediction of surface temperature as shown in Figure 21, the accuracy of the model is highly dependent
on the availability of reliable training data. The measurement of carcass temperature by tire attached
sensors also plays a crucial role as any errors can accumulate errors in the system. A more robust
approach would involve utilizing a semi-empirical model that can be fitted to experimental data.Electronics 2018, 7, x FOR PEER REVIEW  17 of 24 
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neural network. BF1 = bf1systems Tire Pressure Monitoring System.

4. Vehicle Sideslip Angle Estimation Scheme

The vehicle sideslip angle is estimated using a model-based observer with an adaptive tire model.
Adaptation of vehicle and tire parameters is done to overcome the drawback of classical model based
observers that are not robust against parameter variations. The block diagram in Figure 22 explicitly
shows the estimation process in its entirety. As shown in Figure 22, the vehicle sideslip angle estimator
requires the following inputs:
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• Axle lateral force
• Axle cornering stiffness
• Yaw rate and vehicle speed/velocity
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Figure 22. Block diagram of the proposed approach for vehicle sideslip angle estimation.

The first block serves to identify the axle lateral forces using a model-based Unscented Kalman
filter (UKF) observer. The observer is built in such a way that it requires no tire force model or prior
knowledge of road friction. UKF is chosen over an EKF for the following reasons:

• Both UKF and EKF have been found to be effective at identifying simple or complex vehicle
models [35]. Although they use different methods for parameter error covariance estimation, both
techniques have identical convergence characteristics and yield near-identical models.

• However, unlike an EKF-based observer, an UKF-based observer avoids the need to calculate
Jacobians and is computationally less expensive and easier to implement.

The simplified equation for yaw acceleration based on the bicycle model is as follows:

Iz
.
r = Fy f a − Fyrb (10)

where F_yf and F_yr are the axle lateral forces, I_z is the yaw moment inertia and a and b are the
distances of the front and rear axles from the vehicle’s center of gravity.

Tire forces are modelled with a random walk model [36,37].

.
Fy f = 0 (11)

.
Fyr = 0 (12)

To build a model based UKF, the model equations are converted to discrete form by the first-order
Euler method as:

xk = fk−1( xk, uk) + vk (13)

yk = h( xk, uk) + wk (14)
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The state vector xk„ at each time instant k comprises of yaw rate, front axle lateral force and rear
axle lateral force:

xk =
[
r, Fy f , Fyr

]T
(15)

The measurement vector yk comprises of yaw rate and lateral acceleration:

yk =
[
r, ay

]T (16)

Once the system is discretized using the first-order Euler approximation with sampling time ∆t,
f (·) becomes:

rk = rk−1 + ∆t
( Fy f k−1 a− Fyrk−1 b

IZ

)
Fy f k = Fy f k−1
Fyrk = Fyrk−1

(17)

The measurement equations are given as:

h1 = rk
h2 = (Fy f k + Fyrk)/m

(18)

For satisfactory working of the UKF, it is important to tune the process noise covariance matrix
Q and measurement noise covariance matrix R. Since yaw rate is modeled using system dynamic
equations, low uncertainty is assigned to it. However, axle lateral forces are not modeled at all, hence,
they are given high uncertainties. The process and measurement noises are assumed to be constant and
uncorrelated; therefore, the off-diagonal elements are assigned to 0. The measurement noise matrix R
in terms of standard deviation of the measured signal is given as:

R =

[
σ2

r 0
0 σ2

ay

]
(19)

After careful tuning, the following values of Q and R gave desirable results:

Q = 10e − 03

 0.001 0 0
0 15e7 0
0 0 15e7

, R =

[
0.01 0

0 0.01

]
(20)

In addition to the Q and R matrices, there are some other parameters for tuning in UKF. The
values of these parameters used for this study are given in Table 7.

Table 7. UKF tuning parameters.

Parameter Value

α 1 × 10−3

β 2

K 0

The second block provides information about key model parameters, namely, vehicle mass, yaw,
moment of inertia and axle distances from the vehicle’s center of gravity. With information about
individual tire loads from tire mounted sensors (Figure 7), the vehicle inertial parameters can be
precisely estimated, thus making the proposed model robust against parameter variations.

The third block contains the cornering stiffness adaptation model, as already explained in Section 3
of this paper. The fourth block adjusts the modelled tire cornering stiffness by using scaling factors
that account for compliance effects [38] due to the suspension, steering system and the road roughness
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effects. This is important since the adaptation model presented in Section 3 is based on measurement
data from an indoor Flat-Trac®machine. The stiffness (commonly known as the axle cornering stiffness)
comprises of the tire cornering stiffness and the compliance effects, which are hereby accounted for
in this block. These scaling factors were identified through controlled vehicle tests. During these
tests, International Organization for Standardization (ISO) maneuvers were used to identify the front
and rear axle cornering stiffness of the vehicle (Figure 23). The instrumentation used is the same as
described in Figure 1.
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Figure 23. Vehicle axle cornering stiffness identification through steady state tests. (a) Axle lateral
stiffness identification. (b) Fitted model vaidation.

Finally, the fifth block makes use of the estimations provided by the first and the fourth block and
measurements available on the vehicle controller area network (CAN) Bus are used to estimate the
vehicle sideslip angle.

The rear tire slip angle can be expressed in terms of the vehicle sideslip angle as:

αr = −β +
rb
vx

(21)

The tire forces were modelled using the nonlinear Magic Formula expression, which has the
general form:

F(α) = D sin(C arctan (B α (1 − E) + E arctan(Bα))) (22)

where D refers to the crest factor, C refers to the form factor, B is the stiffness factor, and E is the
curvature factor.

For an understeered vehicle, the front axle saturates before the rear axle. Hence, the rear axle
curvature factor (E) is set to 0. The expression for the rear axle simplifies to:

Fyr = Dr sin(Crarctan(Br αr)) (23)

Re-arranging the above equation, we can get the expression for the rear tire slip angle as:

αr =
1
Br

tan
(

1
Cr

arcsin
(

Fyr

Dr

))
(24)

Combining Equation (21) and Equation (24), we get an updated expression for the vehicle sideslip
angle as:

β =
rb
vx

− 1
Br

tan
(

1
Cr

arcsin
(

Fyr

Dr

))
(25)
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To use the above expression for sideslip estimation, adaptation of individual Pacejka’s Magic
Formula coefficients (B, C, D, E) is required. Using the same procedure as described in Section 3 of the
paper, the scaling factors were calculated, and are given according to the formula:

B =
(

1 + qBFz

(
Fz−Fzo

Fzo

))
.
(

1 + qBP

(
P−Po

Po

))
.
(

1 + qBT

(
T−To

To

))
.
(

1 + qBW

(
W−Wo

Wo

))
.Bo (26)

D =
(

1 + qDFz

(
Fz−Fzo

Fzo

))
.
(

1 + qDP

(
P−Po

Po

))
.
(

1 + qDT1

(
T−To

To

)
+ qDT2

(
T−To

To

)2
)

.(
1 + qDW

(
W−Wo

Wo

))
.Do

(27)

E =
(

1 + qEFz

(
Fz−Fzo

Fzo

))
.
(

1 + qEP

(
P−Po

Po

))
.
(

1 + qET

(
T−To

To

))
.(

1 + qEW

(
W−Wo

Wo

))
.Eo

(28)

BCD =

(
1 + qBCDFz1

(
Fz−Fzo

Fzo

)
+ qBCDFz2

(
Fz−Fzo

Fzo

)2
)

.
(

1 + qBCDP

(
P−Po

Po

))
.(

1 + qBCDT

(
T−To

To

))
.
(

1 + qBCDW

(
W−Wo

Wo

))
.BCDo

(29)

C =
BCD
B.D

(30)

where

qBCDFz1: fit parameters,
Fz, P T W : current operating values of load, pressure, temperature and tread depth,
Fzo, Po To Wo : Nominal values of load, pressure, temperature and tread depth,
Bo Co Do Eo: Magic Formula parameters at nominal conditions.

The performance of the sideslip estimator based on Equation (25) was evaluated during a ramp
steer maneuver test and found to reliably estimate the sideslip angle (Figure 24).
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Future Research Steps

To further enhance the robustness of the vehicle sideslip angle observer, it is proposed to get a
direct estimate of the rear tire slip angle from tire mounted sensors and used that as a feedback signal.
Preliminary studies have revealed that the lateral acceleration signal shows a strong correlation with
the tire slip angle (Figure 25).
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Figure 25. (a) Lateral acceleration profile—tire slip angle sweep test and (b) recovering lateral
displacement of the tire footprint from the acceleration signal at different tire slip angles.

There are also strong indications that tire mounted sensors can be used for extracting road
friction/road condition information under low slip, i.e. low excitation conditions (Table 8).

Table 8. State-of-the-Art Literature Review—Intelligent Tires.

State Estimated Underlying Physics Reference

Tire road friction Friction potential estimated through frequency
domain analysis of the accelerometer signals [39–41]

Tire aquaplaning propensity
Remaining tire road contact length is
determined based on the tangential

acceleration signal
[39,42]

Water depth

To detect the presence of water in the tire–road
contact, the lateral acceleration signal is utilized.
Since normal excitation from the road surface is

lowest in the lateral direction, all external
excitation produces rather noticeable difference.

[39]

Knowledge of road friction would be extremely useful for adapting the tire model parameters to
changing road friction conditions and thereby ensuring robust estimation performance of the vehicle
sideslip angle. This will also be further examined in future work.

5. Conclusions

This paper presents a novel framework for vehicle sideslip angle estimation. The presented
framework combines an adaptive tire model, a UKF-based axle force observer and data from tire
mounted sensors. Tire model adaptation is achieved by making extensions to the Magic Formula, by
accounting for variations in the tire inflation pressure, load, tread depth and temperature. Predictions
with the adapted tire model were validated by running experiments on the Flat-Trac®machine.
The benefits of using an adaptive tire model for sideslip angle estimation are demonstrated through
experimental tests. The performance of the observer is satisfactory, both in transient and steady state
maneuvers. Future work will focus on measuring tire slip angle and road friction information using
tire mounted sensors and using that information to further enhance the robustness of the vehicle
sideslip angle observer.

Although the use of tire data for state estimation presents potential improvements in the
model-based observer performance, sufficient caution must be practiced in their commercial



Electronics 2019, 8, 199 22 of 23

implementation to ensure robust tire identification and data transmission with adequate
fallback options.
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