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Abstract: A power grid harmonic signal is characterized as having both nonlinear and nonstationary
features. A novel multifractal detrended fluctuation analysis (MFDFA) algorithm combined with
the empirical mode decomposition (EMD) theory and template movement is proposed to overcome
some shortcomings in the traditional MFDFA algorithm. The novel algorithm is used to study the
multifractal feature of harmonic signals at different frequencies. Firstly, the signal is decomposed
and the characteristics of wavelet transform multiresolution analysis are employed to obtain the
components at different frequency bands. After this, the local fractal characteristic of the components
is studied by utilizing the novel MFDFA algorithm. The experimental results show that the harmonic
signals exhibit obvious multifractal characteristics and that the multifractal intensity is related to the
signal frequency. Compared with the traditional MFDFA algorithm, the proposed method is more
stable in curve fitting and can extract the multifractal features more accurately.

Keywords: harmonic signal; EMD; template movement; novel multifractal detrended fluctuation
analysis; multifractal features

1. Introduction

With a large number of nonlinear electrical equipment and electronic devices being applied
in the power system, more and more harmonics are appearing in the power grid. Investigations
show that the pollutions from harmonics have become increasingly severe in the power grid [1–6].
Therefore, the study and analysis of harmonics has become an important research topic both at home
and abroad. Traditional harmonic analysis methods mainly employ artificial neural network [7–13],
Hilbert Huang Transform (HHT) [14,15], instantaneous reactive power [16], wavelet transform [17,18]
and Fourier transform (FT) [19], etc. However, these methods ignore the self-similarity that exists in
the time-domain waveform and the trend of harmonics, i.e., the so-called fractal characteristics [20].
Therefore, bringing fractal characteristics into harmonic analysis is of great significance.

As one of the emerging theories for studying nonlinear systems, monofractal analysis has made
great progress in the nonlinear signal analysis. However, monofractal is mainly a description of the
overall average of the object of study, with the local characteristics of the signal being insufficiently
characterized [21]. Multifractal analysis [22,23] provides the ability to describe the local characteristics
of the signal in detail. By combining multifractal and detrended fluctuation analysis, a multifractal
detrended fluctuation analysis (MFDFA) algorithm [24] was proposed by Kantelhardt and Zschiegner
et al. Since then, MFDFA has been quickly applied in a number of research areas, including
market [25], temperature time series [26], seismic wave signal [27], vibration fault diagnosis [28],
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image processing [29], etc. For instance, in 2016, Zhao and He [30] analyzed the characteristics of
speech signals based on MFDFA with moving, overlapping windows. To solve the shortcomings of
the periodic trend affecting the Hurst index estimation in MFDFA, Fourier transform and MFDFA
were combined to analyze the fluctuations in a high-frequency power load [31]. Aiming to solve
the subjectivity, lack of dynamics and theoretical basis for setting the risk threshold, the authors of
Reference [32] proposed a method that combined surrogate data method and MFDFA to determine the
prewarning threshold of electric load risk threshold based on historical load data.

The above-mentioned various methods can effectively describe the nonlinear system, especially
the multifractal features of time series, but the analysis of time-series signals requires the process of
detrending. New pseudofluctuation errors occur during the process. Such errors are mainly caused by
two reasons. One is that the sequence is overfitting or underfitting due to the uncertainty of the order
in the fitting polynomial function, while the other is that MFDFA uses a uniform sequence to segment
data, resulting in discontinuity at sequence segmentation points.

To solve the above-mentioned problem, this paper proposes a new MFDFA algorithm based
on empirical mode decomposition (EMD) and template movement. The multifractal characteristics
of harmonic signals are analyzed by the new algorithm and a new method for determining the
harmonic signals’ characteristics is obtained. Since harmonic signals are susceptible to factors such
as randomness, distribution factors and nonstationary factors [33], this paper first uses the wavelet
multiresolution method to decompose the harmonic signals and the harmonic components, obtained
at different frequencies. After this, the multifractal characteristics of the harmonic components are
determined by the novel MFDFA algorithm. Finally, the proposed method and the traditional method
are analyzed and compared. The analysis results verify the effectiveness of the proposed method.

2. MFDFA Algorithm Based on Empirical Modality and Template Movement

2.1. Empirical Mode Decomposition Algorithm

The EMD algorithm is an adaptive signal time-frequency processing algorithm [34], which is
mainly used for the processing of nonlinear and nonstationary signals [35,36]. The procedure of EMD
analysis is described as follows:

• Find all local extreme points in signal x(t) and connect the extreme points smoothly through
the cubic spline function to get the upper envelope e−(t), lower envelope e+(t) and the average
envelope m(t) = (e+(t) + e−(t))/2 of the original signal;

• Find the difference function z(t) = x(t)−m(t);
• Determine whether z(t) meets intrinsic mode function’s (IMF) conditions or not. If it is not

satisfied, repeat the above steps. If it is satisfied, z(t) is the first IMF and is recorded as im fi(t);
• Finally, x(t) is decomposed by EMD into n frequencies from high to low im fi(t) and a remainder

rn(t). Essentially, x(t) = ∑n
i=1 im fi(t) + rn(t).

2.2. Proposed Novel MFDFA Algorithm

The EMD algorithm successively decomposes n im fi(t) and one residual rn(t) from the signal and
the residual part is used to replace the detrend fluctuation item in MFDFA. To be specific, the residual
rn(t) replaces the detrend polynomial yv(t) and the result, after the least squares polynomial fitting,
eliminates the residual sequences to obtain the fluctuations polynomial. After this, the fluctuation
polynomial is divided into several segments. After calculating the fluctuation function Fq(s) of the
signal according to different q values, the generalized Hurst index of the signal can be obtained by
finding the logarithmic least squares fitting slope of Fq(s) and q. Finally, the multifractal spectrum of
the signal can be obtained through the Legendre transform. The proposed algorithm is illustrated in
the flowchart in Figure 1.
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Figure 1. Flowchart of multifractal analysis.

Step-1: Set the time series as x(k), k = 1, 2, . . . , N and subsequently, construct a new sequence:

Y(i) =
i

∑
k=1

(xk − x) (1)

where x is the mean value of xk, with x = 1
N ∑N

k=1 xk.
Step-2: The traditional MFDFA algorithm divides the new sequences Yi into Ns = int(N/s)

nonoverlapping intervals, each of which contains s data. Since N may not be divisible by s, there will
be a residual value. To fit all the data in the sequence in the calculation, another segmentation process
is performed from the end of the sequence and thereafter, 2Ns equal length segments are obtained.

In this paper, the method of sequence segmenting MFDFA is improved by introducing the
template movement and the number of sequences is increased from Ns or 2Ns to N − s + 1.

Step-3: For the s points in each v (v = 1, 2, . . . , 2Ns) interval, the least square method is used to
fit the polynomial of the order k and the results are obtained:

Yv(i) = a1ik + a2ik−1 + . . . + aki + ak+1, (i = 1, 2, . . . , s; k = 1, 2, . . .) (2)

This paper introduces the EMD algorithm to replace the least squares fitting, to detrend sequence
Y(i). The remainder of the EMD decomposition is the trend polynomial that reflects the general trend
of the signal, with Yv(i) = rv(i).

Step-4: Calculate the mean square error of F2(s, v) by the following:

F2(s, v) =
1
s

s

∑
i=1
{Y[(v− 1)s + i]− rv(i)}2 (3)

Step-5: For N − s + 1 segments, find the mean value of F2(s, v) and get the q− order fluctuation
function Fq(s) by the following:

Fq(s) =


{

1
N−s+1 ∑N−s+1

v=1 [F2(s, v)]
q
2

} 1
q
, q 6= 0

exp
{

1
2(N−s+1) ∑N−s+1

v=1 ln
[
F2(s, v)

]}
, q = 0

(4)

Fq(s) is a function of data length s and q− order. With an increase in s, Fq(s) increases in the
power–law relationship

sh(q) ∝ Fq(s) (5)
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where h(q) is the generalized Hurst index.
h(q) is related to the multifractal quality index τ(q) and their relation is described as follows:

τ(q) = qh(q)− 1 (6)

According to the Legendre transform, the relationship between the singular exponent α and the
multifractal spectrum f (α) and h(q), is obtained in Reference [37]

α = h(q) + qh′(q) = h(q) + q
dh(q)

dq
(7)

f (α) = q[α− h(q)] + 1 (8)

From the above equations, three characteristics in judging multifractal features based on the
MFDFA method can be obtained [38]:

1. Judging by q and h(q):

If q is not related to h(q), the signal is monofractal.
If q is related to h(q), the signal is multifractal.

2. Judging by q and τ(q):

If τ(q) is a straight line, the signal is monofractal.
If q and τ(q) are nonlinear, the signal is multifractal.

3. Judging by α and f (α):

If f (α) is a constant, the signal is monofractal.
If the curve of α and f (α) has a single-peak bell shape, the signal is multifractal.

2.3. MFDFA Feature Extraction Parameters

The singular exponent α reflects the degree of unevenness of the fractal sequence in the local
probability measure distribution [39,40] while the multifractal spectrum width ∆α = αmax − αmin
reflects the signal’s intensity of the multifractal property. A larger ∆α highlights stronger multifractal
characteristics in the signal and more severe fluctuations in the signal. The singular exponent α0,
corresponding to the maximum value of multifractal spectrum f (α), reflects the randomness of the
signal. αmin is the smallest singular exponent, which reflects the intensity of local changes in the signal.
A smaller αmin indicates a stronger local singularity in the signal and a more intense local variation in
the signal.

Therefore, based on the above analysis, ∆α, α0 and αmin can be used as the feature quantities after
extracting the multifractal property of harmonic signals.

3. Signal Acquisition and Analysis

3.1. Signal Acquisition

In this paper, the electromagnetic flow meter contaminated by power harmonics was taken as the
study object and the fractal characteristics of power system harmonics were analyzed. The advantages
of the new MFDFA algorithm in the harmonic analysis of the power system were studied.

The electromagnetic flow meter adopted Faraday’s law of electromagnetic induction and the
conductor moving in the magnetic field generated an induced voltage. As shown in Figure 2, in the
acquisition system, an alternating magnetic field was generated on the coil by controlling Switch 1,
Switch 2, Switch 3 and Switch 4. Furthermore, the voltage induced by the flowing liquid was connected
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to the signal amplifying circuit through ELECTRODE+ and ELECTRODE–. Finally, the amplified signal
was sent to the computer through the signal acquisition system after the analysis. The system adopted
a low-frequency rectangular wave excitation mode, with the excitation frequency at 6.25 Hz and the
excitation current at 25 mA. It is important to note that the induced voltage between ELECTRODE+ and
ELECTRODE– is extremely susceptible to interference from power system harmonics as its amplitude
is generally in the range of tens of uV and several mV.Electronics 2019, 8, x FOR PEER REVIEW 5 of 13 
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Figure 3 shows a waveform of the voltage after removing the DC offset signal between
ELECTRODE+ and ELECTRODE–. The signal acquisition system adopted a sampling rate of 500 Hz,
and the spectrum of the acquired signal was calculated and is presented in Figure 4. The spectrogram
indicated that the signal contained obvious harmonic components. In addition to the fundamental
component, the harmonic components were dominated by second-order (100 Hz) and fourth-order
(200 Hz) harmonics.
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The original signal in Figure 3 was decomposed by the Mallat algorithm [41–43] and the actual
frequency decomposition layer p was:

p = log2

(
fs

2 f0

)
− 1, (9)

f0 was selected as 6.25 Hz and fs was the sampling frequency of 500 Hz. The db24 wavelet was used
to decompose the signal into 5 layers to obtain the high-frequency part of the original signal.

The total bandwidth of the signal was 250 Hz and the frequency band range is shown in Table 1.
The approximate signal (a5–a1) consisted of the low-frequency components of the signal and the detail
signal (d5–d1) consisted of the high-frequency components of the signal.

The decomposition coefficient d3 contained the fundamental wave, as shown in Table 1, the
decomposition coefficient d2 contained second-order harmonics, the decomposition coefficient d1
contained fourth-order harmonics and the waveform of d3–d1 is shown in Figure 5.

Table 1. The frequency band of each layer by wavelet decomposition.

Layer Frequency Band

a5 0–7.8125 Hz
a4 0–15.625 Hz
a3 0–31.25 Hz
a2 0–62.5 Hz
a1 0–125 Hz
d5 7.8125–15.625 Hz
d4 15.625–31.25 Hz
d3 31.25–62.5 Hz
d2 62.5–125 Hz
d1 125–250 Hz
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3.2. Signal Analysis

Three components, d1, d2 and d3, were selected to calculate and analyze the local fractal
characteristics by using the traditional MFDFA algorithm [44] and the proposed MFDFA algorithm.

Figure 6a,b shows the multifractal spectrum of the three signal components after wavelet
decomposition, using the traditional MFDFA algorithm and the new MFDFA algorithm. α and
f (α) are single-peak bell-shaped graphs. The slope of the curve is obvious and the value of the singular
index α is not unique. Therefore, all three signal components have typical multifractal characteristics.

Figure 7a,b is the q− h(q) curves of the three signal components, derived from the traditional
MFDFA algorithm and new MFDFA algorithm, respectively. h(q) of the three signal components
gradually decreased with an increase in q, as seen in in Figure 7, and the value of q varied with
h(q). In other words, q was related to h(q). The local structure of the fundamental signal, both the
second-order harmonic and fourth-order harmonic, were not uniform and therefore indicated the
existence of obvious multifractal characteristics. From the comparison displayed in Figure 7a,b, the
curve of the traditional MFDFA algorithm had obvious bumps and inflection points, and the curve
using the new algorithm was smoother and more stable than the traditional algorithm. Moreover,
the density of the three curves of the new algorithm was also much lower than that of the traditional
algorithm. This indicated that the proposed algorithm reduced the pseudofluctuation error, caused by
the discontinuity of the data segmentation and obtained a more stable fluctuation function.

Figure 8a,b exhibits the q − τ(q) curves of the three signal components, obtained using the
conventional MFDFA algorithm and the new MFDFA algorithm, respectively. τ(q) is a curve where q
and τ(q) have a nonlinear relationship. Furthermore, this was a convex-increasing function, which
proved that the fundamental signal, the second-order harmonic and the fourth-order harmonic signals
had multifractal characteristics. When q was greater than 0, the τ(q) values of the three components
were more densely distributed. When q was less than 0, the τ(q) value distribution of the three signals
was relatively sparse, and the τ(q) value of the high-frequency component d1 was lower than the
τ(q) value of the high-frequency component d2. Furthermore, the τ(q) value of the low-frequency
component d3 signal was the largest. From comparing Figure 8a,b, we can see that the q− τ(q) curve
of the new algorithm was smoother than the traditional algorithm, which verified the superiority of
the new algorithm.

The fluctuation function was calculated according to the q values of different fluctuation orders,
where q ranged from −5 to 5 and different q values were calculated to obtain different logFq(s)− log(s)
scatter plots. All logFq(s)− log(s) calculated at all q values are plotted on Figures 9–11. Figure 9a
with Figure 9b, Figure 10a with Figures 10b and 11a with Figure 11b are logFq(s)− log(s), double
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logarithmic graphs corresponding to different q-valued harmonic signal components obtained by the
traditional MFDFA algorithm and the novel MFDFA algorithm, respectively.
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Figure 6. α− f (α) curves of three signal components obtained using: (a) the traditional multifractal
detrended fluctuation analysis (MFDFA) algorithm; and (b) the new MFDFA algorithm.
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Figure 7. q − h(q) curves of three signal components obtained using: (a) the traditional MFDFA
algorithm; and (b) the new MFDFA algorithm.
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Figure 8. q − τ(q) curves of three signal components obtained using: (a) the traditional MFDFA
algorithm; and (b) the new MFDFA algorithm.
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Figure 9. Double-log relation graph of low-frequency component d1 obtained using: (a) the traditional
MFDFA algorithm; and (b) the new MFDFA algorithm.
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Figure 10. Double-log relation graph of low-frequency component d2 obtained using: (a) the traditional
MFDFA algorithm; and (b) the new MFDFA algorithm.
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Figure 11. Double-log relation graph of low-frequency component d3 obtained using: (a) the traditional
MFDFA algorithm; and (b) the new MFDFA algorithm.

In Figures 9–11, the fluctuation function Fq(s) that was obtained by the two algorithms, changes
with the scale s, which indicated that the signal had multifractal characteristics. Using the traditional
MFDFA algorithm and the new MFDFA algorithm to analyze each harmonic component, the extracted
multifractal characteristics parameters ∆α, α0 and αmin are listed in Table 2.
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Table 2. ∆α, α0 and αmin values of the harmonic component computed analytically through traditional
MFDFA and new MFDFA.

Harmonic Component Traditional MFDFA New MFDFA

∆α α0 αmin ∆α α0 αmin
d1 0.957 0.113 −0.126 0.397 0.066 −0.122
d2 0.782 0.128 −0.039 0.342 0.051 −0.071
d3 0.969 0.324 0.103 0.800 0.061 −0.074

In Table 2, the ∆α value of d2 is the smallest and the ∆α value of d3 is the largest. This represents
that the singular exponential distribution range of the second-order harmonic component was the
narrowest and the singular exponential distribution range of d1 was wider than that of d3. It shows
that the fractal distribution of the second-order harmonic component signal was better than that of
the fundamental signal and the fourth-order harmonic. The fourth-order harmonic showed better
uniformity than the fundamental signal. Compared with the second-order harmonic, the fundamental
wave of the fourth-order harmonic had more obvious multifractal features and the fluctuations were
more obvious with scale changes. The αmin of d1 is the smallest, indicating that the harmonic signal
with the highest frequency had the strongest local fluctuation. It was known that the multifractal
intensity of the fundamental signal was the largest and the signal distribution is relatively uniform.
The multifractal intensity of the fourth-order harmonic signal was larger than that of the second-order
harmonic and the signal distribution was the most uneven. These features can be well reflected in
Figure 5.

Compared with the traditional MFDFA method, the characteristic extraction parameter values
obtained by the new MFDFA method showed a significant decreasing trend. The multifractal spectrum
curve distribution was narrowed in the new method, indicating that the new algorithm can reduce the
error in the multifractal-characteristics analysis of harmonic signals and thus, make the curve fitting
more stable.

The h(q) values obtained by analyzing the harmonic components using traditional MFDFA and
the new MFDFA are presented in Table 3.

Table 3. h(q) values of the harmonic signal computed analytically through MFDFA and the
new MFDFA.

q Traditional MFDFA New MFDFA

d1 d2 d3 d1 d2 d3

−5 0.583 0.495 0.747 0.171 0.151 0.395
−4 0.521 0.433 0.666 0.142 0.121 0.313
−3 0.426 0.336 0.553 0.116 0.094 0.202
−2 0.258 0.192 0.418 0.091 0.072 0.098
−1 0.113 0.128 0.324 0.066 0.051 0.061
0 0.067 0.097 0.272 0.042 0.033 0.041
1 0.034 0.071 0.238 0.02 0.016 0.022
2 0.006 0.049 0.212 0 0.001 0.007
3 −0.017 0.032 0.192 −0.019 −0.012 −0.006
4 −0.037 0.018 0.175 −0.036 −0.023 −0.018
5 −0.055 0.006 0.160 −0.051 −0.032 −0.029

∆h 0.638 0.489 0.587 0.222 0.183 0.4244

The h(q) values corresponding to all q values in the Table 3 were less than 0.5 for the new MFDFA
algorithm, which indicated that the low-frequency harmonic signal component and the high-frequency
harmonic signal component were anticorrelated. The ∆h of d2 was the smallest and the ∆h value of
d3 was the largest. Thus, if ∆h is larger, the multifractal is stronger, which resulted in the multifractal
degree of the d2 component being the smallest and the multifractal degree of the fundamental signal
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being the strongest. Comparing the ∆h values obtained by the traditional MFDFA algorithm and the
new algorithm, the results obtained by the new MFDFA algorithm were significantly smaller than the
traditional algorithms, which indicated that the new algorithm could reduce the pseudofluctuation
error and had higher precision than the traditional algorithm. The new MFDFA could more accurately
characterize the multifractal features of the signal.

By using the characteristics of multifractal, the h(q) value distribution of different signals can be
calculated under the condition of a fixed range of q values to measure the irregularity of multifractal in
different frequency harmonic signals.

4. Conclusions

By using the new MFDFA algorithm proposed in this paper to analyze the multifractal
characteristics of harmonic signals, the following conclusions are drawn:

• The power grid harmonic signals in the flow meter signal exhibit multifractal characteristics.
Furthermore, the multifractal intensity of the fundamental signal is the largest and the multifractal
intensity of the higher-order harmonic is larger than that of the lower harmonic.

• Compared with the traditional MFDFA algorithm, the new algorithm can effectively reduce
the pseudofluctuation error caused by the discontinuity of the traditional algorithm, making
the fitting curve more stable and more accurately revealing the multifractal characteristics of
harmonic signals.

• ∆α, α0, αmin and h(q) can provide theoretical and algorithmic support for grid
harmonic management.

• Although the algorithm shows good performance in the multifractal-characteristics analysis of
harmonic signals, the new algorithm is mainly for integer subharmonics. Using the algorithm for
analyzing noninteger harmonics still remains an interesting issue that needs to be studied.
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