A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas
Abstract
:1. Introduction
2. Numerical Simulation Results
- skin layer (εr = 41.32, σ = 0.855 S/m @ 900 MHz) with a thickness of 1.5 mm
- fat layer (εr = 5.46, σ = 0.05 S/m @ 900 MHz) with a thickness of 20 mm
- muscle layer (εr = 54.97, σ = 0.934 S/m @ 900 MHz) with a thickness of 30 mm
2.1. Wearable Planar Inverted-F Antenna at UHF Frequencies
2.2. Standard Planar Inverted-F Antenna at UHF Freqiencies
2.3. Planar Inverted-F Antenna at 2.45 GHz
- an optimal enlargement equal to λ/10;
- an optimal threshold equal to 10−3 times of the maximum value of the electric energy density.
3. Experimental Validation
4. Comparison of Antenna Performance for Different Human Body Models
- a simplified model of the human arm (Figure 18c).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nepa, P.; Rogier, H. Wearable antennas for off-body radio links at VHF and UHF bands (below 1 GHz): Challenges. state-of-the-art and future trends. IEEE Antennas Propag. Mag. 2015, 57, 30–52. [Google Scholar] [CrossRef]
- PHall, S.; Hao, Y.; Nechayev, V.I.; Alomainy, A.; Constantinou, C.C.; Parini, C.; Kamarudin, M.R.; Salim, T.Z.; Heel, D.T.M.; Dubrovka, R.; et al. Antennas and Propagation for On-Body Communication Systems. IEEE Antennas Propag. Mag. 2007, 49, 41–58. [Google Scholar]
- Islam, M.A.; Kiourti, A.; Volakis, J.L. A Novel Method of Deep Tissue Biomedical Imaging Using a Wearable Sensor. IEEE Sens. J. 2016, 16, 265–270. [Google Scholar] [CrossRef]
- Merli, F.; Fuchs, B.; Mosig, J.R.; Skrivervik, A.K. The effect of insulating layers on the performance of implanted antennas. IEEE Trans. Antennas Propag. 2011, 59, 21–31. [Google Scholar]
- Casula, G.A.; Altini, M.; Michel, A.; Nepa, P. On the performance of low-profile antennas for wearable UHF-RFID tags. In Proceedings of the 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), Gran Canaria, Spain, 16–24 May 2015. [Google Scholar]
- Altini, M.; Casula, G.A.; Mazzarella, G.; Nepa, P. Numerical investigation on the tolerance of wearable UHF-RFID tags to human body coupling. In Proceedings of the IEEE 2015 Antennas and Propagation Symposium, Vancouver, BC, Canada, 20–24 July 2015. [Google Scholar]
- Casula, G.A.; Michel, A.; Nepa, P.; Montisci, G.; Mazzarella, G. Robustness of Wearable UHF-Band PIFAs to Human-Body Proximity. IEEE Trans. Antennas Propag. 2016, 64, 2050–2055. [Google Scholar] [CrossRef]
- Casula, G.A.; Michel, A.; Montisci, G.; Nepa, P.; Valente, G. Energy-Based Considerations for Ungrounded Wearable UHF Antenna Design. IEEE Sens. J. 2017, 17, 687–694. [Google Scholar] [CrossRef]
- Michel, A.; Colella, R.; Casula, G.A.; Nepa, P.; Catarinucci, L.; Montisci, G.; Mazzarella, G.; Manara, G. Design Considerations on the Placement of a Wearable UHF-RFID PIFA on a Compact Ground Plane. IEEE Trans. Antennas Propag. 2018, 66, 3142–3147. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Valente, G.; Gatto, G. A robust printed antenna for UHF wearable applications. IEEE Trans. Antennas Propag. 2018, 66, 4337–4342. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Michel, A.; Nepa, P. Robustness of complementary wearable ungrounded antennas with respect to the human body. J. Electromagn. Waves Appl. 2017, 31, 1685–1697. [Google Scholar] [CrossRef]
- Casula, G.A. A Design Rule to Reduce the Human Body Effect on Antennas for Short Range NF-UHF RFID Systems. In Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Spain, 28 May–1 June 2018. [Google Scholar]
- Occhiuzzi, C.; Cippitelli, S.; Marrocco, G. Modeling. design and experimentation of wearable RFID sensor tag. IEEE Trans. Antennas Propag. 2010, 58, 2490–2498. [Google Scholar] [CrossRef]
- Lin, M.-H.; Chiu, C.-W. Human-body effects on the designof card-type UHF RFID tag antennas. In Proceedings of the IEEE International Symposium on Antennas Propag (APURSI’11), Spokane, WA, USA, 3–8 July 2011; pp. 521–524. [Google Scholar]
- Lin, C.-H.; Saito, K.; Takahashi, M.; Ito, K. A compact planar inverted-F antenna for 2.45 GHz on-body communications. IEEE Trans. Antennas Propag. 2012, 60, 4422–4426. [Google Scholar] [CrossRef]
- Hartsgrove, G.; Kraszewsky, A.; Surowiec, A. Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics 1987, 8, 29–36. [Google Scholar] [CrossRef] [PubMed]
d = 1 mm | d = 5 mm | d = 10 mm | d = 15 mm | d = 20 mm | d = 25 mm | d = 30 mm | d = 35 mm | d = 40 mm | d = 45 mm | d = 50 mm | |
---|---|---|---|---|---|---|---|---|---|---|---|
Measure #1 | 2.75 | 3.10 | 3.30 | 3.40 | 3.50 | 3.65 | 3.80 | 3.90 | 4.00 | 4.30 | 4.45 |
Measure #2 | 2.80 | 3.05 | 3.25 | 3.30 | 3.50 | 3.65 | 3.85 | 3.90 | 4.00 | 4.25 | 4.45 |
Measure #3 | 2.75 | 3.15 | 3.25 | 3.30 | 3.45 | 3.70 | 3.80 | 3.95 | 4.10 | 4.25 | 4.40 |
Measure #4 | 2.70 | 3.10 | 3.20 | 3.40 | 3.45 | 3.60 | 3.75 | 3.85 | 4.10 | 4.30 | 4.50 |
Measure #5 | 2.80 | 3.05 | 3.35 | 3.35 | 3.50 | 3.70 | 3.90 | 3.85 | 4.05 | 4.35 | 4.50 |
Measure #6 | 2.75 | 3.20 | 3.25 | 3.45 | 3.40 | 3.65 | 3.85 | 3.80 | 3.95 | 4.35 | 4.40 |
Measure #7 | 2.85 | 3.10 | 3.30 | 3.40 | 3.50 | 3.70 | 3.80 | 3.80 | 4.05 | 4.30 | 4.45 |
Measure #8 | 2.70 | 3.05 | 3.35 | 3.30 | 3.45 | 3.55 | 3.75 | 3.90 | 4.00 | 4.20 | 4.40 |
Measure #9 | 2.75 | 3.15 | 3.30 | 3.35 | 3.55 | 3.60 | 3.80 | 3.95 | 3.95 | 4.25 | 4.50 |
Measure #10 | 2.70 | 3.20 | 3.20 | 3.45 | 3.50 | 3.55 | 3.85 | 3.90 | 4.00 | 4.30 | 4.50 |
Mean Value [m] | 2.755 | 3.115 | 3.275 | 3.37 | 3.48 | 3.635 | 3.815 | 3.88 | 4.02 | 4.285 | 4.455 |
Standard Dev. | 0.0025 | 0.0034 | 0.003 | 0.0034 | 0.0018 | 0.0034 | 0.0022 | 0.0029 | 0.0029 | 0.0022 | 0.0019 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, G.A.; Montisci, G. A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas. Electronics 2019, 8, 244. https://doi.org/10.3390/electronics8020244
Casula GA, Montisci G. A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas. Electronics. 2019; 8(2):244. https://doi.org/10.3390/electronics8020244
Chicago/Turabian StyleCasula, Giovanni Andrea, and Giorgio Montisci. 2019. "A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas" Electronics 8, no. 2: 244. https://doi.org/10.3390/electronics8020244
APA StyleCasula, G. A., & Montisci, G. (2019). A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas. Electronics, 8(2), 244. https://doi.org/10.3390/electronics8020244