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Abstract: Several recent studies in Cyber-Physical Systems (CPS) focus on monitoring human
movement and capturing data for further processing and analysis. However, there is a lack of
studies that address the configurability and modularity of these systems, which is important for
designing customized systems with customized devices. We propose a solution to solve this through
a modular framework that automatically recognizes and configures new devices and provides
real-time data wirelessly. The proposed framework creates a Digital Twin of the physical device
and mirrors its attributes and sensory information into the cyber world so they can be used in
real-time and post-routine analysis. As a proof of concept, a configurable CPS model for physical
activities monitoring is designed and implemented. The designed gait monitoring and analysis
system delivers spatiotemporal data from multiple multi-sensory devices to a central data handling
and backup cloud server over conventional IEEE802.11 Wi-Fi. An experiment involving a young
athlete examined whether or not the CPS components would recognize each other over foreign
networks and communicate accurate information.
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1. Introduction

Cyber-Physical Systems (CPS) became popular in recent years for the purpose of enhancing
overall system performance as opposed to traditional integration of software systems and embedded
computing systems or sensor networks. Cyber-Physical Systems are systems engineered to integrate
computational components, networking, and physical processes in a well-defined context to serve
a specific purpose. A Digital Twin system is a specialized type of CPS where the physical system’s
components and attributes are mirrored into the cyber world. A Digital Twin enables real-time
monitoring and decision making for various types of applications including medical and wellbeing
applications [1,2].

Several studies focus on health and wellbeing applications [3–6], and a percentage of these
studies emphasizes on recording detailed foot kinetics and pressure points using embedded or
wearable sensors. The acquired gait information helps in post-routine analysis such as sports-related
performance enhancement or medical and rehabilitation diagnostics. A popular area of current related
research is working the analysis of such data to provide solutions for fall prediction, detection, and
avoidance [7,8] which is especially imperative for people with high risk of serious injuries as a result
of falling.

In this work, we introduce a CPS framework for measurement and analysis of physical activities
that allows for configurability of system components. The modularity approach in the proposed
framework enables seamless integration between physical entities and distributes computation for a
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smooth operation and communication within the system. We show the design and implementation
of the proposed framework as a CPS for a gait activities measurement that runs completely over
IEEE802.11 Wi-Fi. An experiment is also introduced to show the ability of the system to provide
accurate information and estimations in real-time.

A CPS can be described as an input-output system that contains software and hardware
components, collects historical data, and defines clear communication protocols. CPS can be used
for a multitude of applications including healthcare and medical [9–11], wellbeing, industrial [12],
or vehicular [13,14] systems. However, a framework that defines a clear structure to design CPSs is
necessary such that it becomes configurable and adaptable to future improvements.

2. Background

Several frameworks have been proposed in recent research to handle Internet of Things (IoT)
systems for different purposes and applications. Mukherjee et al. comments on the high number
of connected IoT devices, and how they can outnumber the devices connected to the internet very
quickly [15]. They propose a connectivity framework so that smart devices can be utilized in IoT data
processing. Pirbhulal et al. tackle security of smart home IoT systems by proposing a Triangle Based
Security Algorithm (TBSA) that enables energy-efficient data encryption based on an efficient key
generation mechanism [16]. Their algorithm can be used with low power Wi-Fi for smart home IoT
systems to satisfy security requirements. Several surveys show different proposed frameworks in
specific applications such as commercial [17], security [18], and cloud-based [19] IoT systems.

However, several approaches and studies were performed in regards to physical activity
monitoring and human gait classification. This includes computer vision [20], body sensor networks
(BSN) [21,22], and wearable devices. A great percentage of these studies specifically target gait patterns
and gait events detection using wearables and embedded sensors, and some studies focus on digitizing
physical activities for sports and athletes [23,24]. A number of studies have used accelerometer sensors
for this purpose. Godfrey et al. [25] attached an accelerometer sensor at the lower back of young and
older adult subjects for purposes including counting steps and comparing gait characteristics between
the two categories. This system was later validated by comparing a Parkinson’s disease patient’s gait
and a healthy person’s gait [26]. Mota et al. also used a 3-axis accelerometer in addition to 3-axis
gyroscope data to complement each other and send data to a computer over Wi-Fi [27].

Hafidh et al. showcase the SmartInsole©, a gait measurement device that embedded the complete
circuit within the insole [28]. The embedded circuitry includes five FSR (Force-Sensitive Resistor)
sensors, an accelerometer, a PICAXE microcontroller, a Bluetooth modem, and a 3.3 V cell battery.
Test results show clear patterns read by the accelerometer and pressure sensors to identify walking
versus biking. Zhuang et al. also designed a shoe insole with an embedded Bluetooth modem and
an IMU (Inertial Measurement Unit) with the goal of detecting and counting steps and step to step
distance [29]. Their tests show high accuracy when compared to Vicon motion analysis system [30].

Jagos et al. developed the eSHOE which contains a 3-axis accelerometer, and a 3-axis gyroscope,
in addition to 4 FSR sensors [31] to measure gait parameters and validated their system with the
GAITRite mat, a plantar pressure and gait analysis system. On the other hand, Gerlach et al. developed
a plantar pressure measuring system using flexible printed pressure sensors [32]. Their analysis shows
the system’s functionality and ability to distinguish between healthy and unhealthy walking patterns
using only FSR sensors.

A group of researchers from RMIT University used piezoelectric transducers to measure the
impact of kicking a soccer ball [33]. They placed the sensors on the expected impact on the upper
surface area of the foot. They also developed an insole with piezoelectric transducers to measure and
analyze gait and discussed the need for a low-cost wireless solution for that purpose [34].

Other methods include a fabricated rubber insole developed at Simon Fraser University in
Canada [35] which focused on plantar pressure. This insole has embedded pressure sensors in 3 areas
of the insole: forefoot, midfoot, and hindfoot. Their studies demonstrate how different postures present
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different responses from these three pressure areas. Crea et al. also designed an insole that embeds a
grid of 64 pressure sensing elements that use Light Emitting Diodes (LED) and light sensor pairs to
measure pressure distribution and center of pressure [36]. The insole used in [37] uses 13 capacitive
pressure sensors with a 3D accelerometer, while [38] created a more sophisticated body sensor network
with 2 IMUs, an accelerometer, and ultrasonic sensors.

Different systems are there to assist in gait measurement and analysis applications. Some lack
accurate measurements and can only provide a general idea of the wellbeing of the user’s gait. Other
systems use wired devices used to record sensory data, which introduces drawbacks such as limiting
the exercise/therapy area, or requiring bulky and expensive setups. Wireless devices record data using
Bluetooth or ZigBee, which although consume very low power compared to Wi-Fi, have low range
capabilities and, thus, limit the area of the user’s free movement. In addition, these technologies limit
the number of connections a system can read from since Bluetooth and ZigBee are typically one-to-one
connections. However, attempts have been made to time-share multiple Bluetooth connections while
compromising stream bandwidth [39]. The contribution of this proposed framework is that it combines
the strengths of the aforementioned studies. It has the ability to read sensory information wirelessly,
monitor numerous devices simultaneously, provides information and feedback in real-time, and stores
historical data in a cloud server for future analysis. Similarly, the proposed system in this research
combines and provides all the feedback features in the surveyed literature.

3. A CPS Framework for Physical Activity Monitoring

The proposed cyber-physical system is an abstract model for monitoring physical activities. It
provides modularity and enables configurability of system components. Having separate modules in
the framework allows system designers to perform upgrades on specific modules without affecting
the overall system as long as inputs and outputs follow the same format. In addition, this framework
enables configurability, in theory, by its adaptability to read from an unrestricted number of physical
devices. This is especially beneficial for applications that are not bound by a specific number of
simultaneous users.

There are three main components in the proposed framework (Figure 1). The first component
is the physical system, which is mainly a sensor network or a multi-sensory device that reads data
from the environment through physical sensors and convert sensory information into digital signals to
be processed by a computer. The physical system can be any type of sensor network that produces
valuable data and require action and/or outputs within the CPS. The second component is the Cyber
System, and it is where most of the processing happens. The Cyber System is a modular software
on a cloud server, and is responsible for controlling sensory and UI inputs, handling data flow,
and preparing outputs. The Cyber System is also responsible for defining the set of guidelines to
communicate with the data storage server through a Database Management System (DBMS). The
third and final component of this CPS framework is the communication protocol. The communication
protocol sets guidelines for transmitting and receiving instructions and data between the Cyber and the
Physical systems. The proposed framework allows for several physical systems to be connected to one
cyber system. Therefore, the communication protocol also facilitates physical system configurations
and continuous, uninterrupted data transmission for real-time applications. Further details on the
main CPS components are described next.
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3.1. Physical System—A Sensor Network as a Single Measurement Device 
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microcontrollers typically offer some mean of physical communication through which the user can 
program and interact with the attached sensors. Many microcontrollers provide a serial interface for 
that purpose. 

A crucial advantage of this framework is its ability to accept and handle new devices 
automatically. In order to prepare the physical system for seamless integration to the system, three 
modules should be part of its main microcontroller: (a) Sensors Handling module, which is in-charge 
of direct communication with the attached sensors (b) Data Processing module, which converts 
sensory information into measurable and comprehensive data, and prepares it for transmission via 
encoding and compression. (c) Physical System Communication module, which takes care of 
transmitting the processed, compressed, and encoded data to the Cyber System using the 
communication protocol (see Figure 2). 

 

Figure 2. General block diagram of a physical system architecture. 

3.1.1. Sensors handling module 

Most common sensors produce analog voltages to represent the sensed environment. Analog 
sensors translate the sensed environment into a voltage range between zero and the maximum 
applied voltage to that sensor (typically 3.3 V or 5 V). An Analog to Digital Converter (ADC) is used 
to convert this voltage into a digital signal that can be recognized and processed by the processor, 
and it can operate at the sensor-level or at the microcontroller-level (ADC input). 

In our context of a BSN for physical activity monitoring, each Physical System in the CPS 
contains a number of physical sensors that collect physiological and/or biological data from the user. 
These sensors can be of various types, sizes, and communication protocols. The sensors handling 
module is responsible for communicating and collecting this sensory information from all sensors, 
and converting them into digital data ready for processing. 

Figure 1. Proposed Cyber-Physical Systems (CPS) framework main components include one or more
physical systems, a cyber system, and a well-defined communication protocol. DMBS: Database
Management System; DB: Database; PSVPs: pre-coded physical system visualization presets.

3.1. Physical System—A Sensor Network as a Single Measurement Device

The physical system represents an independent sensor network, which can be a Wireless Sensor
Network (WSN), Body Sensor Network (BSN), or a Personal Area Network (PAN), etc. and it is
composed of at least one sensor and one microcontroller with communication capabilities. Most
microcontrollers typically offer some mean of physical communication through which the user can
program and interact with the attached sensors. Many microcontrollers provide a serial interface for
that purpose.

A crucial advantage of this framework is its ability to accept and handle new devices automatically.
In order to prepare the physical system for seamless integration to the system, three modules
should be part of its main microcontroller: (a) Sensors Handling module, which is in-charge of
direct communication with the attached sensors (b) Data Processing module, which converts sensory
information into measurable and comprehensive data, and prepares it for transmission via encoding
and compression. (c) Physical System Communication module, which takes care of transmitting the
processed, compressed, and encoded data to the Cyber System using the communication protocol (see
Figure 2).
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3.1.1. Sensors Handling Module

Most common sensors produce analog voltages to represent the sensed environment. Analog
sensors translate the sensed environment into a voltage range between zero and the maximum applied
voltage to that sensor (typically 3.3 V or 5 V). An Analog to Digital Converter (ADC) is used to convert
this voltage into a digital signal that can be recognized and processed by the processor, and it can
operate at the sensor-level or at the microcontroller-level (ADC input).

In our context of a BSN for physical activity monitoring, each Physical System in the CPS contains
a number of physical sensors that collect physiological and/or biological data from the user. These
sensors can be of various types, sizes, and communication protocols. The sensors handling module is
responsible for communicating and collecting this sensory information from all sensors, and converting
them into digital data ready for processing.
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3.1.2. Data Processing Module

Reading sensory information and converting them into digital values for storing and processing
can take more storage space than required. Memory waste results in more processing power waste,
which leads to communication delays that can accumulate and become troublesome, especially in
systems with hundreds, or thousands of sensors. Therefore, compression and encoding techniques of
sensory data are necessary in large-scale CPSs since handling these delays at an early stage results in a
smoother and a more adaptable system performance. Many studies have discussed various techniques
for compressing, encoding, and encrypting sensor networks data to enable reliable transmission
of sensory information [40–42]. The data processing module in the physical system is in charge of
compressing, encrypting, and packaging sensory information. These packets are then capsulated and
handed over to the PSC module described next.

3.1.3. Physical System Communication (PSC) Module

The PSC module works with the Cyber System’s communication (CSC) module to establish a
secure connection, and to transmit encoded data produced by the data processing module. In order for
this communication to be handled smoothly, a communication protocol must be defined where the
sender and receiver can understand each other [43]. The communication scenario and composition of
the overall system is explained in Section 3.3.

3.2. Cyber System

The Cyber System acts as a master in a master-slave architecture that controls all physical systems
in the CPS (i.e., the slaves). It handles several data streams coming from each physical system and
is responsible for decompressing, decrypting, visualizing, and storing sensory data from all these
sensor networks. The Cyber System is composed of five main modules: Communication module, Data
Processing module, Physical System Profiler, Visualization Module, and the Database Management
System (DBMS). Each of these modules is described below.

3.2.1. Cyber System Communication (CSC) Module

The CSC follows the networking protocol and uses it to communicate with its peer in physical
system (PSC). Depending on the type of communication used within the CPS (i.e., Wi-Fi, Bluetooth,
Serial), the communication protocol is defined and used by the CSC and the PSC to set-up connections
and to transmit and receive data between the system nodes. The CSC module is also designed to
identify and assign a unique identifier to the source physical system. Accordingly, each physical
system is identified, and the received data can be properly processed in the application.

3.2.2. Data Processing Module

The data processing module in the Cyber System includes two parts: the decoder and the
computation units. The decoder unwraps data packets received from the physical system, by
decrypting and decompressing sensory information. It then forwards data to the Physical Systems
Profiler (Section 3.2.3) which forwards a copy to the DBMS and keeps a temporary copy for real-time
outputs. In order to provide real-time data, the computation unit performs calculations required by
the CPS right after unwrapping. This helps produce values and perform decision-making faster for
real-time applications.

In our context of monitoring users’ physical activities, the data processing module performs
several gait spatiotemporal calculations. Some examples of real-time parameter calculations include
the following:

• Shoe/foot side detection: The circuit and sensor placement for the designed hardware
(SmartInsole) is identical for all sizes (i.e., the same circuit can be used for the right foot and the
left foot). However, the data processing module in the Cyber System is able to identify which foot
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it is getting data from by performing simple verification using the accelerometers’ Z-axis data
where negative and positive values at startup indicate which foot this SmartInsole is used on.

• Number of steps: Estimating the number of steps is performed by each foot individually, and
adding the right and left foot’s steps result on the overall steps performed by the user. This
information is calculated by many fitness trackers and smartphone apps, such as FitBit, using
intelligent algorithms and embedded accelerometers. However, step count using the SmartInsole
is difficult to cheat since a step is only counted if the user performs an actual step on the insole. In
our system, the average pressure is measured and continuously updated to control a threshold.
A step is detected each time the real-time average pressure exceeds the dynamic threshold. The
threshold value is updated continuously throughout the user activity to account for the user’s
changing pace. The step count for each insole is calculated as follows:

S(x) =

{
S(x) + 1, A(x)− α ≥ 0

S(x), A(x)− α < 0
(1)

where S(x) is the number of steps for insole x, A(x) is the real-time average FSR values for insole x,
and α is the dynamic threshold.

• Cadence: Cadence is defined as the number of steps performed per minute. It is an important
statistic in gait analysis for healthcare and for sports analysis. By extracting the timestamps for
heel-strike (HS) and toe-off (TO), we can accurately calculate the number of steps and the duration
between each step. Using this information, we calculate cadence as the number of steps occurring
per minute.

Several other spatiotemporal characteristics calculations are performed in the data processing
module. A detailed results analysis and comparison can be found in a previous work [44].

3.2.3. Physical Systems Profiler

The physical systems profiler is a static memory module that keeps track of the physical systems
attached to the CPS, and keeps a record of detailed specifications of each of these physical systems
so it can be accessed by other modules in the CPS. Each physical system transmits a physical
system profile (PSP) during the configuration stage. A PSP represents a digital twin of that physical
system [2] and includes descriptive information about it including details about the microcontroller,
its connection details, network status, number of sensors, types of sensors, and any other sensor
descriptive information as shown in the example in Figure 3. In addition, each PSP is paired with a
dedicated dynamic memory space used to maintain the current state of the attached sensors in that
physical system. This physical system data holder (PSDH) acts as a buffer that is tied with the physical
system, and is used for live data requirements such as real-time visualization.

Electronics 2018, 18, x FOR PEER REVIEW  6 of 17 

 

data where negative and positive values at startup indicate which foot this SmartInsole is used 
on. 

• Number of steps: Estimating the number of steps is performed by each foot individually, and 
adding the right and left foot’s steps result on the overall steps performed by the user. This 
information is calculated by many fitness trackers and smartphone apps, such as FitBit, using 
intelligent algorithms and embedded accelerometers. However, step count using the 
SmartInsole is difficult to cheat since a step is only counted if the user performs an actual step 
on the insole. In our system, the average pressure is measured and continuously updated to 
control a threshold. A step is detected each time the real-time average pressure exceeds the 
dynamic threshold. The threshold value is updated continuously throughout the user activity 
to account for the user’s changing pace. The step count for each insole is calculated as follows: 𝑆(𝑥) = ൜𝑆(𝑥) + 1, 𝐴(𝑥) − 𝛼 ≥ 0𝑆(𝑥), 𝐴(𝑥) − 𝛼 < 0  (1) 

•  
where S(x) is the number of steps for insole x, A(x) is the real-time average FSR values for insole 
x, and α is the dynamic threshold. 

• Cadence: Cadence is defined as the number of steps performed per minute. It is an important 
statistic in gait analysis for healthcare and for sports analysis. By extracting the timestamps for 
heel-strike (HS) and toe-off (TO), we can accurately calculate the number of steps and the 
duration between each step. Using this information, we calculate cadence as the number of steps 
occurring per minute. 
Several other spatiotemporal characteristics calculations are performed in the data processing 

module. A detailed results analysis and comparison can be found in a previous work [44]. 

3.2.3. Physical Systems Profiler 

The physical systems profiler is a static memory module that keeps track of the physical systems 
attached to the CPS, and keeps a record of detailed specifications of each of these physical systems 
so it can be accessed by other modules in the CPS. Each physical system transmits a physical system 
profile (PSP) during the configuration stage. A PSP represents a digital twin of that physical system 
[2] and includes descriptive information about it including details about the microcontroller, its 
connection details, network status, number of sensors, types of sensors, and any other sensor 
descriptive information as shown in the example in Figure 3. In addition, each PSP is paired with a 
dedicated dynamic memory space used to maintain the current state of the attached sensors in that 
physical system. This physical system data holder (PSDH) acts as a buffer that is tied with the 
physical system, and is used for live data requirements such as real-time visualization. 

 

Figure 3. An example of a physical system profile (PSP) configuration showing the type of 
information it holds. 

3.2.4. Visualization module 

The visualization module is in charge of visualizing sensor data from physical systems. Using 
the details in the PSP, the visualization module automatically recognizes what types of sensors need 

Figure 3. An example of a physical system profile (PSP) configuration showing the type of information
it holds.



Electronics 2019, 8, 248 7 of 17

3.2.4. Visualization Module

The visualization module is in charge of visualizing sensor data from physical systems. Using the
details in the PSP, the visualization module automatically recognizes what types of sensors need to be
visualized, and uses pre-coded physical system visualization presets (PSVP) to provide meaningful
visuals to the user. Using the real-time sensory data stored in each PSDH and the PSVPs stored in the
visualization module, the system is able to visualize the physical system information in real-time.

Visualization of plantar pressure has many important applications in the field of health and
well-being, as it can help detect the imbalances and other impairments when monitored properly. In the
field of sports, it can help improve athletes’ performance, since it allows coaches and physiologists
study athletes’ postures post-game by visualizing and analyzing the pressure heat maps of players
with possible gait imbalances or incorrect postures which can lower the athlete’s performance and
increase the risk of injury.

One way to visualize pressure data is using a heat map, as it allows conveying massive amounts
of data in a few images that carry a lot of meaning and allows instantaneous problem identification.
We designed and implemented a visualization tool that builds a plantar pressure heat map from the
data collected by the CPS. Our visualization tool reads pressure data from 12 sensors for each foot,
and maps this data into visual pressure areas on the foot-shaped heat maps. The heat maps show the
pressure using colors of increasing intensity based on the pressure values. Every sensory area of the
insole has a corresponding pressure area in the heat map, along with a surrounding interpolation for a
more smooth, realistic and gradual transition of the pressure visualization.

3.2.5. DBMS

Storing historical data is necessary for retrieving important information and for enabling the
sensory data to be modeled and analyzed to facilitate CPS operation. The DBMS is designed to take
care of physical systems’ data after being processed by the data processing module until being stored
in the configured storage server. Each received set of sensory values is prepared for storage, and
timestamped using the Cyber Systems’ system clock to ensure that all received data are synchronized
using one common clock. The DBMS is also responsible for storing database connection information,
and maintaining a stable connection to the database during the data storage process.

3.3. Communication and Composition of CPS Components

The relationship between the Cyber System and the Physical System in the proposed framework
is a one-to-many relationship, where one Cyber System can communicate with many Physical Systems,
while each Physical System can only communicate with one Cyber System.

The proposed framework operates in a mechanism that can be represented in a stacked layers
diagram (Figure 4). Sensors in each Physical System collect sensory information, and each Physical
System is responsible for its own data collection from these sensors via the sensors handling layer. The
acquired sensory data is handed over to the encoding layer where it can be wrapped and compressed
to be ready for communication. After that, the communication layer prepares the packets by adding
headers to the payload. Each header contains a unique identifier that enables the transmitted packet to
be traced back to its source Physical System.

The communication layer in the Cyber System in Figure 4 (which is represented by the CSC
module) receives the encoded packet from a Physical System and forwards it to the decoding layer
where it can be unwrapped to separate the unique identifier and the payload segments. The Physical
System Profiler can then use the unique identifier to recognize the source system and its PSP. After that,
it uses this information to assign each sensor value in the payload to its allocated value in the software.
The computation layer can then use the software variables to calculate any parameters required by the
application by referring to these sensor values. All of this prepared data can then be stored in a buffer
for real-time visualization and output, and for preparation for cloud storage.
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4. Evaluation Case Study

The objective of this work is to design and implement a complete CPS that aims at addressing the
aforementioned drawbacks. The proposed CPS uses conventional Wi-Fi networks to setup, monitor,
and record detailed and real-time sensory data for multiple wearable insoles (SmartInsole© [44])
simultaneously. Using Wi-Fi allows us to record sensory data in a relatively large space such as a
soccer or a hockey field. The proposed framework also enables seamless adaptability to different types
of wearable devices and body sensor networks, configurable visualization, and data storage methods.
As the physical part of the CPS, we used gait measurement smart insoles as we first introduced
in [45] and validated in [44]. The developed insoles include FSR-402 [46] sensors as well as an IMU
breakout board [47], and the circuitries are printed on flexible PCBs (Printed Circuit Boards) for
improved durability.

The proof of concept of the proposed framework is an implementation of the proposed CPS
for athletic gait measurement and analysis. The implemented CPS contains different components
including (A) physical devices represented by smart insoles with different embedded sensors, (B) a
sophisticated software, referred to as the Data Handler, which is in-charge of controlling, managing,
handling, and storing incoming sensory data, and (C) networking controllers responsible for data
traffic between the system’s nodes. These components work together to achieve the task of measuring,
visualizing, and storing gait parameters for multiple users. A validation study was performed with
15 subjects to test and validate these features [44].

Each physical device is a gait measurement system by itself that can provide raw data through
serial communication. However, the Data Handler was designed and tested to handle data streams in
real-time and provide, store, and visualize detailed sensory data from all devices on the Wi-Fi network
simultaneously on a single computing device.

The proposed solution adds configurability to the literature by enabling the system to wirelessly
configure and monitor new physical systems. In addition, this work shows potential for applications
involving multiple users that need their gait to be assessed in a concurrent manner, such as coaching
sports teams or group physiotherapy.

4.1. Design

One important aspect that needs attention when designing smart insoles is the different shoe
sizes of different subjects. We measured the feet of a number of people in three groups: females of US
size 6–7, males of US size 7–8, and males of US size 9–10. Using these measurements, we designed a
2-layer PCB and manufactured them on flexible boards (Figure 5). FSR-402 (short tail) sensors [46] are
then connected to a multiplexer that forwards pressure data to an ESP8266 microcontroller with Wi-Fi
capabilities. Details on the design and implementation of the physical system, including circuitry and
used electronics, can be found in References [45,48].
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4.2. Implementation

Howell [49] conducted an experiment to conclude an efficient number of FSR sensors in a shoe
insole. Therefore, in order to collect detailed gait information, 12 FSR sensors were carefully placed
on the insole in areas where pressure force could be detected. FSR sensors have been reliably used
in several studies to measure gait pressure [28,31,50–52]. Multiple studies suggested that the force
pressure on the medial midfoot (arch) is minimal/negligible [31,49,53], and thus are not measured in
our design. The twelve FSR sensors are distributed such that they cover the remaining areas of the foot.
An IMU is also placed in the insole’s medial midfoot area to utilize the space with minimal pressure,
and to enable capturing of foot kinetics and orientation data. The IMU sensor is capable of capturing
real time 3D acceleration, 3D rotation (via gyroscope data), and 3D orientation (via magnetometer
data). For this purpose, we used high precision MPU-9250 (InvenSense, San Jose, CA, USA), which is a
9-axis IMU. This IMU is capable of sampling at a frequency of 50Hz and consumes 3.7mA of power.

The aim of our measurements is qualitative and not quantitative. Therefore, high quality FSR
sensors were used, which can measure force between 0–100 Newton. ADC outputs from FSR sensors
were mapped to values between 0–100 representing the applied force pressure. Florez et al. explains
the linear relationship between the real applied force and the calculated force for FSR sensors [54]. The
Y-axis in Figure 6 (left) represents this applied force on FSR sensors.

All FSR sensors and the IMU are embedded in the insole, which will be placed inside the user’s
shoe to read gait measurements. However, we decided to place the Wi-Fi enabled microcontroller and
the rechargeable battery in a separate package outside the shoe (i.e., strapped to the ankle) to reduce
the risk of battery overheat or Wi-Fi signal interference.

Figure 5 shows the designed PCB layout of the insole and the actual implementation of the device.
This single device provides information that can be used for calculating the different modes of gait,
temporal characteristics, center of mass, orientation, and force distribution.

After setting up the insole’s connection to the system, the software allows us to monitor sensor
readings from all insoles using a single computer by visualizing sensory data. This is useful for
monitoring both feet of a person simultaneously, or for monitoring multiple people’s gait on a
single computer.
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We used the dynamic NoSQL database MongoDB for collecting sensory information from the
insoles, and used this data to analyze different phases of gait and for the preparation of heat maps.
MongoDB’s structure allows for dynamic insertion of sensory data into a single table, and avoiding
complications by having a separate table for each insole.

4.3. Experiment

In a previous study that included 15 subjects, we validated the designed CPS by comparing
its results with the Tekscan Strideway system [55], which is being used by healthcare providers to
measure spatiotemporal characteristics [44]. However, in this controlled experiment, we were looking
at the ability to detect different gait phases. A young athlete participated in this experiment where
one insole was placed inside each shoe, and the subject was asked to perform a total of seven (7) tests.
Foot pressure data was recorded for post-routine analysis. The goal of this experiment was to find
distinguishable patterns from the collected sensory data, which can be used to identify the different
gait phases.

The subject was asked to perform the following tests, which were recorded by a video camera to
be used as ground truth. Each of the below tests was repeated three times to verify accuracy:

• 30-m forward walk.
• 30-m backward walk.
• 30-m forward jog.
• 30-m backward jog.
• 50-m sprint.
• 30-s jumping.
• Kicking a soccer ball.

4.4. Results

Some of the studies discussed in the background (Section 2) were able to detect step-to-step
duration amongst other spatiotemporal characteristics, which we also achieved here. However, the
distribution of sensors in the SmartInsoles used in this work’s implementation enabled us to get more
details on the direction the user gait. In addition, designing a system that runs completely over Wi-Fi
provided a more comfortable and natural environment to test user’s gait. The performed tests were
conducted outdoors without the restrictions of a lab setting or a treadmill, and the subject user was
able to move up to 50 m away from the system’s main router during this experiment.

The graphs in Figure 6 (left) show a 5-s sample of the data collected from tests 1–6 mentioned
earlier. Each test’s graph is presented in a row, and it combines data from the left (L_) and right (R_)
insoles for all 12 FSR sensors (FSR00 to FSR11). Sensor values are shown as vertical bars, while the
average of the left and right insoles’ FSR values is plotted as solid blue and orange lines, respectively.

Results show distinguishable patterns amongst different gait phases as can be seen from Figure 6
(left). The graph patterns for walking forward and walking backward show patterns that can be easily
distinguished from each other. For walking forward, the peak average force appears to be at the end of
the step in the graph. However, a person walking backward normally steps on the front of the foot
before the heel, and the graph shows a peak at the beginning of the step. The reason for this is that
there are more FSR sensors in the front of the insole than at the heel, which normally increases the
average force read by the sensors. Furthermore, for jogging, direction cannot be easily distinguished
from the patterns using the average applied force, but an increase in the number of steps performed can
be seen in a similar duration. Accordingly, we can identify jogging, and sprinting, patterns from the
third, fourth, and fifth graphs. The last graph demonstrates a clear jumping pattern by showing that
the average pressure forces imposed by both feet are increasing and decreasing at an approximately
parallel pattern.
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The visualization of the foot pressure data is a key aspect in analyzing the sensory data collected
during performed activities, and has many applications in healthcare and wellbeing. One of the best
ways to visualize foot pressure is by using a heat map, as it allows us to see how the pressure is
distributed over the foot and where the most pressure is applied depending on the activity performed
by the individual.

For this purpose, we developed an application that generates a heat map from the data collected
during the experiments. In this application, each of the twelve sensors on the insole is mapped to a
corresponding area on the heat map, where a circle holds the same placement and diameter of the
sensor. Furthermore, the sensory data is mapped to different colors representing increasing intensities,
where the green represents the lowest intensity followed by the yellow and then orange, and the
red represents the highest intensity. In the heat map areas where the intensity is high, we show the
gradual decreasing of intensity around these areas by surrounding them with circles of decreasing
color intensity. This makes the heat map more accurate than just transitioning directly from high
intensity (for example the red color) to low or no intensity (shown by the green color).

Figure 6 (right) shows the differences in how the pressure is distributed over the foot insole
depending on the performed activity. During normal walking in both forward and backward directions,
more pressure is applied on the heel compared to other activities. For stationary jumping, for example,
very little pressure can be seen on the heels. Figure 6f shows that during sprinting, more pressure is
applied to the forefoot. Results generally show that the activity performed can potentially be inferred
from the heat map visualization of the average foot pressure.

In addition to identifying the performed activity, the heat map visualization also gives a good
idea about the posture of the user. In the experiment results shown in Figure 6, a preliminary analysis
could be performed by examining Figure 6a for example. Sensor number 8, which is at the middle of
the foot on the outer edge, shows a higher-pressure intensity for the right foot (red color) than for the
left foot (yellow color). This means that the participant applies more pressure on the middle outer side
of his right foot than the left foot, even though this is a walking activity and one would expect a similar
amount of pressure on both feet. Figure 6b–d,f shows the same pattern for backward walking as well
as jogging and sprinting. However, Figure 6e, which is related to jumping, does not show differences
in pressure between both feet, since the participant relies mostly on the forefoot for this activity, and
the middle of the foot bares very little pressure. Some recommendations can be suggested to help this
participant adjust their posture, which is the subject of a working project in our laboratory.

Event Detection—Kicking a Soccer Ball:

A number of studies have used the IMU sensor to collect detailed information related to step
detection [25,29] or to measure foot orientation [56], which is calculated in our experiments. Weizman
et al. have conducted an analysis on force applied to kicking a soccer ball [33]. However, we tested the
use of the embedded IMU in detecting the exact instant the user the soccer ball is kicked. By analyzing
the synchronized data produced by the embedded sensors in the insole, we were able to detect the
instant the ball was kicked, as well as the foot that was used to kick it. This was achieved by finding a
period of strong noise in IMU readings as can be seen in Figure 7, which shows a 1.5-s sample of FSR
and IMU data for both feet of a single soccer player. The graphs show a clear disturbance in the right
foot’s IMU readings, which when compared with the ground truth video, identifies the exact instant
the ball is kicked.



Electronics 2019, 8, 248 12 of 17

Electronics 2018, 18, x FOR PEER REVIEW  12 of 17 

 

 
Figure 6. (left) A 5-second sample of FSR (Force-Sensitive Resistor) pressure values and the average 
pressure from all sensors in the left and right feet. Detectable patterns amongst different gait phases 
are shown. (right) Visualization of the average foot pressure data collected during the same 
performed activities: (a) Walk forward; (b) Walk backward; (c) Jog forward; (d) Jog backward; (e) 
Sprint; (f) Jump 

Event Detection—Kicking a Soccer Ball: 

A number of studies have used the IMU sensor to collect detailed information related to step 
detection [25,29] or to measure foot orientation [56], which is calculated in our experiments. Weizman 
et al. have conducted an analysis on force applied to kicking a soccer ball [33]. However, we tested 
the use of the embedded IMU in detecting the exact instant the user the soccer ball is kicked. By 
analyzing the synchronized data produced by the embedded sensors in the insole, we were able to 
detect the instant the ball was kicked, as well as the foot that was used to kick it. This was achieved 
by finding a period of strong noise in IMU readings as can be seen in Figure 7, which shows a 1.5-

Figure 6. (left) A 5-s sample of FSR (Force-Sensitive Resistor) pressure values and the average pressure
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(right) Visualization of the average foot pressure data collected during the same performed activities:
(a) Walk forward; (b) Walk backward; (c) Jog forward; (d) Jog backward; (e) Sprint; (f) Jump.
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5. Conclusions

In this work, we propose a CPS framework for measurement and analysis of physical activities
and wearable sensor networks. We show the design and implementation of the CPS framework that
enables real-time visualization of sensory data from multiple devices simultaneously. As a proof of
concept, a gait parameters measurement and analysis system was implemented that runs completely
over a Wi-Fi network. Multiple tests were performed on the implemented system, and results show that
different gait phases produce different sensory patterns. From these results, we can easily distinguish
between gait phases and detect events by analyzing the stored FSR and IMU data. The implemented
system results show its ability to wirelessly measure physical activities shows potential for gait analysis
applications, physiotherapy, sports, fall prediction and prevention, and many others.

The design and deployment of mobile systems should take into consideration the network
structures and protocols, access points, communication and presentation standards, privacy, security,
and encryption, etc. Operating systems embedded in these end devices are also considered for encoding
and presentation of data. Mobile systems must consider the fact that sensitive information can be
accessed, and possibly modified, from anywhere in the world. Therefore, secure data communication,
presentation, and modification should be taken into account in the design of any CPS [57] as such
systems can carry sensitive and private information within its network. Kocabas et al. [58] state
that healthcare monitoring is growing rapidly, and recording physiological signals from users can
be done for several purposes. More devices are being developed every year and many solutions
are being employed for communicating, presenting, and storing this private information. Thus,
these solutions must take into account encryption schemes to protect and secure private information.
Kocabas mentions that conventional encryption schemes, such as Advanced Encryption Standard
(AES) and Elliptic Curve Cryptography (ECC), are widely used in medical systems due to their low
resource requirements, which makes them suitable for distributed processing.

For future work, the group is currently performing experimentation using machine learning
algorithms to automate the analysis process. The goal is to enable auto-classification of gait phases
which can enhance research in fall detection, prediction, and prevention. In addition, based on
the requirements of the presented application in this study, the communication aspect is largely
one-directional. However, future implementations of a balanced, two-directional, communication is
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taken into consideration where physical systems can provide feedback to the user. The amount of the
transferred data from the cyber system to the configured physical systems can vary depending on the
type of feedback such as audial, visual, or haptic feedback.
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