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Abstract: The combination of machine learning and heterogeneous embedded platforms enables
new potential for developing sophisticated control concepts which are applicable to the field of
vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately
implementing fast predictions using neural networks (NNs) on field programmable gate arrays
(FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application:
Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation
motivating this work is provided by discussing multiple domains of the technological context as well
as the constraints related to the automotive field, which contrast with the attractiveness of exploiting
the capabilities of new embedded platforms to apply advanced control algorithms for complex control
problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric
vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains.
Considering the constraints of the application and the implications of the selected multivariable
optimization challenge, we propose a NN to provide batch predictions for real-time optimization.
This leads to the major contribution of this work: efficient NN implementations on two intrinsically
parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical
implications of their different operating paradigms, in order to efficiently harness their computing
potential while gaining insight into their peculiarities. The achieved results exceed the expectations
and additionally provide a representative illustration of the strengths and weaknesses of each kind
of platform. Consequently, having shown the applicability of the proposed solutions, this work
contributes valuable enablers also for further developments following similar fundamental principles.

Keywords: machine learning; neural networks; predictive; vehicle dynamics; electric vehicles; FPGA;
GPU; parallel architectures; optimization

1. Introduction

As vehicle electrification moves forward [1,2], new powertrain topologies are appearing and
attractive research and innovation opportunities for developing enhanced propulsion systems
can be identified [3]. The potential of the increased degrees of freedom and controllability of
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powertrains driven by multiple electric motors can be unleashed by exploiting several enabler
technologies which are addressed in this work, aiming to implement sophisticated Torque-Vectoring
techniques [4–6]. Furthermore, this kind of advanced active chassis control systems not only can
be eventually categorized inside the field of ADAS by themselves but they also can be exploited to
support further ADAS -or even automated driving- functionalities, such as active support in critical
evasive manoeuvres or to provide predictions and estimations of unmeasurable variables to take
corresponding actions.

The cited applications imply multiple requirements which are satisfied by modern high
performance heterogeneous embedded platforms. While keeping reasonable cost points and power
consumption, they are bringing vast computing power and intrinsic parallelism (for performance)
and redundancy (for safety). This power can be harnessed to implement complex algorithms,
including Machine Learning, in both the cited application fields [7–18]. Furthermore, such advanced
controller designs can be greatly supported by the means of the continuously improving model-based
development solutions. However, major challenges appear not only on the notably complex technical
layers but also in the regulatory layer addressing safety-critical applications [19,20].

This context has motivated the research presented in this work, in which after a deeper discussion
about the abovementioned topics, we use Machine Learning to target a complex optimization
problem—as are vehicle dynamics- in a typically constrictive domain—as are automotive systems-,
thus providing an illustrative, innovative and challenging application. Specifically, this work leads to
a detailed analysis of the embedded implementation of a conventional neural network (NN) aiming to
rapidly provide batches of predictions within a real-time optimization algorithm. The representative
use case consists in predicting the slip of the wheels for a batch of possible future control actions
determined by a multi-objective Torque-Vectoring optimization algorithm. We have implemented the
computationally demanding NN inference, which delivers batches with many evaluations per control
cycle, on two different highly parallel platforms, aiming to evaluate their suitability and potential.
The embedded platforms are a FPGA and a GPU, each integrated inside SoC devices with adequate
industry suitability.

The remainder of the paper is structured as follows. Section 2 extends the key topics discussed in
this introduction section, highlighting the most relevant aspects of the technological context which
motivate and support this research, focusing particularly on the embedded platforms, as they are the
keystone to enable the upcoming implementation work. Section 3 introduces the particular automotive
control use case, targeted to illustrate the applicability of the proposed solution. Section 4 describes
the proposed control solution, starting with an overview over the general approach, discussing
relevant restrictions regarding automotive systems and finally introducing the NN itself. Sections 5
and 6 carefully describe the implementation of the said NN inference, respectively using embedded
GPU and FPGA components. After a brief introduction focusing on the different computation
paradigms, implementation details are presented and discussed by means of theoretical discussion and
intermediate results. Section 7 summarizes the final results, first regarding the prediction capability of
the NN itself and then focusing on the embedded implementation. Finally, Sections 8 and 9 summarize
conclusions and future work respectively.

2. Technological Context

2.1. Heterogeneous Embedded Platforms

The field of embedded platforms has typically shown a steady evolution regarding computing
power and features. But beyond that, recent years are showing an uprising variety of new solutions
providing notable and attractive computing capabilities, as exemplified in Figure 1. This is fuelled not
only by faster clock rates and multi-core designs—which are only providing a moderate performance
growth rate- but also by the integration of different computing paradigms into heterogeneous
embedded platforms which can act as accelerators for complex algorithms. This evolution has been
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strengthened by the fact that the application fields for platforms such as FPGAs and GPUs have been
widened. The result is a remarkable leap forward regarding computing capacity powered by their vast
intrinsic parallelism, with the potential of providing at least one order of magnitude gain with respect
to conventional processor-based devices [7,21–26].

The remainder of this section provides an overview about the more relevant embedded platform
types and the evolution of their topologies, emphasizing the trend towards heterogeneous devices
and SoCs.

Microcontrollers keep enhancing their capabilities for hard real-time and safety critical applications
by implementing redundant cores—i.e., lockstep- and diverse error protection mechanisms. Besides,
they are also showing performance gains not only through higher clock frequencies and parallel cores
but also offloading functions to dedicated hardware modules [27,28].

Application oriented microprocessors provide typically higher clock frequencies and more cores
than microcontrollers, often even with notable 64 bit processing capabilities providing faster double
precision floating point operations. They represent a powerful solution for a wide variety of demanding
applications but unless combined with elaborate software solutions or some other elements—e.g.,
real-time co-processing cores and certain integrity mechanisms- their suitability for safety-critical
real-time control functions is rather limited. Equally to the microcontrollers, their sequential code
execution paradigm only is capable of providing limited parallelism [29,30].

FPGAs enable very fast cycle times and massive throughput due to their programmable hardware
nature with intrinsic parallelism and pipelining, as better detailed in Section 6. As their performance
figures grow at a remarkable rate and good capabilities are available even for cost-sensitive devices,
their current and potential application fields are widening [7,21,22,24,26,31].

GPUs base their instruction execution paradigm on a massive multi-core architecture which also
provides high intrinsic parallelism. They have evolved from graphical and multimedia applications
to also tackle computing tasks in desktop environments, also propagating this trend to embedded
devices. An in-depth discussion on these devices is given in Section 5 [7,9,10,25,32].

Finally, SoCs are bringing a new generation of heterogeneous devices to the market which offer
different combinations of the abovementioned device types. Besides SoC approaches typically used in
other domains such as multimedia consumer products, new computation and control oriented SoCs
offer great improvements. Over one order of magnitude of performance gain can be expected by
combining multi-core processors with at least one of the previously mentioned highly parallel GPU
and FPGA computing solutions [21–25,33].

Figure 1 illustrates the mentioned variety of platform types, with representative examples focusing
on the topology of the architectures. Additionally, some indicative GFLOP/s (giga floating point
operations per second) values are given to illustrate the performance order of magnitude that can be
expected. It is worth noting that these values are rough theoretical peak numbers and must not be
misinterpreted: the effective performance figures depend greatly on both the application itself and its
implementation, thus requiring exhaustive analysis for each case. Achieving maximum performance
requires correctly exploiting the capacity of the instruction sets, caches, parallelism, different kinds of
pipelining and so forth. Such complex implementation aspects are discussed in detail, for the selected
FPGA and GPU platforms, in the upcoming Sections 5 and 6 [26,34,35].

Furthermore, it must be noted that some of the highest performing devices are excessively costly to
be considered suitable for the typical automotive price ranges. The highest performing microcontrollers
and microprocessors might have a borderline reasonable cost point but currently only the SoCs on
the lower performance end are considered to be suitable for the typical automotive cost constraints,
although technology and the market keep improving the performance/cost ratios.

The computing power provided by the more powerful platforms previously discussed, enables
implementing relatively complex and computationally demanding algorithms. A clear example is the
currently very active domain of perception algorithms for ADAS and automated driving, with current
research involving Machine Learning and Deep Neural Networks (DNNs) [7,8]. Similarly, this paper
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aims at benefiting from the discussed computation gains but for relatively smaller networks within
more restrictive applications, as will be explained in Section 3.
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Figure 1. Overview over relevant embedded platform types in the market, illustrating a simplified
block diagram of their topology, providing indicative examples of the typical theoretical peak GFLOP/s
performance for each type and one representative device example. Platforms used in this work are
highlighted with dashed line box [24,25,29,33].

2.2. Multi-Electric-Motor Powertrains

Electrified vehicles—i.e., hybrid and pure electric vehicles- are showing a steadily growing sales
trend [1,2]. This is not only pushed by environmental and geo-political/economic considerations which
have brought stringent regulations, related to emission issues [36] and even certain scandals [37]. It is
also driven by improving acceptance rates as technology is evolving and providing better capabilities
at more affordable prices [1,2]. Consequently, some electrified powertrain topologies are evolving
towards multi-motor configurations which are beyond conventional hybrids typically equipped with
just one motor of each kind. Such a topology is illustrated in Figure 2.
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Torque-Vectoring algorithm applying different torque to wheels while driving a curve [3].

Powertrains with independent motors for each of the wheels on a same axis enable the
implementation of refined Torque-Vectoring algorithms. Torque-Vectoring relies on controlling the
torque of each wheel aiming not only to enhance cornering performance but also to enhance stability
and consequently increasing safety [38,39], as will be further discussed in Section 3.

Although these new technologies are being introduced mostly in high-performance cars, they
are expected to propagate to the mainstream sector, where they could provide the abovementioned
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technical benefits, besides enabling constructive advantages like better space utilization. Table 1
summarizes a selection of relevant electrified vehicles, either hybrid or full electric. It illustrates that
beyond conventional hybrids, multi-motor powertrains are progressively appearing, most of them
enabling the implementation of Torque-Vectoring on two or four wheels, which is the foundation of
the presented use case.

Table 1. Overview of some relevant multi-motor vehicles [3,40–47].

Powertrain
Type

Hybrid
FWD Hybrid 4WD Electric

RWD
Full Elec.

4WD Full Electric 4-Motor 4WD

Vehicle Chevrolet
Volt Porsche 918 Honda-

Accura NSX

Mercedes
AMG Project

One
BMW i3 Tesla

P100D

Mercedes
AMG SLS

e-Drive

Rimac
Concept

One
NIO EP9

Highlights Value Perform.Innovat. 4 motors (incl. petrol)
Optional

range
extender

Range
Accelerat.

4 independent electric motors;
Handling by Torque Vectoring;
Record-breaking performance

Motors 2 electric

2 electric
(per axle)
1 petrol

(rear axle)

3 electric (2 front, 1 rear)
1 petrol (rear)

1 electric
1 petrol

2 electric
(per axle) 4 electric (per wheel)

Torque Vect. 7
~

per axle
3

front axle
3

front axle 7 7 3 3 3

Power 149 HP 887 HP 573 HP ~1200 HP 170 HP 525 HP 751 HP 1224 HP 1360 HP

Year (appear) 2015 2013 2016 2018 2014 2015 2013 2016 2016/TBD

Mass 1607 kg 1700 kg 1725 kg TBD 1422 kg ~2200 kg 2110 kg 1900 kg 1735 kg

0–100 km/h 7.5 s 2.6 s 3.1 s 2.5 sec 7.0 s 2.5 s 3.9 s 2.5 s 2.7 s

Price ~34.000 $ ~900.000 $ ~150.000 $ TBD ~43.000 $ ~140.000 $ ~400.000 $ TBD TBD

2.3. Complexity, Safety Criticality and Regulations Concerning Automotive Control Systems

Relevant changes worth considering are occurring, besides the powertrain control domain, in the
field of vehicle control systems in general. As the number of components and functions in modern
vehicles increases, the complexity and its derived issues are reaching hardly sustainable levels, with
up to over 100 million lines of source code distributed on board among over 100 ECUs (electronic
control units). In this scenario, besides infotainment and comfort features, the advent of vehicles
with multiple motors and energy sources, as well as ADAS and Automated Driving capabilities, are
strongly contributing to the above mentioned complexity issue [48].

The technical challenges associated to the introduction of modern complex control systems
are increased further by several industry-related constraints. Firstly, some well-known aspects
inherent to the big-scale vehicle industry need to be considered, such as extreme cost sensitivity
and diverse modularity requirements, all combined with accelerating product cycles [49]. Secondly,
major restrictions have been added to this already challenging scenario, with the introduction of
new standards and regulations addressing safety critical systems from the functional point of view.
Standards—such as the recently updated ISO-26262 [50]- require costly and time-consuming tasks to
be fulfilled for the certification process. This includes methodically addressing requirement traceability,
validation and documentation and the need for exhaustive analysis like HARA (hazard analysis and
risk assessment) and FMEA (failure mode effects analysis) [28,51].

In what respects to the software development, several enabler technologies can be highlighted to
provide means to tackle some of the challenges associated to these points. From the software point
of view, steadily advancing toolchains enable elaborate model-based development approaches to be
applied, typically aligned with the V development methodology. This includes highly automated
tools providing hardware abstraction through automatic code-generation—or hardware synthesis
for FPGAs-, which can be helpful to tackle the complexity of modern embedded platforms and
exploit the features of heterogeneous devices. It also includes tools for automated testing—from
Model-in-the-Loop (MiL) to Hardware-in-the-Loop (HiL)- and also requirement management and
documentation solutions. Consequently, besides providing means for agile, efficient and modular
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developments, they can also notably facilitate the required test and validation of complex algorithms,
as the ones discussed in this work [6,51,52].

In what respects to the hardware, the embedded platforms discussed in the previous Section 2.1
also represent a set of enabler technologies with notable relevance by providing protection mechanisms,
redundancy and diversity. Furthermore, the gains in computational power and the multicore and
heterogeneous topologies, do enable a further solution: consolidating the control architecture by
integrating multiple control units into one ECU [48,53].

3. Targeted Application: Quadruple Electric-Motor Vehicle

The bottom-line of the above discussed topics leads to the motivation already anticipated in the
introduction: we aim to provide enabler solutions targeting advanced Torque-Vectoring algorithms
with real-time optimization, which represent a challenging application and a restrictive domain.
In particular, our research efforts were dedicated to assessing the usability of automotive-suitable
parallel embedded platforms for deploying such advanced control algorithms on vehicles with up to
four independent electric motors.

The controller we propose uses NNs to estimate unmeasurable vehicle dynamics signals, in this
case the prediction of future values. Being the target signals in the future, their values depend on
the different control actions that the Torque-Vectoring could apply, meaning that the effect of many
possible control actions will have to be evaluated and optimized in real time. Details on the control
algorithm will be disclosed in Section 4.

Firstly focusing on the vehicle itself, quadruple-electric-motor powertrains present several
advantages from the control point of view. By having independent control over the torque applied
to each of the four wheels, they allow the implementation of sophisticated control strategies, basing
on the Torque-Vectoring approach previously mentioned also in Section 2.2 and Figure 2 [6,38,54].
In comparison to the hybrid topology illustrated in this figure, in the targeted vehicle there is no
differential on the rear axis, thus, in the same way as on the front axis, the torque on each of the rear
wheels can also be directly controlled. This further increases the degrees of freedom of the controller.
Besides, electric motors offer better controllability than internal combustion engines—as they provide
a faster and more precise torque delivery [4,5]-, which is another reason for aiming at a more refined
controller with short control cycles.

From the vehicle dynamics point of view, having four independent motors enables ideal
Torque-Vectoring capabilities. The principle of operation is the following: when driving in a curve,
dynamic weight transfer occurs along the vehicle’s chassis, meaning that the wheels on the exterior side
of the curve will temporarily support a greater normal force and provide greater traction capacity. This
can be very conveniently exploited by reassigning a part of the torque from the interior wheels to the
exterior ones. As has also already assessed by means of race-track tests in previous works [6,39,54,55],
this does not only avoid the inner wheel to spin because of the lower traction capacity but it also
generates an additional yaw moment, helping the vehicle rotate over its vertical axis towards the
direction of the curve, thus mitigating understeer—i.e., the front wheels turning the car less than
expected according to their steering angle- [38,56].

Besides the vehicle dynamics aspects, having four motors also provides enhancement potential
regarding energy efficiency. This is due to the fact that each electric motor will have different degrees
of efficiency depending on their operating point—i.e., current rotation speed and applied torque, as
well as temperature-. Therefore, depending on the situation, a reassignment of the torque demand
from one motor to another—i.e., a motor increasing its torque delivery with another being set to handle
less power- could lead to a better global efficiency.

Furthermore, also thermal aspects are to be taken into account. Excessive temperatures on the
motor components and power electronics must be avoided. As the motor loads will be unbalanced, so
will the heat accumulation. This means that trying to re-balance the temperature distribution should
be added as an extra aspect for the control function.
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Finally, besides the handling, efficiency and thermal optimization, a fourth aspect to be considered
is the smoothness of operation, aiming at improving stability and comfort, while reducing mechanical
stress and wear on different components.

The aspects to be controlled that have been discussed in the previous paragraphs are illustrated
in Figure 3 and represent a challenging multi-objective optimization problem which is addressed with
an elaborate control solution, as described in the following Section 4.
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4. Advanced Controller Design: NNs for Batch Prediction Based Real-Time Optimization

4.1. Description of the Control Problem

As described in the previous Section 3, the torque of four independent motors needs to be
controlled in order to optimize not only the handling but also the efficiency, the thermal load and the
smoothness of operation, all of which depends on different input variables. This means that it is not
only a multi-objective optimization problem but also a MIMO (multiple input multiple output) system.

The 4 outputs of the system are the torque set points for each wheel (TFL, TFR, TRL, TRR). However,
one degree of freedom is reduced and the control variables reformulated from 4 to 3, by imposing their
sum to equal the requested total torque set point (Ttot) according to the throttle command. A natural
way to reformulate this problem from the automotive engineering perspective is to define the variables
as follows:

TFL + TFR + TRL + TRR = Ttot =

=
(

1 − Dlong

)[(
1 − D f ront

)
Ttot + D f ront Ttot

]
+Dlong[(1 − Drear)Ttot + Drear Ttot]

(1)

being Dlong the longitudinal torque distribution along axes (% of torque to rear axis) and D f ront and
Drear the lateral distribution among each of the axes.

Figure 4 provides a simplified overview of the controller-level diagram, highlighting in bold the
parts of most relevance for this paper and marking with dashed lines the NN inference part that needs
to be accelerated and on which the following sections will focus on.

In essence, the controller relies on a simpler Torque-Vectoring algorithm to determine the default
torque distribution value. Then it applies a multi-objective optimization algorithm in order to find an
optimized torque distribution in the surroundings of the default value.

It is worth noting that the multi-objective MIMO optimizing strategy dynamically adjusts the
priorities of each of the objectives according to the situation in real-time, evaluating several inputs
which provide information about the driving situation of the vehicle. Vehicle dynamics is generally the
top priority objective, especially when the driving state is getting closer to critical limits. Otherwise,
energy efficiency is kept predominant, unless temperatures get closer to the functional limits, which
progressively increases the weight of the corresponding objective.

Vehicle dynamics are the most critical part from the safety point of view and they are also critical
in what respects to their computation for an algorithm such as the one targeted in this work. Good
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evaluation functions for aspects concerning efficiency, temperature and comfort can be integrated
in the controller with reasonable effort due to their nature. But the complex and strongly non-linear
interactions of the many physical magnitudes and degrees of freedom involved in vehicle dynamics
are notably more complicated to model and control [56,57].

This paper focuses on the technical challenge of predicting such magnitudes in real-time under
the constraints of an automotive control system. A relevant reference point is that even running a
single instance of a vehicle dynamics model is already a major challenge on an embedded platform [57].
It must be considered that the targeted application requires not one but a batch of evaluations of the
vehicle dynamics -to predict the effect of the control actions for the optimizing algorithm- which we
have determined in a typical range between several hundreds and a few thousands. In order to reduce
the computational cost and make it possible to execute all the evaluations in the stringent time of a
control cycle which has been specified with 5 ms, we chose a Machine Learning approach as prediction
solution. In particular, we selected a NN, which is further described in Section 4.3.
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motors, illustrating a simplified block diagram of the algorithms and highlighting its objectives for
the application.

The targeted use case in this paper is the estimation of future slip values of each wheel for a batch
of possible Torque-Vectoring set points. These predictions are used to select the torque distribution
that will reduce unnecessary slip, while also satisfying the efficiency, thermal load and the additional
smoothness criteria. In order to achieve good predictions, a careful selection of the relevant input
signals is necessary, which was based on a combination of expert knowledge in the field of vehicle
dynamics and evaluation of the outcome of different input sets. The signals firstly need to include
the torque set points for each wheel, as it is their effect to be evaluated. The remaining signals are
related to the current state of the vehicle and therefore are equal for all the potential solutions. These
include, the current wheel slips, the steering wheel position, inertial sensor (accelerations and angular
velocity on 3 axes) and vehicle speed, adding up to 16 inputs. Additionally, an extended input set of
24 is also evaluated, including derivatives of the inertial sensor and two metrics of theoretical nature
related to the steering wheel and vehicle speed. These are meant to reflect the transient behaviour of
the involved dynamics over time.

4.2. Restrictions of Automotive Systems

One notable characteristic of automotive control systems is their series of relatively stringent
constraints, as already anticipated in Section 2. On the side of the embedded electronics there are the
requirements affecting their cost and features and consequently their performance. This means that
the algorithm should be as computationally efficient as possible. But significant restrictions are also to
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be considered in what respects to the functionality, especially for safety-critical control functions—as is
the case for powertrain applications like the one presented- which are addressed by regulations like
the ISO-26262 and the corresponding certification implications [28,51,52].

The control architecture and the individual sub-functions have been carefully conceived to
reduce the degree of uncertainty, facilitate its mathematical analysis and mitigate the impact of an
eventual prediction malfunction. This inevitably induces the control algorithm and the predictive
and virtual sensing algorithms to be designed avoiding unnecessary complexity, not only to enhance
computational efficiency but also to enhance robustness and furthermore facilitate the analysis of its
intended behaviour. In this sense, a relatively simple NN architecture is preferred, which additionally
reduces computational cost.

Another fundamental consideration to be highlighted is that the malfunction of a virtual sensor
should be considered similarly to a malfunction of a physical sensor, as both can potentially suffer
some kind of error and need the corresponding support mechanisms to mitigate the effect.

The final consideration is that the designed optimizing algorithm is conceived to provide an
enhanced set-point over the default Torque-Vectoring algorithm, aiming to reduce the slip but it must
not be permitted to cause critical situations. It might happen that anyway certain slip occurs, in the
same way slip can happen with a generic Torque-Vectoring or simply a normal torque distribution.
The worst case scenario would be some other unwanted effect which could eventually affect the
stability of the vehicle. But in such an unlikely situation, a superior layer of conventional traction and
stability control functions—i.e., TCS and ESP- can override the torque set-points.

To mitigate the risk of stability systems having to intervene in such a worst case scenario, a series
of additional pre-emptive mechanisms have been put in place in order to enhance the robustness
and stability both of the estimations and the control actions. These include simple elements such as
saturators and rate-limiters but also more elaborate functions that detect excessive fluctuations in
multiple time windows. Furthermore, a simplified mathematical model is used to enable plausibility
checks. Whenever unexpected values are detected, logical functions trigger an error and smoothly fall
back to the default Torque-Vectoring values.

4.3. Definition of the Algorithm: A Neural Network

The remainder of this work focuses on the NN in particular and its implementation on the
two selected embedded platforms. We chose a relatively simple Feedforward NN algorithm for a
variety of reasons, having also considered other plausible approaches for a system with a dynamic
time behaviour as the one described, like for instance Recurrent Neural Networks (RNN) [58–60] or
Long Short Term Memory (LSTM) Networks [61–63], as well as solutions involving Kalman Filter
based approaches [64–66]. Considering that a review over the broad diversity of possible solutions or
even a more detailed comparison with respect to the ones just mentioned, cannot be covered in the
scope of this paper, it is still worth noting some relevant points which have supported the selected
option. The fundamental reason is that the performance of this simpler NN can be considered as
adequate regarding the accuracy and tolerances for this controller, as will be seen in the results in
Section 7. Furthermore, in general terms, the simplest possible design is preferred for the sake of
reducing complexity in what refers to computation -for speed- as well as in what refers to the analysis
of the NNs behaviour -for robustness and regulations-, as already discussed in the previous sections.
Furthermore, information about the variation in time of signals for which this information is relevant
can be included into to NN by the means of feeding filtered derivatives of those signals into its inputs.
Furthermore, this approach simplifies the layered kernel approach on the GPU, as well as the hardware
implementation on the FPGA. In fact, the very same logical blocks that are used in the FPGA for the
batch predictions, can easily also be used for simpler virtual sensing purposes, which is convenient to
save programmable area and associated costs.
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This section describes briefly the fundamentals of the proposed NN archetype, the Multilayer
Perceptron [67,68], for the purpose of setting a common ground for the upcoming platform dependent
implementation discussions (Sections 5 and 6).

As illustrated in the flow chart in Figure 5, once the input signals are received, they need to be
scaled to normalized values, before the execution of the actual NN can start with the hidden layers.
For each hidden layer, each of its neurons needs to apply a weight to each of the signals from the
previous layer (or the inputs, in the case of the first layer) and calculate the resulting sum. This can
be represented as a multiplication of a vector with a matrix and can be also implemented as dot
products. Having the intermediate results of the previous layer, the bias values are added to each
output. The final output of the layer is obtained after applying the activation function for each neuron.
This process is repeated for each hidden layer, until reaching the output layer. This last layer does not
have an activation function and will provide the results to be scaled to get the actual NN outputs.

It is relevant to understand that due to the vectorial and matrixial character of the operations, the
computational complexity and spatial complexity are not neglectable. The dimensions are represented
as L0 for the amount of inputs and O for the output count. Each hidden layer numbered from 1 to H
with the index i, has Li neurons, meaning that the dimension of the weight matrix will be Li x Li−1
and the bias vector Li. Consequently, the count of parameters (weights and biases) and basic math
operations are expressed in (2) and (3) respectively.

NNParams = 2L0 +
H

∑
i=1

(Li(Li−1 + 1)) + O(LH + 3) (2)

NNOpers = 2L0 +
H

∑
i=1

(Li(2Li−1 + 1)) + O(2LH + 3) (3)

The mathematical operations from (3) are decomposed in multiplications and additions in (4)
and (5).

NNMultOpers = L0 +
H

∑
i=1

Li Li−1 + O(LH + 1) (4)

NNAddOpers = L0 +
H

∑
i=1

(Li(Li−1 + 1)) + O(LH + 2) (5)

To the previous basic arithmetic operations, the operations for the computation of the activation
function needs to be added. As each hidden neuron includes an activation function, the number of
activation functions equals the number of hidden neurons, as in (6).

NNhidden_neurons =
H

∑
i=1

(Li) (6)

In this work a NN with a sigmoidal activation function, has been selected, expressed as in (7).

Sigmoid(x) =
2

1 + e−2x (7)

Besides increasing both the addition and multiplication count by one per hidden neuron,
the reciprocal division and especially the exponential function can represent a notable computation
cost, depending on the platform and the implementation. To tackle this issue, an approximate function
could be implemented by the means of a look-up table (LUT) with a specific amount of data points.
Therefore these operations are counted separately.
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Figure 5. Flow chart of the generalized version of the implemented neural network inference algorithm,
indicating the dimensions of the data and the amount of operation.

The following Table 2 collects the theoretical complexity magnitudes—parameter and operation
counts- for a few representative NN topology examples. A NN with three hidden layers L1−3 of
32, 16 and 8 neurons respectively with a reduced input set In of 16 is taken as default topology for
the targeted use case. As for all other cases, the output count Out is 4—one per wheel-, thus the
topology is {16, 32|16|8, 4}. This is also taken as baseline to normalize relative complexity for other
topologies. The same topology with an extended input set of 24 is also considered in the second row.
The third row reflects a smaller topology which will be discussed during the FPGA development in
Section 6. The remaining rows show examples for bigger topologies which might be of interest for
other applications, illustrating the notable growth of complexity and the fact that even for the same
quantity of neurons, these magnitudes change depending on the distribution across layers.

Table 2. This theoretical values of complexity for different neural network topologies.

Topology Complexity

In
(L0)

Hidden Layers Out
(O) Parameters Operations Activation Func.

(Hidden Neurons)L1 L2 L3 L4

16 32 16 8 0 4 1284 2468 56
24 32 16 8 0 4 1556 (+21%) 2996 (+21%) 56 (+0%)
8 16 12 8 0 4 512 (−60%) 960 (−61%) 36 (−36%)
32 32 16 8 0 4 1828 (+42%) 3524 (+43%) 56 (+0%)
32 32 24 0 0 4 2020 (+57%) 3908 (+58%) 56 (+0%)
32 64 32 16 0 4 4860 (+279%) 9532 (+286%) 112 (+100%)
32 128 32 16 0 4 9020 (+602%) 17,788 (+602%) 176 (+214%)
32 64 64 32 16 4 9020 (+602%) 17,788 (+602%) 176 (+214%)

The impact of the scaling operations is almost negligible, accounting for L0 + O multiply and
addition operations (e.g., just 40 operations for the baseline NN). Furthermore, as these can be
optimized by implementing them in the interfacing functions instead of repeating them for each
NN, they are not included in our performance metrics. Similarly, as the presented work focuses on
the computation and memory aspects of the GPU and FPGA implementations—and being the data
transfer for the presented use case relatively small- the application and platform dependent overhead
related to the different interfacing aspects are not accounted in this work.

5. GPU Implementation of Neural Network

GPUs are highly parallel instruction-based platforms which can be seen as a vastly extended
multi-core processor but with a different architecture and instruction set. Historically developed for
massive parallel manipulation of tasks related to computer graphics -such as pixel manipulation,
three-dimensional graphics or filtering-, their architecture has been specifically optimized for high
performance data-parallel workloads. After the advent of the programmable pipeline, usage of GPUs
for general purpose applications affirmed as an active research field [69–71]. Furthermore, recognizing
and exploiting synergistically the potential of both CPU and GPU architectures—e.g. in SoC devices-
has showed to deliver even further computational gains [72,73].
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The computational power and parallelism of GPUs has already been largely adopted for training
DNNs, mainly targeting computer vision and other machine learning applications [8–10]. Besides,
GPUs demonstrated to excel also for deployment of DNNs, with several tools arising for tackling the
DNN inference challenge within dedicated embedded platforms [11,74].

For the developments presented along this paper, we exploit CUDA, a parallel computing platform
and programming model created by NVIDIA [75]. In this environment and as is illustrated in Figure 6,
heterogeneous programming is performed by having one host processor in charge of launching the
execution of the parallel workloads on the GPU. Each program executed on the GPU is referred to
as a kernel. Parallel execution of all threads in a kernel is structured as a grid of blocks, each block
containing several threads, which are actually synchronously executed in several smaller sets called
warps. Memory and communication among all the threads of a kernel are also structured following
the same hierarchy (illustrated on the right side of Figure 6). Each thread has exclusive access to its
registers but it is able to share its registers within all the threads of the same warp by means of shuffle
operations. Within each block, threads can exchange information via shared memory, whereas the
much slower global memory must be used for the wider scope of the grid level [75].
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In this programming model, execution of the blocks is hardware dependent, with a block
being allocated for execution on a given Streaming Multiprocessor (SM), as soon as its resource
demand is satisfied. Therefore, the performance of such CUDA accelerated programs is strongly
platform dependent.

For the sake of this work, we selected the affordable NVidia Tegra K1 SoC platform. The Tegra K1
features a GK20a GPU (Kepler architecture), including 192 SM3.2 CUDA cores clocked up to 852 MHz.
The SoC is complemented with 4 ARM Cortex-A15 cores (ARMv7-A architecture) clocked at 2.0 GHz
and an additional low power core at 1 GHz. It supports up to 8GB of (LP)DDR3 RAM. The warp size
for the current architecture is fixed at 32, meaning that a program needs to have at least 12 warps
running in order to theoretically maximize occupancy [25].

The remainder of the section describes the GPU implementation of the NN inference algorithm
described in Section 4.3, focusing on the most important aspects necessary to unleash the full potential
of the selected platform.

5.1. Multi-Kernel NN Inference

As a first step, we programmed—in C language- a single-thread CPU implementation of the NN
inference algorithm described in 4.3 and then migrated it to GPU by means of CUDA. As depicted
in Figure 7, the NN inference implies a sequence of different parallelizable tasks. Besides the values
propagated between tasks, reading of constant parameters is also necessary for weights and biases
(blocks to the left in Figure 7).
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The simplest implementation, referred as GM1, relies on Global Memory for both storage
requirements. The size of the kernel launches -expressed in braces in the Figure 7 and given in
Table 3- was set to be equal to the output layer dimensions. In GM1, each layer is implemented as an
individual kernel launch. The profiling results -corresponding to the computation of a set of 512 NNs-
confirmed the potential of using GPUs for NN evaluation, with a substantial speed-up of around 27x,
w.r.t. the CPU performance, while also highlighting two main drawbacks: a suboptimal occupancy
due to the chosen kernel sizes and a massive use of memory (and in particular of the texture units,
needed for caching the reading operations).

Table 3. NN inference on GPU: GM1 performance for batch of 512 NNs with {16, 32|16|8, 4} topology.

Layer Kernel Size
{grid a, block b}

Occupancy Achieved
(Theoretical) [%]

Registers per
Thread

Comput. Time
[µs]

L1 {512, 32} 24.1 (25) 34 0.160
L2 {512, 16} 24.2 (25) 37 0.174
L3 {512, 8} 23.6 (25) 34 0.104
O {512; 4} 22.7 (25) 21 0.061
Total 0.499

a Number of thread blocks executed; b Number of threads per block.

We achieved a slightly better implementation, GM2, by tuning the kernel launch sizes, such to
have larger thread blocks, each of them working on a fixed amount of NNs. The proposed modification
resulted in a better usage of the GPU (higher occupancies), which is also reflected in a performance
gain of a factor ~2x w.r.t. GM1. However, both GM1 and GM2 implementations share the drawback of
abusing global memory for storing the intermediate data of the hidden layers -as depicted in Figure 7-
and for reading the parameters -weights and offset values-.

5.2. Single-Kernel NN Inference: Shared and Global Memory

As a second step we developed the enhanced implementations -SM1 and SM2- by introducing the
use of shared memory. We derived SM1 from GM2, using the same work partition strategy among the
thread. However, we implemented the algorithm as a single kernel launch in order to enable the usage
of shared memory for storing intermediate results between layers, thus avoiding the high latency
corresponding to read/store operations from global memory. As shown in Table 4, the transition to
shared memory provided an additional performance gain of about ~3x. However, it also resulted in
reduced occupancy levels, because the limited amount of shared memory of each SM (configured
as 48 KB for the used Kepler architecture) became the limiting factor, with a total of maximum 5
(rounding down 48/9) blocks per SM active, instead of the maximum of 16 allowed by the GPU.

Therefore, we pursued a more efficient usage of shared memory in SM2. This was achieved
by buffering the storage and reading to shared memory in order to reuse the same buffer among
the different layers. As reported in Table 4, SM2 offers a substantial performance gain of ~1.5x w.r.t.
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SM1, in line with the increased occupancy of ~1.75x and the increased complexity added to prevent
race conditions.

Table 4. Inference on GPU: GM2, SM1, SM2 and CM implementations for a batch of 512 NNs with a
{16, 32|16|8, 4} topology.

Occupancy Achieved
(Theoretical) [%]

Shared Memory
(per Block)

Registers
(per Thread)

Comput. Time
[µs]

GM2-L1
a 53.6 (62.5) 0 B 43 0.090

GM2-L2
a 60.1 (75) 0 B 37 0.099

GM2-L3
a 60.5 (75) 0 B 33 0.033

GM2-O a 76.8 (100) 0 B 21 0.006

GM2-Total 58.65 (71.69) b 0 B 38 b 0.237

SM1 a 26.7 (31.2) 9 KiB 50 0.089

SM2 a 46.6 (50.0) 4 KiB 52 0.064

CM c 24.9 (56.2) 0 B 52 0.052
a Kernel Size: 16 blocks, each block of 128 threads; b Values normalized w.r.t overall duration; c Kernel Size: 4 blocks,
each block of 128 threads.

5.3. Single-Kernel NN Inference: Registers + Constant Memory

In spite the notable net improvement w.r.t the CPU implementation, all the aforementioned
implementations share the common bottleneck of reading the NN parameters (i.e., weights and bias
of each layer) from global memory. As depicted in Figure 8, this resulted in overloading the texture
memory buffer, with only marginal improvement achieved by the shared memory implementations.

The only feasible alternative for reading the constant values of the NN, is to exploit the GPU
constant memory, which corresponds to a portion of the device memory accessed through constant
cache. However, high reading performances from the constant memory are achieved only when all the
threads access the same address simultaneously, in opposite to the concept of coalescent access pattern
required for shared and global memory.
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Figure 8. Distribution of memory usage and computing operations for different implementations.

To enable an effective use of constant memory, we implemented the algorithm illustrated in
Figure 7 to dedicate each thread to the evaluation of a different NN, thus allowing the required
perfectly coordinated access to constant memory. Moreover, being the data flow of each thread
independent from the others, storage of the intermediate results was implemented on the local scope of
each thread, avoiding the need of shared memory and the corresponding synchronization mechanisms
required for preventing race conditions.
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The resulting final implementation (referred as CM) achieved the best GPU performances, with
an incremental performance up to ~3x w.r.t the SM2 and an overall acceleration relative to a basic
single-thread CPU implementation, ranging between ~68x and ~730x depending on the batch size, as
showed in Figure 9. It can be observed how the batch size required to saturate the GPU depends on
the implementation: while the computation time gains per NN for previous implementations saturate
for batches beyond 256 or 512, the CM implementation takes 28 ns for 1024 evaluations, 20 ns for
4096 evaluations and as little as 18 ns for a batch of 8192 evaluations. Nevertheless, in spite of this
remarkable maximum performance, it does not pay off for smaller batches, where the SM1 and SM2
implementations are faster.

This can be explained considering the theoretical occupancy of the CM version kernel. In fact,
requiring 52 registers per thread (Table 4) and being launched in blocks of 128 threads, the GPU of the
TK1 is saturated only when more than 9 blocks per SM are launched, which corresponds to a total of
over 1152. Below that size, the size of the batch problem is not sufficient to compensate the latency of
the required operations.

Additionally, the extended version of this NN with 24 inputs was also implemented.
The computation time results of this are collected in Section 7.
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6. FPGA Implementation of NN

FPGAs are versatile prefabricated silicon devices fundamentally consisting of generic logic
cells, non-volatile embedded memory, digital signal processing blocks, input/output blocks and an
interconnect structure. Basic FPGA structure is illustrated in Figure 10. Historically FPGAs arose
as an alternative to ASICs (application specific integrated circuits) due to lower development and
time-to-market expenses provided by their programmable character. Although, when compared to
ASICs, FPGAs provide poorer cost/area, delay and consumption metrics, their flexible nature and
performance turn them into convenient high performance devices for a diversity of solutions, especially
in the field of signal processing applications with a relatively high throughput [76,77].

Internally, FPGA logic cells consist of a programmable combinational logic which feeds into fixed
sequential logic in the form of D-type flip-flops (registers). This enables to pipeline a massive amount
of data and to achieve parallel execution of algorithms. The principle of pipelining is illustrated in
Figure 11. Essentially, in a fully pipelined solution, all functions (represented by the letter “F”) of
the algorithm are executed concurrently and a new output is produced on every clock cycle once
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the latency time—needed for the signals of the first instance to propagate through the system- has
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Additionally, most modern FPGAs include DSP blocks, which usually ingrain multipliers and
accumulators while improving power efficiency, chip size and timing for mathematical operations.

Regarding memory, embedded memory can be used as read-only-memory to store essential data
but it can also be used for buffering. Memory is organized in blocks, which enable to use separate
interfaces, meaning that they can be accessed concurrently [76,78].
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The rise of more demanding algorithms—such as DNNs used for perception- is finding support
in new features that vendors are introducing to FPGAs. For the implementation of algorithms using
floating point variables on FPGAs, the usage of DSP blocks [7,79] and the reduction of numerical
precision [80] are common solutions for the sake of performance and hardware resource efficiency.

Considerable research effort has been documented about NN implementations on FPGAs.
Most of them focuses on convolutional NNs [12–15], whereas fewer works target smaller—or very
small- feed-forward NNs [16–18]. Usually, the activation function of the NN is approximated using
piece-wise-linear approximation or a LUT. Furthermore, for the sake of resource efficiency, floating
point data is usually replaced with fixed point variables, thus reducing dynamic range [76,78].

For the sake of this work, we selected a Xilinx Zynq 7020 SoC platform. The Zynq 7020 features
an Artix-7 FPGA combined with 2 ARM Cortex-A9 cores (ARMv7-A architecture) clocked at 666 MHz.
The FPGA has 280 embedded memory blocks (4.9 Mb), 220 DSPs, 53200 LUTs (combinational logic)
and 106400 registers (sequential logic). The processing system (ARM) and the FPGA are connected
through multiple bidirectional interfaces, including support for direct memory access (DMA) and
coherent and noncoherent access [24].

Although abstract schematics can be described effectively with hardware description languages
such as VHDL and Verilog, this makes the implementations strongly hardware-specific thus limiting
description reusability and maintainability. In view of a more solid applicability in the automotive
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industrial context, this work exploits Xilinx SDx tools, a modern High Level Synthesis (HLS) solution
provided by Xilinx in combination with its Software-Defined SoC workflow [81]. This toolchain
addresses the SoC design in general, as it provides the connection between hardware accelerator and
processor software while the HLS tools allows HDL and Verilog code generation from C or C++ code
properly enriched with a set of certain directives.

The remainder of this section describes the implications and challenges faced to achieve an
optimized NN implementation on the FPGA fabric.

6.1. Automatic Hardware Synthesis of NN Inference

We implemented the NN inference algorithms for the FPGA as a C++ object in accordance with
the description in Section 4.3. Vivado HLS synthesizes this C++ code into RTL (register transfer level)
description. The RTL generation flow is tuned by means of special directives to manage implementation
aspects such as pipelining, loop unrolling, array instantiation and port specifications.

The generated hardware accelerator design is passed to the Xilinx SDSoC (Software Defined
System on Chip) tool, which enables to select intercommunication interfaces, create the software layer
and implement the data mover between the processor and the FPGA.

In this work, we used the FPGA master communications model, where data transactions are
conducted by the FPGA master. The overall implementation architecture is shown in Figure 12.
The Data Mover is implemented as DMA (direct memory access) controller, connecting the FIFO based
accelerator interface with the ACP (accelerator coherency port) of the processor, thus supporting cache
coherent transactions.
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As the FPGA part of the Zynq does not include dedicated floating-point arithmetic, these
operations need to be implemented with the available resources. This requires a series of compromise
solutions depending on the resource usage of different implementations, which we had to bring into
consideration using different data types and precisions for the sake of reducing resource usage and
increasing speed.

6.2. Theoretical Performance and Resource Utilization

FPGAs excel at performance when a fully pipelined implementation is achieved, as previously
discussed and illustrated in Figure 11. When fully pipelined and if data is continuously fed, a new
output result -or results- will be generated at every clock cycle after the latency time has elapsed. For
instance, in a fully pipelined solution with a latency of 1000 ns at 100 MHz, the first output would be
available after this 1000 ns latency time but consecutive outputs would be available every 10 ns.

Following (3–7) the total count of mathematical operations is determined. These operations are
implemented using deterministic functional blocks, thus it is possible to theoretically determine the
resource utilization of a NN. Table 5 illustrates the amount of resources each mathematical operation
requires for single precision data type when selecting implementations which exploit maximum
hardware DSP block utilization [82].
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Table 5. Resource utilization of single precision operations on Xilinx Zynq FPGA.

Instance
Resources

DSP Registers LUTs

Multiplier 3 143 321
Adder 2 205 390

Divider 0 761 944
Exponent 7 277 924

It must be noted that associating the total number of operations directly to the resource utilization
corresponds to a fully pipelined implementation, which would provide a very fast throughput. This
level of performance is determined to be above needed specifications and it would require excessive
resources. By avoiding full pipelining, resource utilization can be reduced at the price of compromising
speed. Nevertheless, for the following analysis, a smaller NN will be assumed, with a topology of
{8, 16|12|8, 4}. Although this will still be too big for a fully pipelined implementation, it is adequate
for different solutions of non-pipelined implementations.

Table 6 illustrates the theoretical amount of resources a fully pipelined implementation of this
NN requires, indicating the percentage of available resources in relation to the Artix-7 FPGA which is
integrated in the Zynq 7020. The table also shows the real values achieved through the synthesized
HLS implementation. Furthermore, the resource utilization of HLS implementations of 32 bit and
16 bit fixed point versions is also provided, although in this case the theoretical calculation is not
straight-forward due to low-level aspects such as bit-level optimizations.

Table 6. NN inference on FPGA: fully pipelined solutions for {8, 16|12|8, 4} topology.

Solution for NN

Resource Utilization
Latency
[µs]BRAM DSP Registers LUTs

Total % Total % Total % Total %

Single (theor.) 0 0.0% 2744 1247.3% 213,180 200.4% 425,412 799.6% -
Single (HLS) 0 0.0% 2744 1247.3% 233,367 219.3% 427,469 803.5% 218
Fixed < 32 > (HLS) 0 0.0% 1148 521.8% 140,541 132.1% 216,208 406.4% 181
Fixed < 16 > (HLS) 0 0.0% 618 280.9% 73,890 69.4% 117,279 220.4% 134

The obtained numbers confirm that a fully pipelined implementation would still require far more
hardware resources than the selected Zynq 7020 has available. Roughly 12x the available DSPs would
be needed for the single precision version. For the 16 bit fixed point version this is reduced to roughly
3x available DSPs. Consequently, the implemented solution described in the following section is a
compromise solution.

6.3. Resulting Hardware-based NN Inference

We have tried different NN implementation approaches, both regarding data type as well as
regarding the usage of LUTs, as summed up in Table 7. LUTs of different data point count are used to
replace the costly mathematical functions for the sigmoid of the activation function as in (4). This is
meant to reduce resource usage -mostly regarding DSPs- and accelerate the computation but it must
be noted that they cannot be pipelined.

Regarding constant data handling, we implemented weights and biases using registers, in order
to improve their access speeds.
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Table 7. NN inference on FPGA: implemented solution results for {8, 16|12|8, 4} topology.

Data
Type LUT

Resource Utilization Normaliz.
Mean
Error

Computation
Time [µs]BRAM DSP Registers LUTs

Tot. % Tot. % Tot. % Tot. %

Single No 0 0% 129 58% 23,919 22% 19,893 37% ~0% 5.53
Single 256 29 20% 98 44% 26,246 24% 21,782 40% 0.86% 4.92
Single 512 30 21% 98 44% 26,246 24% 21,873 41% 0.45% 5.04
Single 1024 30 21% 98 44% 26,246 24% 21,956 41% 0.29% 5.16
Fix32 No 0 0% 197 89% 23,051 21% 20,710 38% 0.04% 3.8
Fix32 256 27 19% 176 80% 18,739 17% 15,442 29% 0.89% 3.12
Fix32 512 27 19% 176 80% 18,739 17% 15,514 29% 0.46% 3.19
Fix32 1024 27 19% 176 80% 18,740 17% 15,738 29% 0.30% 3.25
Fix16 No 0 0% 86 39% 17,081 16% 16,867 31% 8.77% 2.02

The results illustrate that using LUTs accelerates the calculation and reduces the DSP usage, in
exchange of using BRAM and some more registers and LUTs. The use of fixed-point data types reduces
resource utilization, which permits to implement a faster solution, with more loop unrolling, which
ultimately does consume more DSPs. Finally, the 16-bit precision solution outperforms the other
solutions even without any loop unrolling, thus notably decreasing resource utilization but at the
expense of excessive numerical error for the case of this implementation. Nevertheless, it must be
noted that the error metrics should only be interpreted as indicative, as they would require further
analysis, implementation optimization and training specifically for the specific data type.

As the previous intermediate results with the small NN have shown that acceptable performance
and resource utilization can be achieved with fixed point data types, the originally targeted NN size is
implemented for the 32 bit fixed-point implementation with the biggest LUT. The results for both 16
and 24 inputs versions are shown in Table 8.

Table 8. NN inference on FPGA: implemented solution results for a batch of 1024 NNs {16, 32|16|8, 4}
and {24, 32|16|8, 4} topologies with 32 bit fixed point and 1024 value LUT solution.

NN Topology
Resource Utilization

Normalized
Mean Error

Average
Computation
Time per NN [µs]

BRAM DSP Registers LUTs

Tot. % Tot. % Tot. % Tot. %

16, 32|16|8, 4 52 37.% 184 83% 27,129 25% 40,787 76% 0.302% 4.20

24, 32|16|8, 4 56 40% 184 83% 30,872 29% 50,769 95% 0.318% 5.40

It must be noted that although avoiding the floating data type is a reasonable compromise which
provides adequate results, it is expected that this compromise will eventually be less relevant in future
FPGAs, as models with dedicated floating point functions are starting to appear even for low range
families [83].

7. Results

Before proceeding to the core challenge discussed in this paper -which is the efficient
implementation of the NN inference on the two automotive-suitable embedded platforms- Figure 13
shows the worst case prediction capabilities for the two selected NN topologies implemented in the
targeted use cases: {16, 32|16|8, 4} and {24, 32|16|8, 4}. This particular plot is considered as worst
case for two main reasons. Firstly, because with 50 ms it is providing a longer prediction horizon than
really necessary. Secondly, because it is an extract of the most unfavourable situation among over
10 min of driving, subject to exceptionally strong fluctuations which result in notably worse accuracy
and the appearance of a shift of up to roughly 15–20 ms.

The bottom-line is that the achieved accuracy of the predictions is certainly satisfying and adequate
for the application, with a mean average error (over the entire lap) of just 0.28% and 0.24% for the
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NNs with 16 and 24 inputs respectively. For the especially difficult to predict situation illustrated
in Figure 13, the values rise to 0.70% and 0.45% respectively. This illustrates that the NN provides
sufficient capacity to adapt also to highly dynamic situations, including those of which only few
fragments are present in the training dataset. It also shows the benefit of the extended inputs providing
information about the derivatives of relevant signals.

Furthermore, several aspects must be emphasized in this respect. First, that the slip is strongly
affected by random irregularities of the road surface, which are unknown and cannot be predicted.
Second, that for the presented use-case, considering the lower time constant of the electric motors and
the design of the presented Torque-Vectoring optimizing controller, the prediction can be adjusted to
less challenging horizons under 50ms. Third, the said controller has been designed with far greater
safety margins than the obtained accuracy, even for the worst case fragments.

In what respects to the setup and approach for the training and validation of these NNs, we
generated a broad and diverse dataset, aiming to avoid overfitting and ensure good generalization,
including a variety of road/track models (Nürburgring, Inta and different generic test tracks) and
different driving styles (normal, aggressive, borderline and drifting) by different drivers. For this
we relied on a high-fidelity multibody vehicle dynamics simulator (Dynacar, [84,85], also involved
in real circuit tests in previous work for validation purposes [54,84]) integrated into an elaborate
model-based development framework (using MatLab-Simulink for accelerated MiL tests as well as
HiL validation [6,86]), together with models of other relevant components, subsystems and control
units. Therefore, validation tests were performed using data generated by the same setup but driving
differently. In particular, the final results were generated by one lap of mixed-style driving, including
extreme manoeuvres on the Nürburgring, driving in opposite direction to the training data.

In conclusion this approach is highly representative to assess realistically the good learning and
prediction capacity of the NNs and the outcome was successful even under the most challenging
situations in what respects to dynamical behaviour of the predicted variables.
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Figure 13. Worst case plot of a 50 ms horizon slip prediction on the front-left wheel with two NN
topologies (extract of the most adverse situation among over 10min of driving).

Ultimately focusing on the principal technical challenge which is addressed in the implementation
part of this paper, Table 9 provides a wrap-up of the intermediate results together with the final results
for the embedded NN implementation on the two selected embedded devices, the GPU and the FPGA.

The execution time results show the remarkable computation capacity of the selected embedded
GPU SoC, providing an average computation time of just 40 ns per NN for a batch of 1024 evaluations
of the targeted NN with extended inputs and even below 20 ns for bigger batches with 16 inputs.
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Table 9. Final summary of inference on GPU and FPGA for a batch of 1024 NNs with different NN
topologies (selected solutions in bold).

Device
Implementation

Computation Time per NN [µs]

NN Topology

in: hidden: out: {8, 16|12|8, 4} {16, 32|16|8, 4} {24, 32|16|8, 4}

GPU GM1 - 0.509 0.567
GPU GM2 - 0.232 0.264
GPU SM1 - 0.077 0.087
GPU SM2 - 0.058 0.071
GPU CM - 0.028 0.040
FPGA Single (LUT-no) 5.534 - -
FPGA Single (LUT-1024) 5.092 - -
FPGA Fix32 (LUT-no) 3.832 - -
FPGA Fix32 (LUT-1024) 3.254 4.201 5.403
FPGA Fix16 (LUT-no) 2.021 - -

In contrast, the performance of the FPGA has suffered from the notable penalty of not being able
to implement a fully pipelined solution, providing an average computation time per NN of 5.4 µs for
the extended inputs topology, which is 135x slower than the GPU. For a batch of 1024 evaluations for
the conceived optimization algorithm, this is slower than required for the—quite demanding- 5 ms
specification of the targeted application. Nevertheless, this also means that providing an efficient
hardware interfacing solution, a suitable design is possible also for the FPGA if some adjustment of
the use-case specification is made: reducing the batch size to 512 or alternatively either relaxing the
cycle time to 10ms or slightly reducing the complexity and precision of the NN.

Another aspect is the scaling proportionality of the computation time, considering that the
theoretical growth of computational complexity is 21% for extending the inputs from 16 to 24,
as expressed in Table 2. For the FPGA implementation, the penalty grows to 29%. For the GPU,
the effect clearly depends on the implementation: while the less efficient GM, GM2 and SM1 solutions
suffer a penalty of just 11–14%, SM2 suffers an almost exactly proportional 22%. In contrast, the penalty
for extending the inputs on the fine-tuned highly efficient CM version rises to 43%.

8. Conclusions

This work has successfully presented several NN implementations on parallel embedded
platforms of different nature, FPGAs and GPUs, integrated in cost-sensitive and industry-suitable
SoC devices. Consequently, it provides multiple enabler solutions for the innovative and challenging
vehicle dynamics use-case proposed in this paper, as well as for further research also in other fields
involving advanced control applications.

For the case of the targeted application, which required fast batch predictions of slip values for a
real-time Torque-Vectoring optimization algorithm to control multi-motor electric vehicles, we assessed
the technical feasibility of the developed implementations. These were conceived under consideration
of the current technological context as well as the automotive domain constraints, which have been
reviewed and discussed. Even when fulfilling the highly demanding design specifications defined in
this particular use-case, the outcome met or even exceeded the expectations in what respects to both
computational performance and accuracy.

The presented work has involved several notable particularities. One is restricting the embedded
platforms to industry-suitable devices which due to a lower cost point, energy consumption and size,
inevitably represent capacity and performance limitations with respect to typical non-embedded and
high-end devices. Another is that the vehicle dynamics predictions corresponding to this application
do not require complex NNs of massive dimensions as the ones used in other Machine Learning
applications and in the Deep Learning domain. The additional challenge is instead brought by the
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fact of having to calculate in under 5 ms, the effect of 1024 control actions (with 3 variables each) on
4 highly dynamic variables with a prediction horizon of up to 50 ms.

The GPU implementation has provided an outstanding performance, being two orders of
magnitude faster than the FPGA thanks to its great parallelism. But this can only be achieved
through very careful programming to maximize occupancy and avoid memory bottlenecks because,
in spite of its high memory bandwidth, the high computational throughput can lead to data exchange
inefficiencies causing a performance penalty of up to an order of magnitude.

The achieved FPGA implementation of the NN has showed one of the weaknesses of these
kind of devices: if the algorithm is too big to be well pipelined, the performance dramatically drops.
Consequently, in order to ensure sufficient performance, some compromise solutions need to be
adopted in order to satisfy the demanding targeted specifications.

Our analysis also highlights that in cases involving smaller NNs or eventually bigger devices,
aiming to achieve full pipelining, FPGAs do have the theoretical potential to provide similar -or
even higher- throughput than the selected GPU. This would be beneficial especially for bigger
batches of evaluations, to overcome the initial penalty of latency. In contrast, for the non-pipelined
implementation shown in this work, the relative efficiency impact of the batch size is marginal for the
FPGA, making it more suitable for small batches or for controllers which require a single evaluation
per control cycle.

In conclusion this work highlights very clearly fundamental strengths and weaknesses of each
platform type, depending on the application specification. Besides the pure performance aspects that
have been discussed, while the FPGA is very space-constricted, the instruction-based paradigm of
the GPU enables to implement greater functional diversity and to easily scale to bigger algorithms.
On the other hand, while the GPU depends on the CPU to operate, the FPGA can run autonomously
and could be directly interfaced with sensors and protocols, thus avoiding the initial penalty both
platforms are subject to for interfacing with the processor. This would provide another clear benefit for
use-cases with few evaluations per cycle on the FPGA.

Ultimately, both embedded platform types have shown their suitability and remarkable potential
with the provided implementations. Furthermore, the obtained outcome is a very illustrative example
of the fact that, when it comes to discussing the performance of complex highly parallel platforms based
on such different execution paradigms, the dependency regarding to the application itself—as well as
to the implementation approach- is very significant and needs to be analysed on a per-use-case basis.

9. Future Work

Having confirmed the relevance and feasibility of the application and enablers presented in this
paper, future work will take this baseline and go into further depth regarding the application itself, as
well as both embedded implementations.

Firstly, using the achieved implementations for very fast embedded NN execution, the benefits of
the Torque-Vectoring optimization algorithm itself will be further pursued, paying special attention
to the vehicle dynamics performance. Furthermore, the estimation capacities and implications of
different NN designs will also be addressed. Besides, a more detailed analysis on the effect of precision
loss due to data types and LUT utilization will be considered.

For both embedded implementations, an exhaustive analysis of the interfacing between the
heterogeneous parts of the SoC must also be addressed, aiming to minimize the overhead caused by
the data exchange. This will not only require careful programming of the interfacing mechanisms but
it could also require to conceive solutions where some additional functionalities are integrated in the
accelerator part, in order to further reduce the data exchange. For instance, the generation of the batch
of values to be evaluated could be integrated. Furthermore, the selection of the best solutions for the
optimization could also be accelerated.

Focusing on one platform, the FPGA implementation will be enhanced in different manners.
Besides optimizations regarding aspects such as pipelining and data types, a major architectural
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redesign will be approached. This is conceived to not simply implementing several network layers
into the hardware but instead implementing a single cyclically reusable layer, with the capacity of a
fast switching between weights and biases corresponding to different layers.

The FPGA will also be used for algorithms involving small batches and single evaluations as
discussed in the conclusions, such as virtual sensor functions for current values (Figure 4, bottom left)
or for prediction of values not subject to the real-time optimization of different control actions.

On the other hand, the performance of more powerful embedded GPUs for bigger batches and
bigger NNs for different applications will also be addressed.

A final topic to be addressed with further depth is functional safety, analysing firstly the criticality
of the application as a whole and secondly the criticality of the functionality of the NN. The distribution
of functions and protection mechanisms between the processor and the accelerator will require
exhaustive analysis, as well as carefully crafted validation approaches. Here, the benefits that the
hardware-nature of the FPGA provides in this sense are to be discussed as well.
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