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Abstract: The Convolutional Neural Network (CNN) has been used in many fields and has achieved
remarkable results, such as image classification, face detection, and speech recognition. Compared
to GPU (graphics processing unit) and ASIC, a FPGA (field programmable gate array)-based
CNN accelerator has great advantages due to its low power consumption and reconfigurable
property. However, FPGA’s extremely limited resources and CNN’s huge amount of parameters and
computational complexity pose great challenges to the design. Based on the ZYNQ heterogeneous
platform and the coordination of resource and bandwidth issues with the roofline model, the CNN
accelerator we designed can accelerate both standard convolution and depthwise separable
convolution with a high hardware resource rate. The accelerator can handle network layers of different
scales through parameter configuration and maximizes bandwidth and achieves full pipelined by
using a data stream interface and ping-pong on-chip cache. The experimental results show that
the accelerator designed in this paper can achieve 17.11GOPS for 32bit floating point when it can
also accelerate depthwise separable convolution, which has obvious advantages compared with
other designs.

Keywords: convolutional neural network (CNN); field programmable gate array (FPGA); depthwise
separable convolution; accelerator

1. Introduction

Inspired by biological vision systems, Convolutional Neural Network (CNN) is a well-known deep
learning algorithm extended from Artificial Neural Network (ANN) that has become one of the research
hotspots in many scientific fields [1,2]. It has achieved great success in image classification [3], object
detection [4], and speech recognition [5]. This technique has also been widely used in the industry,
such as monitoring and surveillance, autonomous robot vision, and smart camera technologies [6–9].

Due to the development of consumer electronics and the development of the Internet of
Things (IoT), embedded devices have occupied an important position. However, most of the current
image processing devices are still based on the PC architecture, which is inconvenient for some specific
occasions. Or, the use of embedded devices is only the image acquisition and display work and the
background is still through the PC for data processing. Consumer-grade IoT devices often rely on
high-quality Internet connections, are only available in some areas, and cost more. Therefore, the high
performance of CNN directly on embedded devices has great application requirements.

The implementation of high performance relies on the computing platform. Because CNN is
computationally intensive, it is not suitable for general-purpose processors, such as traditional CPUs.
Many researchers have proposed CNN accelerators for implementation in the Field-programmable gate
array (FPGA) [10,11], graphics processing unit (GPU) [3], and application-specific integrated circuit
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(ASIC) [12]. These accelerators provide an order of magnitude performance improvement and energy
advantage over general purpose processors [13]. Although the GPU has superior performance in the
computational efficiency of deep learning, it is expensive and has large power consumption. There are
many problems in the large-scale deployment and operation platform. For the same given functional
design, the power consumption of a single GPU is often several tens of times or even hundreds of
times the power consumption of the FPGA. Compared to ASICs, FPGAs have a short design cycle
and can be reconfigured. In recent years, due to the reconfigurable, customizable, and energy-efficient
features of FPGAs [14] and the rapid development of high-performance products and more flexible
architecture design, more and more researchers are focusing on FPGA-based CNN hardware Accelerate
implementation. On the other hand, many efficient network structures have been proposed which
effectively reduces the computational complexity and parameter quantities of the model. Among them,
depthwise separable convolution is very typical and widely used. This has been applied in Mobile Net
V1 [15] and later in Mobile Net V2 [16].

In general, deploying CNN on an FPGA-based hardware platform has become a research
boom through the adoption of reliable and efficient hardware acceleration solutions to achieve
high performance. The literature [7,17,18] implements a complete CNN application on the FPGA
with high performance by exploiting different parallelism opportunities. Work [7,17] mainly uses
the parallelism within feature maps and convolution kernel. Work [18] uses “inter-output” and
“intra-output” parallelism. However, these three improve performance with high bandwidth and
dynamic reconfiguration instead of using the on-chip buffer for data reuse. Reference [19] aims
to design efficient accelerator problems with limited external storage bandwidth by maximizing
data reuse, however it does not consider computational performance. Further, it is necessary to
reprogram the FPGA when computing the next layer, which greatly increases the whole running
time. Literature [20] studies the data parallelism of deep learning algorithms using six FPGAs to
calculate cloud acceleration calculations, however it requires a well-coordinated control program and
a large system. None of the above studies have taken into account the deployment requirements of
mobile devices, such as storage bandwidth and resource constraints, and flexible portability. Work [21]
presents an FPGA implementation of CNN designed for addressing portability and power efficiency.
The implementation is as efficient as a general purpose 16-core CPU and is almost 15 times faster than
a So C GPU for mobile application. The Squeeze Net DCNN is accelerated using a So C FPGA in order
for the offered object recognition resource to be employed in a robotic application [22]. In [23], under
the roofline model, considering resources and bandwidth, a CNN accelerator was implemented on
the VC707 FPGA board. Literature [24] proposes many optimization methods and uses the Xilinx
SDAccel tool to accelerate a convolution layer under the OpenCL framework with a performance
improvement of 14.4 times. In [25], the authors present a systematic methodology for maximizing the
throughput of an FPGA-based accelerator. In this work, an entire CNN model is proposed consisting
of all CNN layers: convolution, normalization, pooling, and classification layers. Work [26] proposes a
FPGA accelerator with a scalable architecture of deeply pipelined Open CL kernels. However, none of
the above work [21–26] implements depthwise separable convolution, therefore they cannot apply to
series networks such as MobileNet. This paper makes the following major contributions:

1. A configurable system architecture is proposed based on the ZYNQ heterogeneous platform.
Under this architecture, the optimal design of the accelerator is completed with the Roofline
model, and the accelerator is scalable.

2. Based on the single-computation engine model, the CNN hardware accelerator we designed
efficiently integrates standard convolution and depthwise separable convolution.

3. Ping-pong on-chip buffer maximizes the bandwidth and the CNN accelerator we designed is
full pipelined.

The rest of this article is organized as follows: Section 2 introduces the basic principles of CNN
and depthwise separable convolution. Section 3 describes the architecture of this implementation
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and elaborates on the design details of the accelerator. Section 4 describes the experimental results
of implementing the accelerator on the ZYNQ platform, completing design verification and analysis.
Section 5 summarizes the content of this article.

2. Background

2.1. Convolutional Neural Network

A typical CNN contains multiple computation layers which are concatenated together. The main
common network layers are the convolutional layer, pooled layer, and fully connected layer. The details
are as follows.

2.1.1. Convolution Layer

The convolutional layer is the most important layer in a CNN. It is used to extract the
characteristics of the input image or the output feature map data of the upper layer. The operation is a
two-dimensional convolution calculation by input data and a plurality of different convolution kernels,
and a new two-dimensional output process is obtained by the activation function. The calculation
formula for a single two-dimensional convolution is given by Equation (1).

Oxy = f (
k−1

∑
j=0

k−1

∑
i=0

px+i,y+jwij + b) 0 ≤ x ≤W, 0 ≤ y ≤ H (1)

where px+i,y+j is the pixel value of the input feature map at the point of (x + i, y + j), k is the size
of the convolution kernel, W and H are the width and height of the input feature map, wij is the
corresponding weight in the convolution kernel, b is the bias and f is the activation function (e.g.,
ReLU, Sigmoid, Tanh, Etc.), and Oxy is a convolution output value of a two-dimensional convolution
with a convolution window size of k× k centered on the point of (x, y).

The calculation of the convolutional layer is composed of many two-dimensional convolution
operations, and its calculation is as Equation (2).

Xn
j = f ( ∑

i ∈ N
j ∈ M

(Xn−1
i ∗ kn

j,i) + bn
j ) (2)

where Xn
j is the jth feature map output by the nth layer convolution layer, N is the number of input

feature map channels, kn
j,i indicates the corresponding convolution kernel and M is the number of

convolution kernels, bn
j is the offset term, ∗ is a convolution operation, and f is the activation function.

2.1.2. Pool Layer

The pool layer, also called the down sample layer, reduces feature map redundancy and network
computation complexity by reducing the feature map dimensions and effectively prevents over fitting.
The formula for calculating the pooling layer is shown in Equation (3).

Xn
j = f (down(Xn−1

j )) (3)

where Xn
j is the jth feature map output by the nth layer convolution layer, down is the pooling method,

commonly used is the average pooling and maximum pooling, and f is the activation function.
When the pooling step size is 2, the process of 2 × 2 maximum pooling is shown in the Figure 1.



Electronics 2019, 8, 281 4 of 18Electronics 2019, 8, x FOR PEER REVIEW 4 of 19 

Electronics 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics 

15 27 17 96

58 105 46 36

48 156 98 37

147 201 44 54

105 96

201 98

105=max(15,27,58,105)

 

Figure 1. Maxpool. 

2.1.3. Fully-Connected Layer 

The full connection is generally placed at the end of the convolutional neural network and the 

high-level two-dimensional feature map extracted by the previous convolutional layer is converted 

into a one-dimensional feature map output. In the fully connected layer, each of its neurons is 

connected to all neurons of the previous layer and there is no weight sharing. 

2.2. Depthwise Separable Convolution 

In recent years, in order to run high-quality CNN models on mobile terminals with strict 

memory and computing budgets, many innovative network models have been proposed, such as 

MobileNet and ShuffleNet. These models include depthwise separable convolution which 

effectively reduces the amount of parameters and calculations of the network under limited loss of 

precision. 

The standard convolution uses a convolution kernel with the same channels of input data to 

sum a result after channel-by-channel convolution. As Figure 2 shows, depthwise separable 

convolution is divided into depthwise convolution and pointwise convolution. The former refers to 

the use of a set of two-dimensional (channel number is 1) kernels to perform the convolution for 

each channel between input feature maps and kernels individually. The latter is equivalent to the 

standard convolution of 1×1 kernel size. In the following text, it is implemented as a standard 

convolution. 

N

F

F



K

N

…
…

M

R

M

…
…
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Figure 1. Maxpool.

2.1.3. Fully-Connected Layer

The full connection is generally placed at the end of the convolutional neural network and the
high-level two-dimensional feature map extracted by the previous convolutional layer is converted into
a one-dimensional feature map output. In the fully connected layer, each of its neurons is connected to
all neurons of the previous layer and there is no weight sharing.

2.2. Depthwise Separable Convolution

In recent years, in order to run high-quality CNN models on mobile terminals with strict memory
and computing budgets, many innovative network models have been proposed, such as MobileNet
and ShuffleNet. These models include depthwise separable convolution which effectively reduces the
amount of parameters and calculations of the network under limited loss of precision.

The standard convolution uses a convolution kernel with the same channels of input data to sum
a result after channel-by-channel convolution. As Figure 2 shows, depthwise separable convolution is
divided into depthwise convolution and pointwise convolution. The former refers to the use of a set of
two-dimensional (channel number is 1) kernels to perform the convolution for each channel between
input feature maps and kernels individually. The latter is equivalent to the standard convolution of
1 × 1 kernel size. In the following text, it is implemented as a standard convolution.
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Assuming that the size of the input feature map is F ∗ F ∗ N, the size of the convolution kernel is
K ∗ K ∗M ∗ N and the stride is 1. The parameter quantities of the standard convolution layer are:

Wsc = K ∗ K ∗M ∗ N (4)

The amount of calculation is:

Osc = F ∗ F ∗ K ∗ K ∗ N ∗M (5)

The parameter quantities of depthwise separable convolution are:

Wsdc = K ∗ K ∗ N + M ∗ N (6)

The amount of calculation is:

Osdc = F ∗ F ∗ K ∗ K ∗ N + F ∗ F ∗ N ∗M (7)

Thus, the reduction factors on weights and operation are calculated in Equation (8):

Fw = Wsdc
Wsc = 1

M + 1
K2

Fo = Osdc
Osc = 1

M + 1
K2

(8)

3. Architecture and Accelerator Design

In the AI application scenario, the CPU is highly flexible, however not computationally
efficient, and the accelerator is computationally efficient, however not flexible enough. Therefore,
the architecture that is currently widely used for deep learning usually combines a CPU with an
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accelerator, called a heterogeneous system. We choose the Xilinx ZYNQ 7100 heterogeneous chip as
the hardware platform to complete the design of the system architecture and accelerator.

3.1. Design Overview

There are currently two different implementation modes for CNN due to its hierarchical structure;
one is Streaming Architectures and the other is Single Computation Engine. The former which allocates
corresponding hardware resources to each network layer has the following three characteristics: (1) it
can realize inter-layer parallelism and flexibly control the parallelism within each layer. (2) It is highly
customized and inflexible. (3) The demand for resources is high and only applies to small networks.
The latter means that different network layers share the same accelerator through resource reuse,
which is a non-highly customized architecture, is more flexible, and is easier to migrate between
platforms. Therefore, considering the limited resources of the hardware platform and the parallelism
of fully developing the single-layer network structure, we design the system architecture in the single
computation engine mode, as shown in Figure 3.
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Figure 3. FPGA (field programmable gate array) architecture of system implementation.

The system architecture mainly includes external memory Double Data Rate (DDR), processing
system (PS), on-chip buffer, accelerator in programmable logic (PL), and on-chip and off-chip bus
interconnection. The initial image data and weights are pre-stored in the external memory DDR. PS and
PL are interconnected through the AXI4 bus. The accelerator receives configuration signals from the
CPU through the AXI4_Lite bus (e.g., convolution kernel size, stride, performs standard convolution
or depthwise convolution, etc.). Under the action of the DDR controller in the PS, the weight and
input data of the current layer required by the accelerator are read from the DDR and are converted
from the AXI4_memory map format to the AXI4_streaming format into the on-chip buffer of the
accelerator under the action of the Direct Memory Access (DMA). The buffer of the IP core uses the
AXI4_Streaming interface and the ping-pong mode. One buffer acts as a producer for receiving data
from the DMA and the other is used to participate in the current calculation of the IP core, called
a consumer. In the next stage, the producer and the consumer swap. After being processed by the
accelerator, the output is sent back to the DDR through the AXI4 bus and the above operation is
repeated until the calculation of the entire network model is completed.

It can be seen that the accelerator has two data exchanges with the external memory under
the architecture, including receiving the weights and input feature map and sending output feature
map back to the off-chip. Frequent data exchange imposes high requirements on the bandwidth
of the platform. Therefore, taking the MobileNet + SSD as an example, use the roofline model to
jointly consider the computing platform resources and storage bandwidth to seek optimal design for
the accelerator.
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3.2. Accelerator Design under the Roofline Model

3.2.1. Accelerator Overview

The structure of the accelerator is shown in Figure 4. The on-chip buffer is divided into three
parts (1) Input buffer for storing input feature map, (2) Weights buffer for storing weights, (3) Output
buffer for storing intermediate results and the output feature map. In order to maximize the external
storage bandwidth, the three all use AXI_Streaming interfaces and the ping pong mode. The three
processes of inputting input feature map data and weights, calculating convolution, and outputting
the calculation result are completely flowed. The compute engine can be selected to work in standard
convolution or depthwise convolution modes under the control of the CPU through the AXI_Lite bus.
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3.2.2. The Roofline Model of ZYNQ 7100

In order to solve the performance prediction problem of the deep learning model on a specific
hardware platform, in [27], the roofline model proposed a method of quantitative analysis using
operational intensity, which calculates how fast the floating point calculation speed can be achieved
under the limitation of external storage bandwidth and computing resources on a hardware platform.
This is shown in Figure 5.
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Equation (9) formulates the attainable throughput of an application on a specific hardware
platform. Giga floating-point operations per second (GFLOPS) is a measure of computing performance.
The roofline is divided into two regions: compute bound and memory bound. The computational
performance achievable on the platform by the network model cannot exceed the minimum of the
two regional bottlenecks. In the case of compute bound, the bottleneck is the computing roof (i.e.,
a computing platform exhausts all the floating-point operations that can be completed per second).
When in the memory bound, the bottleneck is multiplied by the computing to communication (CTC)
ratio (i.e., operations per DRAM traffic) and the I/O memory bandwidth (BW),

Attainable per f ormance = min{Computational roo f , CTC× BW} (9)

In our work, we calculate the computational roof and the I/O memory maximum bandwidth roof
of the Xilinx ZYNQ 7100 computing platform according to Equation (10).

Computation roo f = 2× NDSP
5 × f = 80.8(GPLOPS)

Bandwidth roo f = 64
8 × NHP × f = 3.2(GByte/s)

(10)

where NDsp is the number of hardware platform DSP divided by 5 because it requires five DSPs
to complete a multiplication and addition operation of 32-bit floating-point multiply. NHP is the
number of High Performance (HP) ports and f is the system clock frequency (assumed to be 100 MHz).
The constructed skeleton model is shown in Figure 6.
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3.2.3. Data Partition and Exploring the Design Space

Since the on-chip cache resources are often extremely limited, this is usually unsatisfactory for all
input feature maps and weights to be cached on the chip. The data must be partitioned. As shown
in Figure 7, since the convolution kernel size K itself is small, it is not divided in this dimension.
R, C, M, N, and Ni are the width, height, and number of convolution kernels of the output feature
map (also the number of channels of the output feature map), the channels of convolution kernel
channels, and the channels of the input feature map, respectively. Tr, Tc, Tm, and Tn are the block factors
of width, height of output feature map, the number and channels of convolution kernels, respectively.
Tri, Tci, and Tni are the block factors width, height, and channels of the input feature map, respectively.
The above-mentioned block coefficient setting takes into account both standard convolution and
depthwise convolution.
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Figure 7. Data block diagram.

We use the example in Figure 8 to illustrate how block convolution works. In this example,
the input tensor consists of three separated channels of size 8 × 8 with additional zero padding,
the kernel size is 3 × 3, and each input feature map is divided into four independent tiles. Since
inter-tile dependencies are eliminated in block convolution, it is not possible to obtain an output tile
of size 4 × 4 directly from three input tiles at the corresponding position. As shown in Figure 8a,
when the stride is 1, an input tile of size 6 × 6 is required to get an output tile of size 4 × 4. In Figure 8b,
an input tile of size 5 × 5 is required to get an output tile of size 2 × 2 when the stride is 2. In block
convolution, the relationship between Tr and Tri can be determined as Equation (11):

Tri = S ∗ Tr + K− S (11)
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Figure 8. An example of block convolution: (a) The stride of convolution is one; (b) The stride of
convolution is two.

Block convolution affects the external memory access of the model, which affects the CTC Ratio.
See Equation (12), which establishes a mathematical connection between the block factors and
CTC Ratio.
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CTC Ratio = number o f operations
number o f external access bytes

= (2 × R × C × M × N × K × K)
(4 × (αin × Bin+αw × Bw+αout×Bout))

Where Bin = TniTriTci = Tni(STr + K− S)(STc + K− S)

Bw = TmTnK2

Bout = TmTrTc

αin = αw = R
Tr
× C

Tc
× M

Tm
× N

Tn

αout = R
Tr
× C

Tc
× M

Tm

(12)

In particular, for standard convolution, N = Ni and Tni = Tn; however, for depthwise convolution,
N = 1, M = Ni and Tni = Tm.

The hardware acceleration effect of CNN depends largely on the degree of development of
algorithm parallelism. CNN belongs to a feedforward multi-layer network and its interlayer structure,
intra-layer operation, and data stream drive all have certain similarities. Therefore, the convolutional
neural network topology CNN itself has many parallelisms. This mainly includes (1) multi-channel
operation of the input feature map and convolution kernel. (2) The same convolution window
and different convolution kernels can simultaneously perform convolution operations. (3) Multiple
convolution windows and the same convolution kernel can simultaneously perform convolution
operations. (4) In a convolution window, the parameters corresponding to all convolution kernels
of all neuron nodes and corresponding parameters can be operated simultaneously. The above four
parallelisms correspond to the dimensions of Tn, Tm, Tr, and K, respectively. Computational parallel
development not only has certain requirements for computing resources, yet also requires an on-chip
cache structure to provide the data needed for parallel computing. However, it also increases the
on-chip cache bandwidth. The Vivado HLS development tool makes it very easy to partition an array
in a particular dimension. However, if the parallelism of (3) and (4) is developed, the cache structure
of the data is shown in Figure 9.
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Figure 9. Array partitioning in Tr and K dimensions.

As can be seen from the figure, if the data in a convolution window is to be distributed and
stored in K × K buffers, the data is not continuous in the Tr dimension. Vivado HLS is difficult to
implement this with array partitioning. Moreover, it repeatedly stores the overlapping data between the
convolution windows which greatly increases the consumption of on-chip cache resources. Therefore,
we will develop the parallelism of the calculations on the dimensions Tm and Tn.

The calculation engine diagram is shown in Figure 10. When calculating the standard convolution,
the Tn channels of the input feature map are simultaneously multiplied by the weights of the
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corresponding channels and then the intermediate results are continuously accumulated which will
greatly reduce the delay by pipeline. At the same time, the same operation of the Tm group among
different convolution kernels is performed. When dealing with depthwise convolution, channels
of the convolution kernel are filled with zero to Tm in order to efficiently integrate the two kinds of
convolution and to not destroy the computational parallelism, as shown in Figure 10b.
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(b) Depthwise separable convolution. 
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It can be seen from the above analysis that under the calculation engine we designed,
physical computation roo f can be calculated by the Equation (13) for a given block factors of Tr,
Tc, Tm, and Tn.

physical computation roo f = total number o f operations × system clock f requency
number o f execution cycles

= (2 × R × C × M × N × K × K) × 0.1
[ M

Tm ] × [ N
Tn ] × [ R

Tr ] × [ C
Tc ] × (Tr × Tc × K × K+P)

≈ (2 × M × N) × 0.1
[ M

Tm ] × [ N
Tn ]

where P = pipeline depth − 1

(13)
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Due to array partition and ping-pong buffers, the consumption of on-chip cache resources is
increased. To associate the on-chip buffer with the block factors, we need to satisfy Equation (14).

Weight Bu f f er + Input bu f f er + Output Bu f f er

=
(

Tm
2 ×

Tn
2

)
× 2 + Tn

2 ×
Tri × Tci

512 × 2 + Tn
2 ×

Tr × Tc
512 × 2

= Tm × Tn
2 + Tn × Tri × Tci

512 + Tm × Tr × Tc
512 < number o f BRAM

(14)

Combining the above-mentioned CTC Ratio, pysical computation roo f , and the analyzed on-chip
cache relationship with the roofline model of the ZYNQ 7100 under the block factors of Tr, Tc, Tm,
and Tn, we seek the best design and find the optimal block factor, as shown in point A of the Figure 11,
under some certain constraints, as shown in Equation (15).

max physical computation roo f ≈ (2 × M × N) × 0.1
[ M

Tm ] × [ N
Tn ]

s.t.



physical computation roo f ≤ min{Computational roo f , CTC× BW}
Tm × Tn

2 + Tn × Tri × Tci
512 + Tm × Tr × Tc

512 < number o f BRAM
0 ≤ Tr ≤ R
0 ≤ Tc ≤ C
0 ≤ Tn ≤ N
0 ≤ Tm ≤ M


(15)
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According to the above ideas, the optimal block factors Tr_opt, Tc_opt, Tm_opt, and Tn_opt of
the current network layer can be obtained by programming with Matlab. However, the optimal
block coefficients obtained from the different layers are different. In particular, Tm and Tn affect the
computational parallelism. If Tm and Tn are allowed to be variable, complex hardware architectures
need to be designed to support reconfiguration of computational engines and interconnects. So, we will
solve the global optimal Tm and Tn under the whole network model, as shown in Formula (16).

Min global number o f execution cycles

= min
N
∑

i=1

total number o f operations×system clock f requency
pyscial computation o f the i th layer

s.t.

{
Tm_min ≤ Tm ≤ Tm_max

Tn_min ≤ Tn ≤ Tn_max

} (16)
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where N is the number of network layers. Tm_min and Tm_max are the minimum and maximum values
of Tm_opt sought by all network layers. Tn_min and Tn_max are the minimum and maximum values of
Tn_opt sought by all network layers.

The final global optimal solution is obtained:

[Tm Tn] = [64 6]
global number o f execution cycles = 5602706

(17)

Since Tn and Tm have been determined, the configurable parameters of the accelerator are shown
in Table 1.

Table 1. Configurable parameters.

Parameter Description

width The width of the input feature map
height The height of the input feature map

channels_in Number of channels of convolution kernels
channels_out Number of channels of the output feature map

Tr Block factor of the width of the output feature map
Tc Block factor of the height of the output feature map
Tri Block factor of the width of the input feature map
Tci Block factor of the height of the input feature map
Tni Block factor of the channels of the intput feature map

kernel The size of convolution kernels
stride The stride of convolution
pad Whether to pad or not

depthwise Whether it is a depthwise convolution or not
relu Whether to relu or not
split Whether it is a split layer (detection layer) or not

4. Experimental Evaluation and Results

The accelerator is implemented with Vivado HLS (v2016.4). Vivado HLS (v2016.4) can implement
the accelerator in C++ and convert it to the RTL as a Vivado’s IP core which greatly shortens
the development cycle. The C code design of the accelerator can be implemented by adding the
HLS-defined pragma of Vivado HLS to achieve the parallelism described previously, such as pipeline,
array partition, dataflow, and so on. After that, the IP core is imported into the Vivado (v2016.4) project
to complete the synthesis and verification on FPGA.

4.1. Resource Utilization

The hardware resources consumed by the accelerator are shown in Table 2.

Table 2. Resource utilization of the accelerator.

Name Bram_18k DSP FF LUT Power
(pipelined)

Power
(unpipelined)

Total 708 1926 187,146 142,291 4.083 W 3.993 W
Available 1510 2020 554,800 277,400 - -

Utilization (%) 46 95 38 51 - -

It can be seen from the table that the implemented accelerator has a high hardware resource rate
and also verifies the analysis results of the previous design exploration and computational parallelism.

4.2. Comparisons of Pipelined and no Pipelined

MoblieNet+SSD has a total of 47 network layers which contains both standard convolution and
depthwise separable convolution. We use the first network layer that is the standard convolution
and the second network layer that is depthwise convolution as the example to compare the running
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time of full pipelined and no pipelined combined with layer parameters for more details. Table 3
is the parameter of the two network layers. A more detailed comparison is as shown in Tables 4
and 5, respectively.

Table 3. Parameter of the two network layers.

Name First Layer First Layer (Block) Second Layer Second Layer (Block)

Output_fm row (R) 150 150 150 150
Output_fm col (C) 150 150 150 150

Output_fm channel (M) 32 64 32 64
Input_fm channel (Ni) 3 6 32 64

Kernel channel (N) 3 6 1 6
Kernel (K) 3 3 3 3
Stride (S) 2 2 1 1

Table 4. Comparisons of the first layer.

Name No Pipelined Full Pipelined

Latency (clock cycles) 1,921,492 934,612
Clock frequency (MHz) 100 100

Time (ms) 19.21 9.35
Calculated amount (GLOPs) 0.16 0.16

Performance (GLOPS) 8.32 17.11

Table 5. Comparisons of the second layer.

Name No Pipelined Full Pipelined

Latency (clock cycles) 2,816,722 1,904,020
Clock frequency (MHz) 100 100

Time (ms) 28.2 19
Calculated amount (GLOPs) 0.16 0.16

Performance (GLOPS) 5.67 8.42

The parameters and structure of the network layer are different and the calculation throughput
is also different. The performance bottleneck of MobileNet + SSD is the bandwidth roof rather than
the computation roof. Therefore, the latency of the full-flow state achieved by the stream data and
the ping-pong technique is greatly reduced. Combining the resource report, the pipelined version has
higher energy efficiency than the version of not pipelined.

4.3. Comparisons with CPU Implementation

The CPU version is completed by the Cortex-A9 core of ZYNQ 7100. The complier is
“arm_xilinx_eabigcc” in Xilinx Software Development Kit. And the software version of -O3 compilation
flags is used to compare with an accelerator. The calculation amount of each layer is shown as Figure 12.
The running time results of using the CPU and accelerator to complete the MobileNet + SSD network
are shown as Figures 13 and 14, respectively.

The running time of each layer in Figures 13 and 14 includes the time fetching the data from
the external memory, computing, and sending the results to the external memory with each layer.
Combining Figures 13 and 14, it indicates that the time consumption of the accelerator is considerably
smaller, more than 150 times faster compared with the software process.
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4.4. Comparisons with Others

Compare our implementation of the accelerator with other FPGA-based accelerators, as shown in
Table 6.

Table 6. Comparison to previous implementations.

[7] [17] [18] [19] Ours

Precision 16 bits fixed fixed point 48 bits fixed fixed point 32 bits float
frequency (MHz) 115 125 200 150 100

FPGA chip Virtex5 LX330T Virtex5 SX240T Virtex5 SX240T Virtex6 SX240T ZYNQ 7100
Performance (GMACS) 3.37 3.50 8.00 8.50 8.55

Performance (GOPS) 6.74 7.00 16.00 17.00 17.11

Since one Multiply-Accumulate (MACC) contains two operations, we convert the performance
indicators into (Giga operations per second) GOPS and compare them. Other accelerator
implementations do not include depthwise separable convolution, so the performance of our standard
convolution is involved in the comparison. If using a fixed-point calculation engine, our method can



Electronics 2019, 8, 281 16 of 18

better perform because the fixed-point processing unit uses fewer resources. It can be seen that the
accelerator we have achieved has certain performance advantages.

5. Conclusions

In this article, we implemented a CNN accelerator on the Xilinx ZYNQ 7100 hardware platform
that accelerates both standard convolution and depthwise separable convolution. Thanks to the
heterogeneous mode of ZYNQ, the accelerator based on the single-computing engine mode can
realize network layer acceleration of different scales under the configurable architecture we designed.
Taking the MobileNet + SSD network design as an example, the accelerator modeled the global
optimal computational parallelism parameter of the entire network under the roofline model of
ZYNQ 7100. In order to maximize bandwidth and reduce the delay caused by on-chip off-chip data
exchange, the three stream buffers on the chip use the data stream interface and set the ping-pong
buffer mode. Even when dealing with standard convolution or depthwise separable convolution,
the above-mentioned technology achieves a full pipelined state with a much slower delay than the
no pipelined state. In the end, the accelerator achieved a computing performance of 17.11GFLOPS at
a clock frequency of 100 MHz and high resource utilization, which is superior to previous designs.
Our current system clock frequency is only 100 MHZ, which is lower than other designs. If we can
increase the system clock, the performance of the accelerator will be significantly improved.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FPGA Field Programmable Gate Array
IoT Internet of Things
GPU Graphics Processing Unit
ASIC Application-Specific Integrated Circuit
Open CL Open Computing Language
DDR Double Data Rate
AXI Advanced eXtensible Interface
DRAM Dynamic Random Access Memory
PS Processing System
PL Programmable Logic
DMA Direct Memory Access
HP High Performance
GFLOPS Giga FLoating-point Operations Per Second
CTC Computing To Communication
BW BandWidth
DSP Digital Signal Processing
FF Flip Flop
LUT Look-Up-Table
MACC Multiply-Accumulate
RTL Register Transfer Level
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