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Abstract: Field programmable gate array (FPGA) is widely considered as a promising platform for
convolutional neural network (CNN) acceleration. However, the large numbers of parameters of
CNNs cause heavy computing and memory burdens for FPGA-based CNN implementation. To solve
this problem, this paper proposes an optimized compression strategy, and realizes an accelerator
based on FPGA for CNNSs. Firstly, a reversed-pruning strategy is proposed which reduces the
number of parameters of AlexNet by a factor of 13x without accuracy loss on the ImageNet dataset.
Peak-pruning is further introduced to achieve better compressibility. Moreover, quantization gives
another 4 x with negligible loss of accuracy. Secondly, an efficient storage technique, which aims
for the reduction of the whole overhead cache of the convolutional layer and the fully connected
layer, is presented respectively. Finally, the effectiveness of the proposed strategy is verified by
an accelerator implemented on a Xilinx ZCU104 evaluation board. By improving existing pruning
techniques and the storage format of sparse data, we significantly reduce the size of AlexNet by 28x,
from 243 MB to 8.7 MB. In addition, the overall performance of our accelerator achieves 9.73 fps for
the compressed AlexNet. Compared with the central processing unit (CPU) and graphics processing
unit (GPU) platforms, our implementation achieves 182.3x and 1.1x improvements in latency and
throughput, respectively, on the convolutional (CONV) layers of AlexNet, with an 822.0x and
15.8x improvement for energy efficiency, separately. This novel compression strategy provides a
reference for other neural network applications, including CNNs, long short-term memory (LSTM),
and recurrent neural networks (RNNSs).

Keywords: CNN; optimized compression; FPGA; reversed-pruning; peak-pruning; quantization

1. Introduction

Deep convolutional neural networks (DCNNSs) [1] have shown significant advantages in many
artificial intelligence (AI) applications, such as computer vision and natural language processing [2—4].
The performance of the DCNN is improving rapidly: the winner of ImageNet classification
has promoted the top-1 classification accuracy from 57.2% in 2012 (AlexNet) to 76.1% in 2015
(ResNet-152) [5,6]. However, this accuracy improvement is achieved at the expense of higher
computational complexity first. For example, AlexNet takes 1.4 GOPS to process a single 224 x
224 image, while ResNet-152 consumes 22.6 GOPS. The traditional central processing unit (CPU)
platform has difficulty in satisfying the computing requirements of a convolutional neural network
(CNN). Another key challenge is the energy consumption. Although the graphics processing unit
(GPU) shows a strong parallel computing performance for accelerating the CNN [7], the excessive
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power consumption limits their application potential. The GPU has an advantage in accelerating the
training phase of the CNN without considering power-hungry and volume-constrained problem:s,
while a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC)
are suitable for accelerating the inference phase of the CNN with limited hardware resources and
tight power budgets [8-10]. Though the ASIC has both excellent performance and energy efficiency,
it suffers from low flexibility, high development costs, and a long development cycle.

The FPGA has shown excellent performance, especially energy efficiency and flexibility in
accelerating deep learning. Farabet exploits the inherent parallelism of the CNN and takes full
advantage of multiple hardware multiply accumulate units on the FPGA [11]. A scalable dataflow
hardware architecture is optimized for the computation of general-purpose vision algorithms [12].
Meng develops a deep model, termed the Gabor CNN, to address the computing-resource-saving
problem [13]. Liu proposes a uniform architecture design by mapping convolutions to matrix
multiplications for accelerating both two dimensional (2D) and three dimensional (3D) CNNs [14].
Despite the progress made, those accelerators take the algorithm as a black box, only focusing on
hardware architecture optimization. Different from the previous approaches, Han presents the
“deep compression” and “efficient speech recognition engine” (ESE) to support sparse recurrent
neural networks (RNNs) and long short-term memory networks (LSTMs) [15-17], and also
provides the “efficient inference engine” (EIE) to perform inference on the compressed DNNs [18].
These software-hardware co-designs show great advantages in accelerating deep learning, but there is
still a lack of analysis on the connection between the fully connected layer and the convolutional layer,
leaving plenty of room for algorithm optimization.

From the hardware perspective, a compressed CNN model requires less computation and memory,
indicating a great potential to improve speed and energy efficiency. However, the model compression
algorithm makes the computation pattern irregular, and the conventional FPGA-based accelerators
are optimized for uncompressed CNN models, resulting in huge wastes of computation cycles and
memory bandwidth compared with running on compressed CNN models.

In this paper, we propose an optimized compression strategy, and implement an efficient
FPGA-based accelerator for a compressed CNN. Firstly, we present the reversed-pruning and
peak-pruning method, respectively, which significantly reduces the number of parameters without
affecting the accuracy. Secondly, quantization is applied to decrease precision and bit width with
negligible loss of accuracy, aggravating more zero weights and one weights. Thirdly, an efficient storage
method for the convolutional layer and the fully connected layer is proposed to reduce the occupancy
of the whole overhead cache, separately. Finally, we design an accelerator for a compressed CNN based
on the Xilinx Zynq FPGA. In order to verify the performance, we implement the compressed AlexNet
on the Xilinx ZCU104 evaluation board using Xilinx SDx IDE tools and the Vivado 2018.2 system suite.

The paper is organized as follows: Section 2 provides the background for model compression.
Section 3 presents our optimized model compression techniques, including the reversed-pruning,
peak-pruning, and quantization, and then efficient storage is proposed for reducing overhead cache.
Efficient FPGA-based accelerator for the compressed CNN and its main components are designed
in Section 4. Section 5 describes the performance of our accelerator compared with similar FPGA
implementations, and Section 6 concludes the paper.

2. Motivation for Compressing CNNs

A typical CNN is shown in Figure 1, consisting of several layers running in sequence from
CONV1 to FC3 [19]. The first layer of a CNN reads an input image and outputs a series of feature
maps. After that, a layer reads the feature maps generated by the previous layers and outputs new
feature maps. Finally, a classifier outputs the probability of each category that the input image might
belong to. The convolutional (CONV) layer and fully connected (FC) layer are two essential types of
layer in CNNs. The AlexNet consists of five FC layers and three CONV layers. There is always one
pooling (POOL) layer behind the FC layer.



Electronics 2019, 8, 295 3o0f15

7 1
204
' // » »
/ 3 == EAN gy 8
/ 3NT-== %4‘? —— / 3 -~ I--X[C
/ - 3.
5]_ - \\‘\ ;192 192 128 ] dense
~ TN 2048 \/ 2048 {°"
55 PUANS
224 7 NS 3 3 M1/ \[]
¥ E ~ 3
Nk - 5[ 27@ 3]/ L ‘ﬁ s i 2
S N EEE |\ . e
> N _;__S_“ £ i - e dense| |dense|
- 55 D 3}~
224 Stride’ Max Max 192 192 128 Max 1000

of 4 = pooling 128 pooling pooling 2048 2048

CONV1 POOLI CONV2 POOL2 CONV3 CONV4 CONV5 POOL3

Figure 1. Network architecture of AlexNet. CONV: convolutional layer; FC: fully connected layer;
POOL: pooling layer.

After many years of development, the state-of-the-art CNN models are much more advanced
than the early ones. Growing larger and deeper, the large number of parameters consume considerable
storage, memory bandwidth, and computational resources which cannot be ignored for practical
applications [20]. In addition, neural networks are typically over-fitting, causing serious redundancy
for CNN models [21,22]. In this paper, the goal is to compress a large CNN to run inference within
acceptable loss of accuracy. The smaller the CNN model is, the less storage will be consumed, leading to
less calculation amounts and higher inference speeds.

3. Model Compression

There are two directions to compress the network: reducing the number of weights and decreasing
the precision (fewer bits per weight). After thorough investigation of the difference and connection
between the convolutional layer and the fully connected layer, we proposed a reversed-pruning and
peak-pruning strategy to reduce the number of weights. Further, we quantized the pruned CNN
model to lower precision. After quantization, the weights of the convolutional layer and the fully
connected layer were stored in a completely different way according to their respective data structures,
making less overhead for memory.

3.1. Reversed-Pruning and Peak-Pruning

The reversed-pruning approach we proposed was inspired by Han’s work [15]. Network pruning
is to prune low-weight connections, removing all connections below certain thresholds with little
contribution to the network’s result. Reversed-pruning means pruning weights layer by layer, from the
last layer to the first. Based on this, we present the peak-pruning strategy. The novelty is that
peak-pruning signifies pruning weights layer by layer from the largest number of parameters to
the smallest. As shown in Table 1, the AlexNet runs from CONV1 to FC3 in sequence. Therefore,
reversed-pruning means pruning weights from FC3 to CONV1, while peak-pruning means pruning
weights from FC1 to CONV1, because FC1 has the most 17 M parameters and CONV1 has the fewest
35 K parameters.

Table 1. The pruning order for reversed-pruning and peak-pruning of AlexNet.

Order AlexNet Reversed-Pruning Peak-Pruning

1st CONV1 FC3 FC1

2nd CONV2 FC2 FC2

3rd CONV3 FC1 FC3

4th CONV4 CONV5 CONV3
5th CONV5 CONV4 CONV4
6th FC1 CONV3 CONV5
7th FC2 CONV2 CONV2

8th FC3 CONV1 CONV1
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The essence of the convolutional layer is the feature extractor, while for the fully connected layer
it is the classifier. The feature extractor extracts different features from input images, including lines,
corners, circular arch, etc., which are relatively invariant to distortions or position shifting. Absolutely,
the convolutional layer has a hungry-computation demand. The classifier is based on multi-layer
perceptron (MLP). The function of the classifier is to integrate these different features from the feature
extractor to decide the likelihood of categories that the input image may belong to. Conversely, the fully
connected layer has a heavy-memory demand. In general, the convolutional layers take up less than
10% of the total network weights but occupy more than 90% of the computation time, while the fully
connected layers take up more than 90% of the total network weights but occupy less than 10% of
the computation time. Figure 2 illustrates the unbalanced demand for computation and memory of
the AlexNet inference. AlexNet has 61 M weights and takes 1.45 GOPS to process a single 224 x 224
image. The CONV layers of AlexNet have 2 M weights and take 1.33 GOPS computation, while the FC
layers of AlexNet occupy 59 M weights and take 0.12 GOPS computation.

FC
96.2%

CONV
90.1%

FC
9.9%

Figure 2. Unbalanced demand (the left) is for computation and memory (right) in AlexNet inference.

CONV
3.8%

Considering that the fully connected layer is more over-parameterized and has aggressive pruning
compared with the convolutional layer, our pruning strategy implements a three-step pipeline process,
as illustrated in Figure 3, which starts from adjusting weights via conventional network training.
The second step prunes the weights below the threshold into zeroes, converting an originally dense
network into a sparse one. The final step is to retrain the remaining non-zero weights to adapt to the
forced zero weights, otherwise the accuracy will be significantly affected. Such network pruning is
performed iteratively layer by layer: after pruning and retraining one layer of the CNN to achieve the
original accuracy, the next layer will be pruned and retrained until all layers are completely pruned.

Train Weights Pruning Weights Retrain Weights

Figure 3. Three-step pruning pipeline.

The proposed reversed-pruning and peak-pruning can achieve better compressibility 13X for
AlexNet contrasted with Han’s 9 x without harming the original accuracy. The original AlexNet Caffe
model achieves a top-1 accuracy of 57.13% on ImageNet. The detailed sparsity of each layer and
final accuracy after retraining are shown in Table 2. It should be noted that the final accuracy of
reversed-pruning corresponds to the CONV1 pruning because CONV1 is the last layer in reverse order,
while the final accuracy of peak-pruning corresponds to the CONV1 pruning because CONV1 has
the fewest parameters. In addition, layers are not independent from each other, but closely correlated.
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It can be seen that the fully connected layers have lower sparsity in peak-pruning relatively, while the

convolutional layers have lower sparsity in reverse-pruning.

Table 2. For AlexNet, the pruning contrast between Han’s and ours.

Laver Weicht Han’s Pruning  Reversed-Pruning Reversed  Peak-Pruning Peak
y & Sparsity Sparsity Accuracy Sparsity Accuracy

CONV1 35K 0.84 0.65 57.14% 0.65 57.18%
CONV2 307 K 0.38 0.28 57.16% 0.32 57.18%
CONV3 885K 0.35 0.28 57.08% 0.30 57.09%
CONV4 663 K 0.37 0.28 57.11% 0.31 57.08%
CONV5 442 K 0.37 0.23 57.13% 0.41 57.15%
FC1 38M 0.09 0.08 57.16% 0.05 57.67%
FC2 17M 0.09 0.05 57.63% 0.06 57.23%
FC3 4M 0.25 0.08 57.99% 0.27 57.07%
Total (5§111;/£/0) 6.81 M (9%) 4.85 M (13 x) 57.14% 4.77 M (13 X) 57.18%

The detailed retraining process per sparse layer of AlexNet is shown in Figure 4. The y axis denotes
the accuracy loss, which is relative to the top-1 accuracy 57.13% of the original model. As illustrated
in Equation (1), the accuracy loss exhibits as negative values, which indicates that the accuracy after
pruning and retraining does not recover the original accuracy. The x axis indicates the number of
iterations. It can be seen that the classification accuracy was seriously damaged after each pruning.
In addition, not all layers restore to the original accuracy after retraining. One reason is that the
preceding layers for pruning should leave some redundancy for the pruning of the following layers.
The other is that the latter layers use conservative pruning to compensate for the accuracy loss caused
by the previous layer of aggressive pruning. For example, the retrained accuracy of FC3 and FC2
was much higher than the original value while CONV4 and CONV3 were slightly lower. Ultimately,
the CONV1, represented by the red line in Figure 4, was the last retraining process, and the retrained
accuracy of which was higher than the original AlexNet model.

Accuracy loss = retrained accuracy — 57.13%(original accuracy)

Accuracy Loss

1.00%

0.00%

-1.00%

200 —— CONV4| |
—— CONV3
—— CONV2
—— CONV1

-3.00% -

4.00%

Figure 4. Top-1 accuracy loss of AlexNet in reverse-pruning.
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Given that activation sparsity occurs due to the rectified linear unit (ReLU) function which is

commonly used as the non-linear operator in CNNs, forcing all negatively valued activations to be
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clamped to zeroes. As shown in Figure 5, the left y axis denotes the weight and input activation
sparsity of each layer of the AlexNet, and the right one indicates the ideal number of multiplication
and accumulation (MAC) that could be achieved if all multiplies with a zero operand were eliminated.
This is calculated by taking the product of the weight and input activation sparsity per layer.

1.0 1.0
0.8 1 0.8
N
%0.6 - 0.6
ﬂ Q
= <
> =
‘7 0.4+ 0.4
5
U
wn
0.2 1 0.2
0.0 1 0.0

CONVI CONV2 CONV3 CONV4 CONV5S  FC1  FC2  FC3
Layer

Figure 5. The sparsities of Weight (W) and input activation (IA) and reduction of multiplication and
accumulation (MAC).

3.2. Data Quantization

We further compressed the model by quantizing bit-width per weight from a 32-bits float
point into 8-bits, making it more efficient to implement MAC operations on FPGA. That is because
image processing tasks are insensitive to numerical accuracy, and FPGA is more suitable for data
processing with 8-bit precision. It has been proven that quantization has very little impact on image
processing [23,24]. We designed a linear maximum quantization strategy for each layer in the pruned
CNN, as shown in Figure 6. The linear maximum quantization was to sort the weight range of each
layer in the pruned CNN, and then take the maximum absolute value as the threshold and map the
range directly to the int8 scale. It should be noted that when the positive and negative distribution
was not uniform, there was a part of the vacancy, but this method maximized the original information.

|
-[Max| 0.01 +|Max|

—r———:—-——7- Float32

\
S*\ / /
\ /

-127 0 +127

Figure 6. The linear maximum quantization strategy.
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Another benefit of data quantization is that it introduces more zeros and one values on top of the
pruning, making the pruned CNN more sparse. As is shown in Table 3, the pruned AlexNet can be
quantized to 8-bits for each layer with a negligible 1% loss of accuracy, reducing 4 x less storage and
computation amount. Han [15] quantifies weights of the CONV layer with 8 bits and the FC layer with
5 bits for less storage, but the 5-bit precision is not effective for hardware implementation. In addition,
our quantization does not require any additional fine tuning or retraining, and neither the codebook
nor the index exists, reducing the overhead to recover the quantized sparse weight matrix.

Table 3. Inference accuracy between different precisions.

Models Original (FP32) Pruned (FP32) INT16 Quantization INT8 Quantization
LeNet-5 99.06% 99.10% 98.83% 98.31%
AlexNet 57.13% 57.14% 57.05% 55.99%

3.3. Efficient Storage

Pruning makes the original dense weight matrix sparse, and extra space is required to store
the index of non-zero weights. Though quantization has lower precision, it does not need extra
storage for the codebook and index. Hence, for the quantized sparse weight matrix, only non-zero
weights and their indices should be stored. In order to obtain higher storage efficiency, we developed
efficient storage methods for the characteristics of the convolutional layer and fully connected layer,
respectively, to reduce the overhead cache and data movement.

For the convolutional layer, the input was a combination of several 2D feature maps. After pruning
and quantization, these 2D feature maps were converted into a series of quantized sparse matrices.
The quantized non-zero weights and their indices were stored then. The common sparse matrix storage
formats included coordinate (COO), compressed sparse row (CSR), and compressed sparse column
(CSC). The CSR and CSC formats require three arrays, totally 2a + n + 1 numbers, where a is the
number of non-zero elements and n is the number of rows or columns. The COO format requires three
arrays and totally 3a numbers without requirement for extra computation to recover the original sparse
matrix, in contrast to CSR and CSC. Considering the general convolutional kernel sizes of 11 x 11,
5x 5,3 x 3,and 1 x 1, the 4-bit width was enough to denote the rows’ or columns’ indices. We propose
the compressed coordinate (CCOO) format, which requires two arrays, totally 2a numbers. One array
is for the non-zero values, and the other is for its 8-bit indices consisting of high 4-bit row indices
and low 4-bit column indices. Table 4 shows a detailed comparison of different sparse matrix storage
formats. Taking the CONV1 of the quantized pruned AlexNet as an example, the convolutional kernels
size was 11 x 11 and the sparsity was 0.23, so the CCOO format reduced the storage requirement by
15% compared with Han’s format and by 33% compared with the COO format.

Table 4. Comparison of different sparse matrix storage formats. COO: coordinate; CSR: compressed
sparse row; CSC: compressed sparse column; CCOO: compressed coordinate.

Storage Formats Arrays Numbers
COO 3: Non-zero value; Rows indices; Columns indices 3a

CSR 3: Non-zero value; Row indices; Column offsets 2a+n+1

CsC 3: Non-zero value; Row offsets; Column indices 2a+n+1
CCOO (ours) 2: Non-zero value; Row indices + Columns indices 2a

For the fully connected layer, the input was just a feature vector. After pruning and quantization,
the feature vector was converted into a sparse vector. We proposed a straightforward approach to
store these sparse vectors, only storing two arrays 2a + 2 numbers in total, where a is the number of
non-zero elements. The relative index represents the number of zeros between the current non-zero
weight and the previous one. When the relative index was larger than the bound, we insert a zero
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value as shown in Figure 7. Another point to be noted is that when the last value of the original sparse
vector was zero, an extra zero value was inserted into the weight array.

2 zeros 260 zeros 3 zeros
A

h)

Original et— S
. 2 [ o I o [ ] o [0 ] 0|
(length: 274) - ]l 0| ..1]0
23X
Weight

Compressed
Indices |0|2|255|5|0|2|

(length: 12)

Figure 7. Sparse representation of fully connected layers.

The final result of our model compression is shown in Table 5, and we achieved 27 x and 28 x
compressibility, respectively, compared with Han’s 27 x for the original AlexNet. It should be noted
that we only compared the benefits of pruning and quantification, without taking Huffman coding into
consideration. For pruning, our improved reserve-pruning and peak-pruning techniques retained less
non-zero weight. Although Han quantifies the weights of the CONV layer with 8 bits and the FC layer
with 5 bits to achieve a smaller size, it is inefficient for 5 bit hardware computing. Another advantage of
our method is that it does not need to store the codebook and its index, reducing additional storage and
computation. We also obtained 34 x compressibility for LeNet-5 on the MNIST dataset [25]. The smaller
the CNN model is, the less storage will be consumed, leading to less amount of calculations and higher
inference speeds.

Table 5. Detailed comparison for the pruning and storage strategy.

Original Han’s Pruning + Reversed-Pruning +  Peak-Pruning +
AlexNet Quantization [16] Quantization Quantization
Convolutional Layers 8 MB - 1.2 MB 1.5 MB
Fully Connected Layers 236 MB - 7.8 MB 7.2 MB
Total 244 MB 9.0 MB 9.0 MB 8.7 MB
Compressibility 1x 27 % 27X 28X

4. Hardware Implementation

The optimized pruning and quantization, though significantly reducing the memory footprint on
FPGA, brings in some new challenges difficult for conventional FPGA-based accelerators to overcome.
Firstly, irregular computation is introduced by model compression. After pruning, original dense
computation becomes sparse computation. After quantization, the weights are stored with fewer
bits. Secondly, load imbalance introduced by sparsity will reduce anticipative hardware efficiency.
Based on the above findings and conclusions, we first customized decoding circuits to recover the
original sparse weight matrix on FPGA. Considering the FPGA is especially friendly for byte-aligned
data, weights and indices were stored with 8-bits according to the CCOO format. Moreover, by setting
constraints during pruning, the overall number of non-zero weights distributed to each processing
element (PE) unit was approximately equal to ensure sufficient parallelism and load balance of the
FPGA. In addition, different from the algorithm of the CNN, pooling layers were placed between the
convolutional layers and non-linear activation function ReLU to reduce the resource consumption and
improve the inference speed.

4.1. Overall Architecture

Figure 8 schematizes an overview of our implementation on Xilinx Zynq UltraScale + MPSOC
XCZUT7EV, which integrates a quad-core ARM Cortex-A53 processing system (PS) and FPGA
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programmable logic (PL). The XCZU7EV has 16 nm manufacturing technology and has abundant
Ultra RAMs that alleviate the demand for the buffering and storage of insufficient SRAM resources on
an FPGA chip. The external memory DDR4 stores compressed model parameters and input image.

N\

- ~
I N Input
Buffer

Hardware-PE
£ Output
Software-PE | 4—| 54— DMA e— Buffer [¥
—» Controller
PS (ARM) N PL (FPGA) J

A4

Figure 8. The overall architecture. FPGA: field programmable gate array. DDR is the abbreviations of
double data rate synchronous dynamic random-access memory; PS is the abbreviations of processing
system; PL is the abbreviations of programmable logic; PE is the abbreviations of processing element;
DMA is the abbreviations of direct memory access.

The ARM realizes data transmission of instructions and convolutional results between the FPGA
and the software-PE, which accomplishes the fully connected layers and softmax function. The FPGA
consists of direct memory access (DMA), controller, input buffer, output buffer, and hardware-PE.
The hardware-PE takes charge of convolutional layers, pooling layers, and non-linear functions.
On-chip buffers, including the input buffer and output buffer, prepare data to be computed by
hardware-PE and store the result. The controller analyzes the instructions from ARM and harmonizes
modules according to FPGA resources, configuring the depth of input buffer and output buffer and
the number of output feature maps in parallel.

Not all calculations are offloaded to the FPGA. One reason is that the parameters of the fully
connected layer are relatively large, and the calculation is not intensive enough. The calculation unit
of the FPGA needs large DDR bandwidth for maximum computational performance. The other is
that the actual use of the number of categories is uncertain, with software implementation of the fully
connected layer and softmax is conducive to modify.

4.2. Hardware-PE Architecture

The hardware-PE takes charge of non-zero detection circuits, decoding circuits, convolutional
layers, pooling layers, and the non-linear function ReLU. Figure 9 describes the detailed hardware-PE
architecture and other relative modules.

Bias P Intermediate Data

Bias @—m > A ————— =
Buffer vy

I
I
Non-zero |
Data  Detection }

Data > Circuits ™
—> Buffer

I
! Max- Data
} Convolver #» Adder —» astig T ReLU —» Buffor
Weight Weizht ! I
Buffer = ——y Decoding :
Circuits 1 |
Input Buffer } } Output Buffer
,,,,,,,,,,,,,,,,,,,,, 1
‘ <‘ Hardware—PEl> [ ‘

Controller

Figure 9. The hardware-PE. ReLU: rectified linear unit.
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The data transmission form was optimized. In previous research, the transmission of the feature
maps was performed by regarding each graph as a unit [26]. As shown in Figure 10, it was
assumed that the input of a layer of the network was three feature maps, which was orderly
stored in memory. The traditional form of data transmission, which reads out the first image line
by line and then the second and third images. However, the output of the calculation results starts
when all the data have been input to the calculation module, which leads to a large data output
delay and a waste of computing resources. Therefore, we intended to optimize the transmission
of map data. We performed the transmission in the unit of pixels, which transmits the first pixel of
each map at first, and then the second pixel of each map. This optimization allows the module to
calculate and output some of the results during the data transmission. Consequently, the output
delay decreased and the waste of computing resources significantly reduced.

20,0 Ao,1 a2 203 boo | bo, bos | bos Co,0 Co,1 Co2 Co3
ao ap an a3 bio by b, bis Cio Cr1 Ci2 Ci3
a0 A bago by, C20 Co1

(a)The three input feature maps

< Q0,0 ao,1 do,2 o3 aio ‘ boo | bo, boa | bos | big ‘ €00 Co,1 Co,2 Co,3 C10
(b)Traditional map data transmission
< Qo0 ‘ boo ‘ Co,0 ‘ ao,1 ‘ bo,1 ‘ Co,1 ‘ Qo2 ‘ by ‘ Co.2 ‘ o3 ‘ bo3 ‘ Co;3 ‘ aro ‘ bio ‘ (%K) ‘ ‘ ‘

(c)Optimized map data transmission

Figure 10. Optimization of map data transmission.

Non-zero detection circuits were used to hierarchically broadcast the non-zero input data to
each PE according to the advantage of the input activation sparsity, as shown in Figure 11.
Multiplication occurred only when the input activation was a non-zero value, which greatly
reduced computing resources.

Y ( 0 o0 |la| o a4 0o 0o a )
X T
PEI| Woo! 0 |Waa| 0 0 0 [ Wos Wos: 0 | | b | T |
PE2| 0 0 0 |Wo|Wal 01 0 (Wl o by 0
PE3| 0 Wy |Wa| 0 (Wil 0 0 W, b, 0
PE4| 0 | 0 | 0 [Wa | Waal 0 [ Wis| 0 by | ReLU | b,
= >
Weo o 0| 0 [Weei 0 Wi 0 | W by 0
Wso | 0 | Wea| Wss | Waal 0 | Wisg! 0 bs bs
0 Wl oo 00 wgl o b 0
o ol o|lo 0o Ws 0o by by

Figure 11. Sparse matrix W and sparse vector a and b are interleaved over 4 PEs.

Decoding circuits were customized to recover the original sparse weight matrix according to
the CCOO format of sparse non-zero weights and its indices. Compared with Han’s method,
our decoding circuits did not require complex logic designs and extra calculations benefitting
from the efficient storage approach we proposed in model compression.
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(2) The convolver accomplished a window convolution operation, which was essentially
multiplication. As illustrated in Figure 12, the kernel size was 2 x 2, and the traditional window
convolution was slided by row. When we placed pooling layers between the convolutional
layers and ReLU, the window convolution was slided according to the size of window
pooling, reducing the clock cycles and memory occupation of temporarily unused results.
Another advantage was that this pipelining decreases the data cache by a factor of 4 after
convolution, without affecting the final result.
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Figure 12. Optimization of the convolution calculation and FPGA implementation.

(1) The adder sums all results from the convolver and bias from the input buffer or intermediate
data from the output buffer if needed.

(2) Max-pooling applies a 2 x 2 window to the input feature map, and outputs the maximum
among them.

(3) ReLU is a non-linear operator especially suitable for hardware implementation.

5. Performance Analysis

In order to verify the performance of the proposed FPGA accelerator, the design was implemented
with a Xilinx SDx 2018.2, which accepts the C/C++ code as input and outputs the optimized CNN
hardware implementation on FPGAs. Convolutional and max-pooling functions were implemented as
hardware functions in SDx respectively, exporting the register-transfer level (RTL) as the Vivado IP
core. Finally, a complete synthesized and implemented Vivado project was achieved.

We implemented the compressed AlexNet network inference on the Xilinx ZCU104 evaluation
board. The XCZU7EV on the board has abundant resources, such as look-up table (LUT), look-up table
RAM (LUTRAM), flip-flop (FF), block RAM (BRAM), Ultra RAM (URAM), digital signal processing
(DSP) and global buffer (BUFG). The proposed FPGA implementations of the CNN were operating at
300 MHz. According to the device utilization summary given by the Vivado design suite, the resource
utilization of the main hardware resources for the compressed AlexNet is shown in Table 6. The reason
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why RAM and DSP take a relatively large percentage is that the weight parameters need to be stored
on-chip and multiplication and accumulation (MAC) is accomplished by DSP48E block.

Table 6. Resource utilization for the compressed AlexNet.

Resource Utilization Available Utilization %
LUT 101,953 230,400 44.25
LUTRAM 4790 101,760 4.71
FF 127,577 460,800 27.69
BRAM 198.50 312 63.62
URAM 80 96 83.33
DSP 696 1728 40.28
BUFG 12 544 2.21

Implementations of the AlexNet inference on CPU, GPU, and our accelerator were compared,
as shown in Table 7. The overall performances, especially the CONV layers, are as follows. In our
design, FPGA mainly takes charge of the convolutional layers and the pooling layers while the ARM
implements fully connected layers and the softmax function. The CPU platform was Intel i7-6700
CPU @ 3.40 GHz with 32 GB DDR4 DRAM. The GPU platform was NVIDIA GTX 1080 Ti GPU,
possessing 3584 compute unified device architecture (CUDA) cores with 11 GB graphics double data
rate (GDDR) 5 352-bit memory. Compared to the CPU and the GPU, our accelerator achieved a
182.3x and 1.1x improvement on the CONV layers of AlexNet in terms of latency and throughput,
respectively. The thermal design power (TDP) values of the CPU and GPU were 65 W and 250 W,
separately. The total power of our accelerator was only 17.67 W according to the power report by the
Vivado design suite. It can be seen from Table 7 that our accelerator achieved the best energy efficiency
among all the platforms. Contrasted to the CPU and the GPU, our accelerator achieved an 822.0x and
15.8 x improvement on CONV layers of AlexNet in terms of energy efficiency, respectively.

Table 7. Evaluation results on the central processing unit (CPU), graphics processing unit (GPU),
and our accelerator.

Platform CPU GPU FPGA
Vendor Intel i7-6700 NVIDIA GTX 1080 Ti Xilinx ZCU104
Technology 14 nm 16 nm 16 nm
Power (W) 65 250 17.67
Latency (ms) 834.69(CONV) 5.11(CONV) 4.58(CONV)
y 926.26(Overall) 6.15(Overall) 102.76(Overall)
Speedu 1.0(CONV) 163.3(CONV) 182.3(CONYV)
peedup 1.0(Overall) 150.6(Overall) 9.1(Overall)
1.59(CONV) 260.27(CONV) 290.40(CONYV)
Throughput (GOP/s) 1.56(Overall) 235.77(Overall) 14.11(Overall)
- 0.02(CONV) 1.04(CONV) 16.44(CONV)
Energy efficiency (GOP/s/W) 0.02(Overall) 0.94(Overall) 0.80(Overall)
Ratio 1.0(CONV) 52.0(CONV) 822.0(CONYV)
1.0(Overall) 47.0(Overall) 40.0(Overall)

The performance comparison between our accelerator and other FPGA-based counterparts is
shown in Table 8. Our accelerator achieved an outstanding performance of 290.40 GOP/s and an
energy efficiency of 16.44 GOP/s/W for CONV layers. Since not all calculations are offloaded to the
FPGA in our accelerator, the overall performance of our accelerator is slightly inferior to previous
approaches. Besides, the working frequency is 300 MHz for the DSP48E block, which greatly improves
the computational performance.
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Table 8. Comparison to previous implementations.

CVPRW2014 [27] FPGA2015 [28] FPGA2016 [29] Ours
Platform Zynq XC7Z045 Virtex7 VX485T Zynq XC72045 Zynq XCZU7EV
Frequency (MHz) 150 100 150 300
Quantization Strategy 16-bit fixed 32-bit float 16-bit fixed 8-bit int
187.80(CONV) 290.40(CONYV)
Throughput (GOP/s) 23.18 61.62 136.97(Overall)  14.11(Overall)
Power (W) 8 18.61 9.63 17.67
Energy efficiency 290 331 19.50(CONV) 16.44(CONV)
(GOP/s/W) ’ ’ 14.22(Overall) 0.80(Overall)

6. Conclusions

In this paper, we proposed an improved compression strategy and an efficient FPGA-based
accelerator for the compressed CNN. We first compressed a trained convolutional neural network
model sufficiently, including reverse-pruning and peak-pruning within fewer weights and a linear
quantization strategy for lower precision. Then, we developed efficient storage methods for the
convolutional layer and the fully connected layer to decrease the occupancy of the overhead cache,
respectively. Taking the AlexNet as an example, our work achieved 27 x (reverse-pruning) and 28 x
(peak-pruning) compressibility, respectively. We also obtained 34 x compressibility for LeNet-5 on
the MNIST dataset. An FPGA-based accelerator was realized to evaluate the performance of the
compressed CNN. The system implemented on a Xilinx Zynq ZCU104 board achieved a frame rate
of 9.73 fps. Compared with the CPU and GPU platforms, our accelerator achieved 182.3x and 1.1 x
improvements in latency and throughput, respectively, on the CONV layers of AlexNet, with 822.0x
and 15.8 x improvement for energy efficiency, separately. Evaluation results verified the effectiveness of
the proposed compression strategy for an FPGA-based CNN accelerator, and this provides a reference
for other neural network applications, including CNNs, LSTMs, and RNNSs.
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