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Abstract: A relevant task in unmanned aerial vehicles (UAV) flight is path planning in 3D
environments. This task must be completed using the least possible computing time. The aim
of this article is to combine methodologies to optimise the task in time and offer a complete 3D
trajectory. The flight environment will be considered as a 3D adaptive discrete mesh, where grids
are created with minimal refinement in the search for collision-free spaces. The proposed path
planning algorithm for UAV saves computational time and memory resources compared with classical
techniques. With the construction of the discrete meshing, a cost response methodology is applied
as a discrete deterministic finite automaton (DDFA). A set of optimal partial responses, calculated
recursively, indicates the collision-free spaces in the final path for the UAV flight.

Keywords: UAV; path planning; adaptive discrete mesh; octree

1. Introduction

The world market for unmanned aerial vehicles (UAVs) is expanding rapidly, and there are
various forecasts and projections regarding the market for unmanned vehicles. The economic impact
of integrating UAVs into the National Airspace System in the United States will grow substantially
and reach more than $82.1 billion between 2015 and 2025 [1].

A wide diversity of air missions can be completed by UAVs [2,3] in various scenarios and including
outdoor/indoor and water/ground/air/space environments [4]. The types of missions include
military (missile launching drones, bomb-dropping drones, flying camouflaged drones) and civilian
(video-graph/photography, disaster response, environment and climate) [5–9]. A highly demanded
task for UAVs is 3D autonomous navigation (either in static or dynamic environments) that optimises
the route and minimises the computational cost. Thus, path planning defines the methodology that an
autonomous robot must complete to move from an initial location to a final location, deploying its own
resources as sensors, actuators, and strategies, while avoiding obstacles during the trip. Several path
planning and obstacle avoidance techniques are being used in unmanned ground vehicles (UGVs),
autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs).

From the traditional robotics point of view, numerous works have been developed in which
the path planning and obstacle avoidance algorithms perform searches in continuous or discrete
Euclidean [10] dimensional movement environments. It is important to mention that LaValle in [11]
has done significant work on sampling-based path planning algorithms. However, although his
analysis is complete from a two-dimensional perspective, 3D planning analysis is not completely
addressed. An exhaustive study of the growing work on sampling-based algorithms is presented
in [12]. It must be remembered that the 2D path planning problem is NP-hard; and so environmental
dimensional increases and UAV kinematics affect problem complexity.
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An in-depth review of the current literature shows several works focus on two-dimensional (2D)

scenarios [13] that limit vehicle behaviour to just a flat surface and consider its height as constant by
making a dimensional analysis (2.5D) [14]. However, in complex unstructured situations (including,
for example, forests, urban, or underwater environments) a simple 2D algorithm is insufficient and 3D
path planning is needed.

A diversity of methodological paradigms have been developed to complete the task of 3D
path planning. These are based on sampling, node/based algorithms, bio-inspired algorithms, and
mathematical models, among other techniques. A brief bibliographic review focused on 3D trajectory
planning is presented below.

Some representative techniques used in path planning methods and based on continuous
and discrete environment sampling include: RRT (rapidly-exploring random tree) [15–18]; PRM
(probabilistic road maps) [19–23]; Voronoi diagrams [24–26]; and artificial potential [27–30].
Nevertheless, it is important to note that RRT and PRM make random explorations (continuous
sampling) of the defined environment. RRT is an expensive algorithm in terms of computational cost
when searching for feasible solutions in cluttered environments. It should be emphasised that once
the PRM road map is made, a methodological base built on nodes must be invoked to define the
lowest cost path. The main disadvantage of the Voronoi diagram is that it is an offline method. Finally,
artificial potential algorithms present little computational complexity—although they tend to fall into
local minimums.

Node-based algorithms (discrete space) are mathematical structures used to model pairwise
relations (in this context, the structures are made with vertices and edges) and the aim is to calculate
the cost of exploring nodes to find the optimal path. Various methodologies and subsequent variations,
such as Dijkstra’s algorithm [31,32], A* [33,34], D* [35,36], and Theta* [37], present these characteristics
in their results. In [38] the characteristics and approximations of various methodologies of * (Star)
search algorithms are studied.

In recent years, these classical techniques have been improved with new learning machine
techniques. ANN (Artificial Neural Networks) [39–41], fuzzy logic [42,43], ACO (Ant Colony
Optimisation) [44,45], and PSO (Particle Swarm Optimisation) [46,47], among others [48–50], are
examples of these heuristic methodologies. Hence, these biological algorithms attempt to optimise the
path by mimicking animal behaviour. The weaknesses and strengths of a set of heuristic techniques are
discussed in [51]. The implementation relevance of these methodologies does not present significant
experimental results. In addition, the different techniques presented in this section have a particular
computational cost and complexity based on the different approaches [52] (see Table 1).

Table 1. Computational cost and complexity in the graph structure, where n is the number of vertex
and m is the number of edges.

Method Time Complexity Memory Real Time

Sampling based algorithms 0(nlogn) 0(n2) On-line
Node based algorithms 0(mlogn) 0(n2) On-line
Bioinspired algoritms 0(nlogn) 0(n2) Off-line

A summary of the above mentioned methodologies is shown in Table 2, which details the
approximation methodology, authors and reference, type of obstacle avoidance (static or dynamic),
type of implementation (simulation or real), and publication year.

The 3D path planning problem is still an open issue in this field. The general approach is to
combine several of the above mentioned techniques to improve overall performance.

Several planners optimise the path planning distance. However, this paper attempts to include
distance as an objective, as well as the geometrical characteristics of the UAV and flight constraints
(velocity, turning capacity, battery, flight distance, etc.). All of these constraints are evaluated as
potential cost and the path planning result is based on the sum of contributions for each cost (see
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Section 4). It is important to highlight that planning results do not attempt to arrive at an optimal path
in a shorter distance. Furthermore, unlike other path planning methodologies in which pruning of the
results is necessary, this paper attempts to minimise such pruning.

Table 2. 3D path planning methodologies studied list.

Approach Authors Static
Obstacle

Dynamic
Obstacle Simulation Real Year

RRT

Abbadi, A. [15]
Aguilar, W. [16]
Aguilar, W. [17]
Yao, P. [18]

x
o
x
x

x
x
o
o

x
x
x
x

o
x
x
o

[2012]
[2016]
[2017]
[2017]

PRM

Yan, F. [19]
Yeh, H. [20]
Denny, J. [21]
Li, Q. [22]
Ortiz-Arroyo, D. [23]

x
x
x
x
x

o
o
o
o
o

o
x
x
x
x

x
o
o
o
o

[2013]
[2012]
[2013]
[2014]
[2015]

Voronoi
Thanou, M. [24]
Qu, Y. [25]
Fang, Z. [26]

x
x
x

o
o
o

x
x
x

o
o
x

[2014]
[2014]
[2017]

Artificial Potencial

Khuswendi, T. [27]
Chen, X. [28]
Rivera, D. [29]
Liu L. [30]

x
x
x
x

x
x
x
x

x
x
x
x

o
o
o
o

[2011]
[2013]
[2012]
[2016]

ANN
Kroumov, V. [39]
Gautam, S. [40]
Maturana, D. [41]

x
x
x

o
o
o

x
x
o

o
o
x

[2010]
[2014]
[2015]

Fuzzy Logic
Iswanto, I. [42]
LIU, S. [43]

x
x

x
o

x
x

o
o

[2016]
[2012]

ACO
Duan, H. [44]
He, Y. [45]

x
x

o
o

x
x

o
o

[2010]
[2013]

PSO
Zhang, Y. [46]
Goel, U. [47]

x
x

x
x

x
x

o
o

[2013]
[2018]

Others
YongBo, C. [48]
Wang, G. [49]
Aghababa, M. [50]

x
x
x

o
o
o

x
x
x

o
o
o

[2017]
[2016]
[2012]

An adaptive cell decomposition (ACD) is a strong methodology for solving physical systems led by
partial differential equations [53,54]. Such techniques offer a substantial improvement in computational
time and discretisation is not governed by a dominant equations system. This methodology is used in
accurate complex 3D Cartesian geometry reconstructions [55,56]. The approach presented in this work
does not seek a refined environment reconstruction, and only tries to determine occupied and free
spaces within the 3D Cartesian space. The savings in computational and memory effort is significant.
The computational structure that constructs the algorithm makes a rapid labelling of the geometric
figure of the environment as a 3D solid with a rectangular shape.

In this paper, a functional 3D UAV path planning algorithm is proposed that is based on an
evolution of the (ACD) method. The proposal attempts to achieve a linear speedup, exploring
and decomposing the 3D environment under a recursive reward cost paradigm, and building an
efficient and simple 3D path detection. The aim is not to generate a large scale reconstruction of the
environment, nor start the procedure with a defined cloud of points [57]. In the presented paper,
the UAV just receives the obstacle information from the control station and generates a trajectory.
Over time, physical phenomena often generate unknown space distributions between the UAV and
obstacles, and so adaptation according these changes and spatial constraints might exist. In the event
of obstacle collision with the previously calculated path, a new estimated path is generated.
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This paper is organised as follows. Section 2 defines the terrain representation and codification
obstacles, and the general problem of path planning under static and dynamic environments is stated.
In Section 3, the basis of the adaptive cell decomposition technique is revisited and modified to be
ready for our proposal. In Section 4, the new algorithm for planned paths is then explained, and finally,
several application examples are shown in Section 5. Conclusions and future works are considered in
the final section.

2. Problem Definition

At the moment when obstacles in the 3D real world are represented, they do not possess exact
geometries, and for simplicity in this paper, obstacles have been modelled as cuboids in direct relation
to their dimensional characteristics and location. When cuboids increase or decrease, special care is
taken to ensure that they do not collide with each other and there is a free flight route during the
environment tests.

In a 3D environment where a UAV performs a continuous flight from an init point (qi) to a goal
point (q f ), a set of various manoeuvres to complete this mission are deployed. The UAV had previously
defined the trajectory to follow after taking into account several considerations and constraints.

Let us assume that a complete description of the possible operating environment as an urban
space in which buildings of different dimensions are defined. The UAV in flight receives data from
its control station about the environmental conditions and it makes the necessary calculations to
determine the best trajectory. The relevant data includes the goal point q f , the current location, and
the size of the obstacles (static or dynamic), as well as speed and movement directions. Since qi is
related directly with the current UAV location, the aim is to apply a discrete decomposition (partial
and recursive) of the environment to find the set of collision-free spaces for the UAV flight and head
towards the middle of those collision-free spaces until it arrives at q f . Hence, the final trajectory result
of this methodology generates a vector (xi, yi, zi) of three-dimensional points (system coordinates)
translated as waypoints. Furthermore, it is important to emphasise that the resulting vector indicates
spatial positions, and therefore the UAV that performs the trajectory tracking must possess these
tracking skills. Thus, a UAV that has a quadropter-type holonomic system (the number of controllable
degrees of freedom of the UAV system is equal to the total degrees of freedom) can complete the 3D
waypoint tracking. Hence, a non-holonomic (the system is described by a set of parameters subject to
differential constraints) (fixed wing) UAV does not have to be able to follow these trajectories.

Figure 1 shows an environmental example, where the discrete decomposition is built around the
obstacles that interfere with the UAV flight. Hence, the three-dimensional characteristics of the obstacle
might be considered to determine an escape trajectory that can surround the obstacle (including its
sides and above and below) in continuous flight. Therefore, the 3D environment decomposition will
take advantage of the 3D displacement capabilities of the UAV.

goal

_> 

Figure 1. General scenario for 3D unmanned aerial vehicles (UAV) path planning. The grey cubes
depict the environmental obstacles. Blue cubes are generated by the environmental discretisation and
represent collision-free spaces. Orange lines are possible paths.
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3. Modified Adaptive Cell Decomposition (MACD)

A standard 3D ACD algorithm attempts to make a discrete approximation of the environment,
typically in a tree data structure known as octree (Octree is a tree data structure in which each internal
node has exactly eight children) [58]. This process requires considerable computational resources and
time. The modified adaptive cell decomposition (MACD) [59] does not make an exhaustive routing
for each little space in the environment. If an obstacle exists, the routing in the three dimensions is in
direct relation to the obstacle characteristics. The parameterised decomposition level is fixed in direct
relation to the UAV manoeuvrability. This means that whenever the UAV needs a minimal space to
complete a movement, this value will be defined in the level of decomposition.

Let us say Υ = (x, y, z) denotes a discrete 3D environment, where the set of collision-free voxels
are defined as S f ree, the set of occupied voxels are defined as Soccup, and the optimal path (metric term
of distance) between qi and q f as ρ. The aim is to find the optimal path ρ compound with a set of the
nearest voxels in the S f ree space that enclose the obstacles.

The procedure is summarised in the flowchart shown in Figure 2, beginning with a specification of
the number of decomposition levels. For the first level (i = 0), search limits are set to the environmental
dimensions Υ. Partition of the octree divides the environment in 8 equal parts in relation to the previous
boundaries. In every single octree, an obstacle search is performed that determines the possibility of a
later decomposition. Once this level decomposition is finished, the complete information of Soccup and
S f ree space is completed. Finally, a planner determines the best trajectory in distance terms.

Figure 2. Flowchart of modified adaptive cell decomposition (MACD).

A simple example in a 2D environment is shown in Figure 3, using quadtree decomposition.
The decomposition level n is predefined, n being the total levels which define the tree growth as
a hierarchical computational structure. In a first segmentation, with n = 1, the environment is
partitioned in (2n)2 underlying discrete spaces (blue lines). A second division of the environment
(n = 2) will generate 16 spaces (green lines).
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Figure 3 shows an example of a quadtree decomposition, denoted by qk with current level
n = 0, with reference to its own neighbourhood. On its left side, there are neighbours with smaller
dimensional characteristics than the present qk. There is a total of 8 neighbours, from (2n)2 with
n = 3 → (23)2 = 64, of which only 8 are related directly with the qk neighbourhood. The lower
and upper face of qk has the same level of decomposition, being n = 0 and producing a single qk+1
neighbour. On its right side, as the dimensions of the neighbour qk+1 are larger than qk, the number of
neighbours is equal to 1, counting a total of 11 neighbours and possible movements in this case.

Figure 3. Neighbourhood structure. Quadtree decomposition neighbourhood.

The 3D decomposition methodology has two relevant variations. Firstly, the definition and
location of each voxel boundary, and secondly, the definition of the number of neighbours per each
voxel belonging to S f ree. The number of neighbours qk is bounded by at least qk+1 = 3 neighbours, and
the maximum number of each qk voxel face is a multiple of (20,1,2,...,n)2 with n decomposition levels
(shown in Figure 4).

Figure 4. Neighbourhood structure. Octree decomposition neighbourhood.

At this point, the procedure is partially complete, since the decomposition just finds the set S f ree
and additional calculations to determine if ρ are needed. Hence, MACD uses Dijkstra’s [31] algorithm
to calculate the optimal path in distance terms.

Algorithm 1 shows the pseudo-code to generate a structure called a rectangloid which contains
all the information compiled throughout the cell decomposition process. The algorithm performs a
recursive searching of the free S f ree space and the occupied Soccup space in the discrete 3D environment
to determine each voxel property (including its set of neighbours), and it simultaneously builds the
computational structure that joins the voxels. For a better understanding, a brief description of several
algorithm steps is offered here.

Line 9: Boundaries of the current voxel are calculated.
Line 12: Boundaries of the sub-voxel are assigned to rectangloid.
Line 13: This step does a total routing by searching the environment for obstacle collisions.
Line 24: The vertex variable collects each (S f ree) of rectangloid structure.
Line 25: The edges variable determines the structure that joins every vertex.
Line 26: Dijkstra’s algorithm is used to determine ρ.
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Algorithm 1 Modified Adaptive Cell Decomposition (MACD)

1: n→ decomposition level, nextRow = 0
2: [boundary] = environment.boundaries
3: rectangloid.add = boundary
4: for i = 0 : n do
5: rows = rectangloid.size;
6: nextRow = nextRow + 1;
7: for j = nextRow : rows do
8: if rectangloid(j).ocup == Soccup then
9: [boundary] = boundaryOctree(rectangloid(j).boundaries);

10: for k = 1 : boundary.size do
11: newRow = newRow + 1;
12: rectangloid(newRow).add = boundary(k, :);
13: obj = obstacle. f ind ∈ rectangloid(newRow);
14: if obj == FREE then
15: rectangloid(newRow).ocup = S f ree
16: else
17: rectangloid(newRow).ocup = Soccup
18: end if
19: end for
20: end if
21: end for
22: nextRow = rows;
23: end for
24: vertex = rectangloid(:).boundary.center;
25: edges = rectangloid(:).neighbour. f ind;
26: ρ = Dijkstra(vertex, edges);

4. Recursive Rewarding Modified Approximate Cell Decomposition (RR-MACD)

In this section, a new algorithm for path planning in 3D environments is formulated so that using
an external planner based on nodes, such as Dijkstra [31] or A∗ [33], becomes unnecessary. Since it
attempts to achieve a final path ρ based on starting conditions, or initial states, each future system state
is determined by the present one (each state is a collision-free neighbour voxel).

4.1. Methodology

Let Υ denote a work environment as a discrete 3D space that contains a finite set of collision-free
voxels (S f ree) and a finite set of busy voxels (Soccup).

Let us assume an UAV is included within a collision-free voxel, which is considered as initial state
sk, with the aim of reaching the end point q f . Let’s assume a set formed by voxels of different sizes
Sk+1 as a neighbourhood of sk. In this context, a state model and a transition matrix can be developed
as in Figure 5 to determine the optimal transition from sk to any state belonging to Sk+1 based on
two transitional measurements (D1 and D2). Starting from the current state sk, the method will try to
obtain the optimum neighbour state belonging to Sk+1 (sk → Sk+1 = D1). It will then locate which
sub-path from each neighbour in Sk+1 to the final point q f is best (Sk+1 → q f = D2).

To solve this problem a discrete deterministic finite automaton (DDFA) [60,61], F, can be defined
as F = (S, G, D, q)T with a set of Rm partial functions, where:

• q are two points in the 3D environment space, where

– qi is the initial point
– q f is the final point.

• S is a finite set of M current states, where

– S f ree is the finite set of collision-free voxels. Split in the current voxel sk = [sk(x), sk(y), sk(z)],
and the set of its neighbours sk+1 = [sk+1(x), sk+1(y), sk+1(z)].
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– Soccup is the finite set of occupied voxels.

• Rm, m = 1 . . . N is a set of N partial functions involved in the 3D UAV navigation characteristics
and determining feasible progress. In this paper, N = 4 functions are defined as flight parameters,
being:

R1(i, j) =
Mdistance(si → sj)

MtrDirect
∈ R : [0, 1]

Mdistance(si → sj) =
√
(si − sj))2

(1)

where Mdistance(si → sj) is the Euclidean distance between any two states and MtrDirect is the
distance in a straight line between qi and q f .

R2(i, j) = Mtan(si → sj) ∈ R : [−1, 1]

Mtan(si → sj) = tan−1θ

θ =


√
[(si(y)− sj(y)]2 + [si(x)− sj(x)]2

si(z)− sj(z)

 (2)

where Mtan(si → sj) is the direction change measurement of the tangent vector to a curve, which
shows the inclination angle between any two states.

R3(i, j) = Mphi(si → sj) ∈ R : [−1, 1]

Mphi(si → sj) = φ

φ = tan−1

(
si(y)− sj(y)
si(x)− sj(x)

) (3)

where Mphi(si → sj) is the direction change of the bi-normal vector around the tangent vector
between any two states.

R4(si, sj) is associated with the amount of battery and determines the possibility of success on a
predefined trajectory:

R4(i, j) = Mbatt(si → sj) ∈ R : [0, 1]

Mbatt(si → sj) =


0,

batti→battj
Curbatt

> Curbatt

1− batti→battj
Curbatt

≤ Curbatt

(4)

where Mbatt(si → sj) is the normalised theoretical quantity of battery needed to fly from any state
to any other—and the Curbatt is the current amount of battery available for flight.

Further, a Gaussian function g(Rm) is used to determine the reward in executing a possible action
and it is defined as:

g(Rm) =
sin(π ∗ Rm + π/2) + 1

2
(5)

where the transition cost values (sk → Sk+1, Sk+1 → q f ) have been normalised within boundaries
[0, 1]. Notice how the greater the effort Rm, the lower the reward g(Rm) and vice-versa. Therefore,
the execution of an action from state si to different states sj produces state transitions at different
costs—an elevated cost will produce a lower reward on the transition.

All these rewards can be expressed as a vector G(i, j) of flight parameters such as:
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G(i, j) = [g(R1(i, j)), g(R2(i, j)), . . . , g(RN(i, j))]T (6)

• D ∈ RM−2 is the received reward associated with a priority p ∈ RN for executing an action on a
function g(Rm) and is stated as the sum of two transition priority vectors (D1 and D2) defined as:

D1 =(p× G(i, j)) + ξ

i = 1, j = 2 . . . (M− 1)]
(7)

D2 =(p× G(i, j)) + ξ

[i = 2 . . . (M− 1), j = M]
(8)

D = D1 + D2 (9)

where ξ is a predefined negative reward value in each state belonging to Sk+1. Notice that the
probability distribution values of the functions g(R1), g(R2), . . . , g(RN) are independent and the
set of answer vectors D which are mappings of S× S f ree. Therefore, this map is generated with a
time-independent probability distribution. Hence, the probability of moving between one instant
and the next does not change.

Hence, the best reward value from vector D generates the best x—and the final path, denoted by
ρx(F), defines a finite labeled graph with vertex Sx ∈ S f ree.

(a)

0 … 0

0 0 0 0

0 0 0 0

0000

00000

…

…

…

(b)

Figure 5. Generic structure state transition. (a) Generic state model. (b) Generic transition matrix.

4.2. Simple Application

To explain the methodology, and for sake of simplicity, let’s state the problem of travelling from
the actual state qi ∈ sk or init point to the goal point q f in a 2D environment using a standard 2D cell
decomposition. Figure 6a shows the initial scenario as well as the different Sk+1 states (observable
and neighbours) that may become a new sk. In this case, in t = 0, it is the same cost to move right
or down—this situation appears due to the inherent symmetry of the decomposition methodology.
In such a situation, randomness decides the next state.

Since a state cannot point to itself and can be visited only once, when the Sk+1 states are visited and
evaluated, one of them is selected by producing a forwarding movement (see Figure 6b). Hence, the
state selected is the new initial point sk, and the process is repeated again (see Figure 6c). The network
structure shown indicates a forward movement sk to the immediately next state sk+1. This movement
is independent of any previous state sk.

Moving towards a 3D environment, a similar scene is represented as a master voxel containing
an obstacle inside (Figure 7). This voxel can be split into different levels of voxels with different
dimensional characteristics in different spatial locations. To obtain the finite set of collision-free spaces
S f ree, MACD is performed recursively.
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(a) (b) (c)

Figure 6. Network structure and state transition. (a) state transition t = 0. (b) state transition t = 1. (c)
state transition t = 2.

The main environment boundaries have been defined from the initial coordinates qi ≡ (xi, yi, zi)

to the final one q f ≡ (x f , y f , z f ), resulting in a rectangular shape, being env = ([xi, x f ], [yi, y f ], [zi, z f ]).
Each obstacle hi(x, y, z) ∈ R3 → (x, y, z) = λ, is defined as:

hi(λ)|t = hi(λ)|t+1 ⇒ static (10)

hi(λ)|t 6= hi(λ)|t+1 ⇒ dynamic (11)

where hi(λ)→ i > 0 could take two possible states, static (Equation (10), the obstacle does not change
its position with passing time) or dynamic (Equation (11), the obstacle changes its position to another
with passing time).

(a) (b)

(c)

Figure 7. Recursive rewarding MACD (RR-MACD) start process example. (a) Complete environment.
(b) First MACD level n[1]. (c) second MACD Level n[1 8].

Figure 7a shows the environment definition (blue lines) as the main node n[1] with an obstacle
h1(λ) placed inside (box green lines). Once the first decomposition is performed (Figure 7b), a first
octal level n[[1 1], . . . , [1 8]] is generated with nodes having different occupancy properties. Each will
belong to S f ree if there is no hi(λ) within its voxel limits (sk

⋂
hi(λ) = 0) (blue lines), or to Soccup if the

voxel is partial or totally occupied by the obstacle ((sk
⋂

hi(λ) = 1) ∨ (sk ∈ hi(λ))) (red lines).
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The first step is to determine the qi container voxel (for this example, it is n[1 8]). In case of
obstacle detection in n[1 8], a recursive decomposition would be performed on the location. At this
level, the node n[1 8] is the new starting state sk and the observable neighbours Sk+1 are the nodes
n[1 4], n[1 6], and n[1 7]. At this stage, the state model is depicted in Figure 8 and the transition matrix
is detailed in Table 3.

Figure 8. State model M = 5 states. List of states: s1 → n[1 8], s2 → n[1 4], s3 → n[1 6], s4 →
n[1 7], s5 → [q f ].

The probability distribution for the discrete states can be derived from a multidimensional matrix
of dimensions M×M× N (see Table 3) where, M is the number of states, and N is the number of
partial functions R(m=1...N) involved in the 3D UAV navigation.

Table 3. Initial multidimensional transition matrix listed by first column (i = 1 . . . M) and the first
row (j = 1 . . . M). The number of levels are given by the number of N functions Rm for the particular
navigation characteristics.

m= N→
m= · · · →

m=3→
m=2→

j=1 j=2 j=3 j=4 j=M

m=1→ sk = qi
sk+1

n[1 4]
sk+1

n[1 6]
sk+1

n[1 8] q f

i=1 sk = qi 0 g(Rm) g(Rm) g(Rm) 0

i=2 sk+1
n[1 4] 0 0 0 0 g(Rm)

i=3 sk+1
n[1 6] 0 0 0 0 g(Rm)

i=4 sk+1
n[1 8] 0 0 0 0 g(Rm)

i=M q f 0 0 0 0 0

This multidimensional matrix equivalent to Figure 5b has been constructed with the information
of the state model and the reward values. The aim is find the partial responses coming from the first
row and last column, and split in two transition priority vectors (D1, D2) ∈ R(M−2). Using the priority
vector p and the offset ξ, vectors D1 and D2 deliver partial reward distributions to a possible next state.

The transition priority vector D1 is built with the set of columns j = 2 . . . (M− 1) and the row
i = 1 such that
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D1 =
[
p× G(i, j)

]
+ ξ, i = 1, j = 2 . . . (M− 1)

G(1, 2) =


g(R1(1, 2))
g(R2(1, 2))

...
g(RN(1, 2))



G(1, 3) =


g(R1(1, 3))
g(R2(1, 3))

...
g(RN(1, 3))


...

G(1, (M− 1)) =


g(R1(1, (M− 1)))
g(R2(1, (M− 1)))

...
g(RN(1, (M− 1)))



(12)

The second transition priority vector, D2, is built with the set of rows i = 2 . . . (M− 1) and column
j = M.

D2 =
[
p× G(i, j)

]
+ ξ, i = 2 . . . (M− 1), j = M

G(2, M) =


g(R1(2, M))

g(R2(2, M))
...

g(RN(2, M))



G(3, M) =


g(R1(3, M))

g(R2(3, M))
...

g(RN(3, M))


...

G((M− 1), M) =


g(R1((M− 1), M))

g(R2((M− 1), M))
...

g(RN((M− 1), M))



(13)

Finally, the final reward vector D expressed as the sum of D1 and D2 contains the optimal value
which points to the best state (node) for continuing the search of the path ρx:

D = D1 + D2 (14)

x = best(D) (15)

To continue with the example in Figure 7, let us assume that x = best(D) points to n[1 6].
Nevertheless, n[1, 6] is occupied (it belongs Soccup), so MACD is invoked, creating a new level in the
data structure, composed of n[1 6 (1 . . . 8)] (see Figure 7c). Even though the state sk remains in n[1 8],
the new decomposition on n[1 6] returns a new set of neighbours, which join with previous ones, and
define the new set Sk+1 defined by (n[1 4], n[1 6 3], n[1 6 4], n[1 6 7], n[1 6 8], n[1 7]).
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So looking for the optimum within Sk+1 is required. Let us assume the best node from sk+1
is n[1 6 3] (notice that MACD is invoked once until now) and so the new state sk is reassigned
to n[1 6 3] and consequently, the neighbourhood of the new state sk, is conformed by Sk+1 =

n[1 6 1], n[1 6 4], n[1 6 7], n[1 5], n[1 8].
The previous actions produce the displacement from a current sk state to the next best state, and

towards the final point. While the container voxel of the resulting better state x does not contain the
goal point, there is the possibility that x has neighbours in different decomposition levels. Hence, the
process continues until the goal point is reached.

Once the previous phase has been completed, the optimal path ρx(F) is totally determined and
the search finishes. The flowchart depicted in Figure 9 and the Algorithm 2 show the pseudo-code for
the described actions.

Figure 9. Flowchart of RR-MACD. Notice how steps 3 to 8 in Figure 2 are re-used in this chart and
renamed as singleDecomp.

Algorithm 2 RR-MACD

1: define targetPoints, Obstacles
2: [sk] = startVoxel(env)
3: while q f ∈ sk do
4: if sk.occup == true then
5: singleDecomp(sk);
6: sk = ρx.last;
7: else
8: [Sk+1] = neighbourhood(sk);
9: [D1, D2] = rewards(sk, Sk+1, q f );

10: [ρx, sk] = D.optimum
11: end if
12: end while
13: return ρx(F)

The procedure is split in two stages. Firstly, a start voxel location is defined and, if there is an
hi(λ) in the environment, an initial simple decomposition singleDecomp is performed (as a result,
the collision-free voxel that contains the init point will be defined). Once the initial sk state is
assigned—which is also an initial ρx—the procedure proceeds depending on its occupation. If sk
is collision-free, the neighbours Sk+1 are assigned, the rewards are calculated, and the optimal x is
located. Therefore, the best state x becomes the new sk and is added to ρx. If this new sk is occupied,
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the process requires another decomposition on the current sk, and sk will return to its previous state.
The procedure is completed when the current sk contains the goal point and sk is collision-free.

Algorithm 2 summarises the procedure described in Figure 9. In line 2, a search of the first
containing qi ∈ sk is performed. The loop continues until the current sk state contains q f (line 3). If the
current state sk collides with an obstacle hi(λ), the sk state is decomposed (line 5: singleDecomp) and sk
returns to its previous state (line 6). In line 8, the neighbours of sk, Sk+1, are defined. Line 9 measures
the transition rewards for any neighbour in Sk+1. Finally, the optimum is added to the path ρx and x is
assigned as the new sk in line 10. When the loop finishes, the complete path ρx(F) is returned (line 13).

The methodology described presents the following properties:

(a) A stochastic process in discrete time has been defined (it lacks memory), the probability
distribution for a future state depends solely on its present values and is independent of the
current state history.

(b) The sum of the priorities defined in vector p is not equal to 1. ∑N
i=1 pi 6= 1.

(c) The sum of the values of each priority vector, is not equal to 1. ∑ D1 6= 1 and ∑ D2 6= 1.

Finally, it should be noted that the environmental discrete decomposition results in ever smaller
voxels of differing sizes. The level of voxel decomposition is variable based on two goals that must
be fulfilled: (1) Designer defines the maximum decomposition level (minimum voxel size); however,
the algorithm tries to reduce the computational cost and, as a consequence, the minimum voxel size
is generally avoided. (2) As soon as a free space meets the defined constraints it is selected by the
algorithm regardless of the size of the voxel.

4.3. Dynamic environment approach

The RR-MACD can be applied to a 3D UAV environment with obstacles for movement. Once qi
and q f points are defined, the trajectory ρx(F) is calculated and the UAV navigates through it.
A dynamic environment implies a positional Equation (11). If the obstacles intersect the previously
calculated trajectory (hi(λ)|t

⋂
ρx(F) = 1), a new trajectory must be generated. The described

methodology in the previous sections has constant targets qi and q f . However, for a dynamic trajectory
the path must be updated with a new qi in the current UAV location.

5. Experiments

In this section, a comparison of computational performance between MACD and RR-MACD
algorithms is made. Three different simulation examples have been carried out with 10 executions
of each algorithm over each environment. The 150 set of responses supplies the results to determine
the performance. The algorithms have been run in a “8 x Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz”
computer (Manufacturer: Gigabyte Technology Co., Ltd., Model: B85M-D3H) with 8Gb RAM and S.O.
Ubuntu Linux 16.04 LTS. The algorithms were programmed in MATLAB version 9.4.0.813654 (R2018a).

For each simulation example, five different 3D environments were defined. Table 4 shows one
row per environment, where the column entitled "UAV target coordinates" expresses the coordinates in
terms of init and goal points. The environmental dimensions have been defined in distances related to
those coordinates (in a scale of meters m). The column "Obstacles Dimensions" shows the dimensional
characteristics of each obstacle and the "Obstacle Location" places the obstacles in a specific location.
Moreover, the altitude between init and goal target points are different, guaranteeing that the UAV
path will be built in the (x, y, z) axes. It should be highlighted that maps are created with predefined
static obstaclesfor the different groups of experiments.

First, an urban environment with several buildings is described. For the construction of this
environment, a maximum altitude reference has been taken, such as stated in “The Regulation of
Drones in Spain 2019 [62,63]”. For environments defined as 2, 3, 4, and 5, larger dimensions have been
considered in which a varying number of obstacles in different air spaces are defined.
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Table 4. Definition of five different 3D environments for the simulation examples.

#

UAV
Target Coordinates (m) Obstacles

Dimensions (m)
Obstacles

Ubication (m)init goal
x y z x y z x y z x y z

1 100 100 42 0 0 24

12 12 50 40 30 25
15 15 30 24 40 15
30 30 30 70 20 15
15 15 46 20 70 23
12 12 54 80 70 27

2 1000 1000 600 0 0 420 200 200 200 333 333 333
300 300 300 777 777 777

3 1000 1000 300 0 0 700 100 100 100 400 400 400
150 150 150 400 400 800

4 1200 1200 390 0 0 720 200 300 400 200 800 400
20 20 20 300 200 700

5 1200 1200 800 0 0 500
10 10 10 600 600 600
15 15 15 200 800 800
15 15 15 200 800 200

5.1. Example 1. Static Obstacles and Four Flight Parameters (Constraints)

This example shows the performance of RR-MACD when four functions Rm are used (N = 4).
These functions are the same as those detailed in Section 4. In Figure 10, the specifically results for
environments #1 and #2 are shown. Therefore, Figure 10a shows the urban environment. Hence,
Figure 10b shows the built path by RR-MACD of the environment #1, where black boxes are the
obstacles hi(λ), green stars shows the voxel set of vertices in the state sk and the orange line shows the
final path ρx(F).
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Figure 10. Graphical Results of Example 1. (a) Modeled urban environment cluttered with surrounding
buildings. (b) Results for environment #1 with RR-MACD. (c) Final path generated using MACD for
environment #2. (d) Final path generated using RR-MACD for environment #2.
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In Figure 10c, the resulting MACD technique on the environment #2 can be appreciated, where
black boxes are the static obstacles hi(λ), blue boxes are the set of voxels used for the Dijkstra’s planner
to obtain the optimal final path (green stars are the vertices set of its belonging voxel and the orange
line shows the final path ρ. Finally, Figure 10d depicts the final trajectory built by RR-MACD, where
the orange line shows the final path ρx(F).

Comparisons of both algorithms regarding computational time is shown in Table 5. The results
show an important advantage in decomposition time S f ree and ρx(F) spaces for RR-MACD. Notice
that, when an obstacle hi(λ) intersects with a voxel decomposition, MACD recursively continues until
the predefined level n (for this reason in environment #3 the searching time for MACD is considerably
greater than other environments).

Table 5. Comparison of both algorithm executions for different environments. Column recursive
rewarding modified adaptive cell decomposition (RR-MACD) 4 vs. MACD (%) shows the average
resources (decomposition time (s), number of free voxel decomposition ”S f ree” and number of nodes in
the final path ”ρ”) used for RR-MACD in comparison with MACD. Column RR-MACD 10 vs. RR-MACD
4 (%) shows the average resources (decomposition time (s), number of free voxels decomposition ”S f ree”
and number of nodes in the final path) used for RR-MACD when the number of flight parameters
(constraints) are augmented to 10.

# MACD RR-MACD
4 Constraints

RR-MACD 4
vs. MACD (%)

RR-MACD 10 vs.
RR-MACD 4 (%)

decom.
Time (s)

Dijks.
Time (s)

#
S f ree

#
ρ

decom.
Time (s).

#
S f ree

#
ρx(F)

decomp.
Time S f ree ρ

decomp.
Time S f ree ρ

1 0.117 0.038 205 19 0.056 115 18 36.238 54.641 93.684 +51.449 +74.975 +50.000
2 0.104 0.049 496 11 0.012 27 8 8.368 5.443 72.727 +18.710 +26.337 +25.000
3 0.151 0.048 426 13 0.014 19 6 7.105 4.460 46.153 −25.118 −18.723 +1.851
4 3.535 1.021 5201 19 0.003 11 6 0.080 0.211 31.578 +327.894 +363.636 +57.407
5 0.078 0.032 294 23 0.009 19 7 8.470 6.462 30.434 +115.017 +79.532 +33.333

The third column "RR-MACD 4 vs. MACD (%)" shows in percentages the differences between
MACD and RR-MACD 4 regarding environmental decomposition time, number of S f ree free-spaces
generated during the searching process, and the number of final path nodes ρ. It is important to
mention that MACD needs an additional time because Dijks time(s) shows the seconds needed to find
ρ. For example, in the first environment, the RR-MACD algorithm just needs 36.238% of the time that
MACD takes for environment decomposition, and 54.641% of the time that MACD takes to generate
S f ree, and 93.684% of the nodes that MACD needs to build ρ. Therefore, RR-MACD shows a general
improvement on the process.

5.2. Example 2. Static Obstacles and 10 Constraints

In example 1, the set of partial functions involved in 3D UAV navigation is equal to 4. For this
example, an additional set of 6 random values were added as new functions to simulate complex flight
characteristics. Therefore, the number of partial functions in 3D UAV navigation Rm will be equal to
M = 10 and the probability distribution multidimensional matrix now has 10 levels. This increment
of functions, and its random nature, will provoke inherent changes in the results. These can be
observed in the fourth column of Table 5, entitled "RR-MACD 10 vs. RR-MACD 4 %", where the
relative difference between RR-MACD 4 and RR-MACD 10 shows the percentage increase or decrease
in decomposition time, S f ree and ρx(F).

For example, let us compare performances between RR-MACD 10 and RR-MACD 4 in the
environment #1. RR-MACD 10 needs 51.499% more time to find a final path. It generates 74.975% plus
voxels and the number of nodes in the final path ρ is 50% higher.

Table 6 shows a set of additional data corresponding to the results in terms of distances travelled
between the init point and the goal point after the execution of each algorithm. As mentioned in
the previous sections, the main objective of planning is not to reach optimality in exclusive terms
of distance.
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Table 6. Path results in distance metrics.

Distance Travelled Meters (m)

Scene MACD RR-MACD 4 RR-MACD 10

1 224.060 197.410 241.600
2 1853.000 1592.545 1734.054
3 1768.600 1790.181 1728.300
4 1693.100 1868.463 2221.354
5 1731.800 1829.690 2123.954

5.3. Example 3. Dynamic Obstacles

An additional experiment was performed that considered obstacles in motion. A new environment
has been proposed for obstacles intersecting with the calculated ρx(F). Hence, a new ρx(F) with a new
init (actual location of the UAV) is built.

Figure 11 represents this new environment with two obstacles in motion (black boxes). The first
dynamic obstacle begins its displacement in location (600, 600, 600)m, and performs a continuous
motion in an east direction with a constant velocity of 15 m/s. The second one begins its flight in
location (80, 800, 600)m with a constant velocity of 15 m/s in the same direction. After 11 s, the first
obstacle collides with ρx(F) (this crash is illustrated with orange line in Figure 11a) and a new ρx(F) is
calculated, Figure 11b shows the new location of the obstacles (notice that limits in x and y axis have
changed from 1000 m to 800 m). At t = 34 s, a new collision is detected (Figure 11c), even though the
first obstacle is out of the environment, the second one has collided with ρx. When the UAV (blue
square) has passed this part of ρx(F), the new trajectory until goal is collision-free.
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Figure 11. Network structure and state transition. (a) Collision in time of flight t = 11. (b) New ρx(F)
after first collision. (c) New ρx(F) after first collision.
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6. Conclusions

This paper presents an adaptive grid methodology in 3D environments applied to flight path
planning. The approach described considers different constraints such as UAV maneuverability and
geometry or static and dynamic environment obstacles.

The proposed algorithm, RR-MACD, divides the 3D environment in a synthesised way and does
not need to invoke any additional planner to search (such as Dijkstra or A∗) for an optimal path
generation. The improvement in the computational effort and the reduction in the number of nodes
generated by the RR-MACD has been shown. The stochastic process in discrete time involved in the
algorithm also shows a future probability distribution that only depends on its present states.

The partition of the 3D space into a defined geometric form enables decreasing the number of
control points in the generated trajectory. In addition, the issue of computational cost and complexity
has been addressed by providing a solution that generates relatively shorter time responses compared
to techniques for generating similar trajectories.

In a future work, an additional processing task will be carried out, using the set of nodes, or
control points ρx(F) generated, to create a smoother path—and then the methodology will be tested
under real flight conditions on an UAV model as in [64–66].
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