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Abstract: Rate-compatible modulation (RCM) can achieve adaptive transmission in a variable channel
environment. However, there are two problems with conventional RCM. Firstly, there is a large
number of four rings in the mapping matrix of the conventional RCM, which blocks the delivery of
messages in the decoding. Secondly, in the conventional decoding of RCM, the soft information of
the last decoding will be discarded when cyclic redundancy check (CRC) is failed, which decreases
the performance significantly. In order to address these two problems, in this paper, we propose a
new method to construct a mapping matrix without four rings (MMwoFR) and an improved belief
propagation (IBP) algorithm for RCM decoding. On the one hand, by using MMwoFR, the constructed
matrix is able to prevent the existence of four rings which have much side influence of reliability
performance. On the other hand, the IBP is able to make the most use of the soft information in RCM
decoding. Simulation results show that using MMwoFR and IBP can bring at least 12% goodput gain
for RCM at the high signal-to-noise ratio (SNR) region while maintaining the same performance in
the low and moderate SNR regions. Moreover, complexity analysis shows that the new scheme has
comparable complexity compared with a conventional RCM.

Keywords: modulation; RCM; rate adaptation

1. Introduction

High transmission rate is an important parameter in wireless communications over time-varying
channels. Adaptive coding and modulation (ACM) is an effective way to achieve high transmission
rate, which has been adopted in 802.11a [1,2]. However, there are two disadvantages in ACM. Firstly,
the sender selects best combination scheme of modulation and coding according to the estimation
of the channel conditions, which can be a really tough work for accurate estimation in time-varying
channels. Secondly, since ACM only has limited choices of rate combination schemes, the adaptive rate
is a stair-case. Superposition coded modulation (SCM) [3] is another coding and modulation scheme.
It provides a flexible rate adaptive approach. However, adjusting the rate in SCM still depends on the
channel condition.

In order to achieve seamless transmission and overcome the problem of channel estimation
at the same time, several rateless codes [4–7] have been proposed. Luby Transform (LT) codes [4]
which are originally designed for binary erasure channel (BEC) have unfavorable performance in
the Gaussian channel. Raptor codes [6] which are an extension of an LT code simply consist of the
concatenation of an LT code with an outer code, called precode, which is usually a high rate error
correcting code. The overhead of LT code is large in the Gaussian channel. Due to the overhead and the
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outer code rate, the performance of Raptor codes is also unfavorable [8]. Spinal codes [6] is also one of
rateless codes which has good performance. However, the complexity of polynomial decoding is a big
problem in practical communication systems. Analog fountain codes (AFC) [7], which uses low-density
parity-check (LDPC) codes as a precoder, is able to achieve significant performance improvements.
However, the design of AFCs is complicated and the complexity of decoding is high.

Rate compatible modulation (RCM) is one of the promising adaptation technologies, which is
proposed in [8]. RCM which can achieve seamless adaptation is insensitive to estimation error of
channel information and has high spectrum utilization at medium to high SNR. In RCM, the transmitter
transfers information bits to symbols based on the mapping matrix and sends symbols continuously.
The receiver continuously decode the source bits based on the received symbols until the source
bits pass the CRC. After that, an ACK signal acts as a feedback to notify the transmitter starting to
transmit symbols generated by another block of bits. In this way, RCM is able to achieve seamless rate
adaptation under time-varying channel conditions.

Until now, the study of the RCM has mainly focused on decoding algorithms and practical
applications. In [9–12], low complexity decoding algorithms are proposed which can effectively
reduce the hardware implementation complexity. In [13], arithmetic bit-interleaved coded modulation
(A-BICM) which cascaded LDPC codes is proposed. In [14], Duan et al. proposed a low peak to average
power ratio (PAPR) constellation mapping scheme. In [15], a scheme for switching weight sets of RCM
according to channel conditions is proposed. Due to the advantages of RCM, RCM has been applied in
these areas including visible light communications [16] and multiple access for machine-to-machine
communications [17].

However, there are still some problems in RCM . One is that the conventional mapping matrix has
a large number of four rings. The existence of four rings will decrease the reliability performance of
RCM. Another problem of RCM is that the process of iterative decoding loses lots of useful information.
In the conventional RCM system, the receiver discards soft information each time the CRC of the
source bits is failed i.e., decoding unsuccessfully. However, the discarded information can be reused in
the next decoding process.

LDPC codes [18] have been widly studied to solve the problem that the check matrix has four
rings. Quasi-cyclic LDPC (QC-LDPC) codes are a particularly important class of LDPC codes. The finite
geometries method [19] or the circulant permutation matrix method [20,21] are the two construction
methods of QC-LDPC codes, which are able to generate a check matrix without four rings. Therefore,
the design RCM mapping matrix can combine the construction method of QC-LDPC codes.

In this paper, our main aim is to solve these two problems of RCM. We will propose a new method
to construct the mapping matrix without four rings (MMwoFR). Specifically, the proposed construction
method combines the construction method of QC-LDPC codes. In this proposed construction method,
elementary matrix of mapping matrix has been changed and the distribution of the weights of the
mapping matrix has been redesigned. Besides, we will present an improved belief propagation (IBP)
algorithm for RCM decoding to make the most use of the soft information of the last unsuccessful
decoding. In addition, we find that not all the output soft information of the last unsuccessful decoding
can be used to help the next decoding. Therefore, the thresholds of the soft information are set to retain
the useful soft information.

The rest of the paper is organized as follows. Section 2 reviews the original RCM. Section 3 presents
a new mapping matrix construction method. Section 4 proposes an improved belief propagation (IBP)
and analyzes the threshold of soft information. Simulations are performed in Section 5. In the Section 6,
a conclusion of the paper is made.

2. Original Rate Compatible Modulation

In RCM, source bits are directly mapped to symbols. RCM symbols are generated by arithmetic
summation of weighted source bits. x = (x1, x2, x3, · · · , xN)

T ∈ {0, 1}N is a vector of source bits and
the length of x is N. Ws = {wl |l = 1 · · · L} is the weights set of RCM. The transmitter randomly selects
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L source bits from x. These selected bits are part of a weighted arithmetic summation to generate an
encoded symbol si as Equation (1),

si =
L

∑
l=1

wl xil , (1)

where wl ∈Ws and the subscript il is the index of the bit corresponding to the weight wl . When the
number of the transmitted symbols is M, the encoding process can be represented in matrix form
s = Gx, where G denotes the M× N mapping matrix and s is the symbol vector of length M. In RCM,
every two consecutive symbols create one complex-valued symbol un as Equation (2),

un = s2n−1 + i · s2n, n > 0, (2)

where i is the imaginary unit and s2n−1, s2n ∈ s. In original RCM, Ws = {±1,±2,±4,±4}.
Therefore, the generated symbol is [−11, 11]. The constellation map corresponding to the transmitted
complex-valued symbol is a 23× 23 rectangular constellation point map. The construction of the
mapping matrix is very crucial. The construction method of the original RCM mapping matrix takes
three constraints as construction critera (more details can be found in [8]).

1. The mapping matrix should be regular in rows.
2. The mapping matrix should be as regular as possible in columns.
3. The weight set is able to create diverse symbol values.

In [8], three steps are taken to construct the mapping matrix. The first step is constructing the
elementary matrix. C(q) is a N/8× N/4 matrix as Equation (3), where q is a variable.

C(q) =


+q −q

+q −q
. . .

+q −q


N/8×N/4.

(3)

According to the weight set of RCM, q is 1, 2 or 4. Therefore, three kinds of elementary matrices
are constructed including C(1), C(2), and C(4). For these three matrices, the only difference is the
value of elements.

The second step is randomly permuting the columns of the three elementary matrices expressed
as π(C(1)), π(C(2)), π(C(4)). Then, we construct an N/2× N matrix G0 as Equation (4):

G0 =


π (C(4)) π (C(4)) π (C(2)) π (C(1))
π (C(2)) π (C(1)) π (C(4)) π (C(4))
π (C(4)) π (C(4)) π (C(1)) π (C(2))
π (C(1)) π (C(2)) π (C(4)) π (C(4))

 (4)

where π(·) represents the process of random permutation of columns of a matrix and π(·) is different
each time. A plurality of kinds of G0 can be obtained by using the above method.

The third step is superimposing G0 of different numbers to obtain the mapping matrix G.
In RCM, the mapping matrix is negotiated by the transmitter and the receiver. Generally, two G0 are
superimposed to construct a mapping matrix.

However, the construction method has a problem that the mapping matrix has a large number
of four rings. The existence of four rings will affect the performance during decoding. In the actual
process, we did the following experiment. Using the original method to construct the mapping matrix
1000 times, the average number of four rings is 729.34.
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3. Mapping Matrix Construction Method

In this section, we will introduce a new method to construct the mapping matrix without four
rings (MMwoFR). The design of MMwoFR aims at eradicating the four rings and satisfying the three
constraints of RCM. Using the new construction method to construct a mapping matrix Gnew ∈ RN×N

can be divided into three steps.
At first, we construct a check matrix of QC-LDPC codes using the construction method in [22],

setting row weight and column weight of the matrix to be 8. The check matrix of the QC-LDPC codes
is jointly determined by the base matrix and the shift matrix. The size of base matrix and the size of
shift matrix are both 8× 8. The check matrix is also divided equally into 8× 8 parts. Each element of
the base matrix is 0 or 1. The position of check matrix corresponding to the 0 of base matrix will be an
all-zero matrix. In contrast, the position of the check matrix corresponding to the 1 of the base matrix
will be a cyclically right-shifting identity matrix. The base matrix Gb is set to be an all-one matrix of
8× 8 as Equation (5):

Gb =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


8×8.

(5)

Therefore, each part of check matrix is a circulant permutation matrix obtained by cyclically
right-shifting the identity matrix by pij positions expressed as Ipij , where I is the identity matrix and pij
is the shifting value. The right-shifting value can be decided by the corresponding element of the shift
matrix. Using the construction method of QC-LDPC codes, we can get a shift matrix as Equation (6):

Gs =


p11 p12 · · · p18

p21 p22 · · · p28
...

...
. . .

...
p81 p82 · · · p88


8×8,

(6)

where pij(0 ≤ i ≤ 8, 0 ≤ j ≤ 8) denotes the shift value of the identity matrix. By combining base
matrix and shift matrix, we can get the check matrix H as Equation (7):

H =


Ip11 Ip12 · · · Ip17 Ip18

Ip21 Ip22 · · · Ip27 Ip28

...
...

. . .
...

...
Ip71 Ip72 · · · Ip77 Ip78

Ip81 Ip82 · · · Ip87 Ip88

 (7)

where Ipij is a N/8× N/8 (0 ≤ pij ≤ N/8) circulant permutation matrix. It is matrix which doesn’t
exists four rings.

The second step is replacing the value of the non-zero position in H with the weight set of RCM
according to the three constraints in Section 2. Since each Ipij is obtained by a right-shifting identity
matrix, there are only eight non-zero positions for each row and column of the matrix H. There must
be a non-zero position in each row of Ipij . These two factors are helpful conditions for constructing
the mapping matrix. Therefore, we combine two adjacent Ipij of each row into one block, denoted as
gab = [Ipa(2b−1) , Ipa(2b) ](1 ≤ a ≤ 8, 1 ≤ b ≤ 4).

The last step is to divide the different weights into three groups denoted as {+1,−1}, {+2,−2}
and {+4,−4}. Each gab is assigned to a definite group of weights. According to the conventional
mapping matrix, gab chooses weight set as Equation (8) (shown at the top of next page). Each row of
each block has two non-zero positions. For different elements in the same group, the two weights are
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assigned to the two non-zero positions with equal probability. In this way, we can construct a mapping
matrix without four rings, while satisfying the three constraints of RCM [8].

Gnew =



g11{+4,−4} g12{+4,−4} g13{+2,−2} g14{+1,−1}
g21{+2,−2} g22{+1,−1} g23{+4,−4} g24{+4,−4}
g31{+4,−4} g32{+4,−4} g33{+1,−1} g34{+2,−2}
g41{+1,−1} g42{+2,−2} g43{+4,−4} g44{+4,−4}
g51{+4,−4} g52{+4,−4} g53{+2,−2} g54{+1,−1}
g61{+2,−2} g62{+1,−1} g63{+4,−4} g64{+4,−4}
g71{+4,−4} g72{+4,−4} g73{+1,−1} g74{+2,−2}
g81{+1,−1} g82{+2,−2} g83{+4,−4} g84{+4,−4}


(8)

4. Improved Belief Propagation Algorithm

This section contains two parts. In the following, we first introduce the improved belief
propagation (IBP) which is based on the threshold of the soft information. Next, we will analyze the
error probability of soft information.

4.1. Introduction of Improved Belief Propagation

One advantage of RCM as an adaptive transmission system is that the transmitter does not require
precise channel estimation feedback from the receiver. The transmitter transfers the next data block
after receiving an acknowledgement (ACK) from the receiver. The specific model of transmitter is
shown in Figure 1. A major feature of the transmitter is that it constantly increases the transmitted
symbols for the same data block when no ACK is received. It achieves an adaptive code rate via
adjusting the number of transmitted symbols.

Modulation ACK received?Bits mapping  Next data block

No

Transmitter

Figure 1. Transmission model of the transmitter.

As for the original receiver, it will continue to receive symbols when it fails to pass the cyclic
redundancy check (CRC). In addition, the ACK signal will not be sent to the transmitter. As for the
newly received symbols, they are put together with the previously received symbols for decoding.
The receiver continuously repeats the two procedures of decoding and receiving symbols. This step
will not stop until the CRC is passed. The receiver will feed back an ACK to the transmitter when CRC
passes. The specific model of original receiver is shown in Figure 2a.

In the original model, soft information by the last decoding is completely discarded when the
CRC is failed. However, in many cases, most of the soft information by the last decoding is correct.
Only a small number of errors occur. Therefore, the efficiency of decoding is greatly reduced due to
the large loss of valid information. IBP aims to retain as much valid information as possible

RCM initially uses a belief propagation (BP) algorithm in [8] as the decoding algorithm. In [9],
the maximum likelihood ratio BP (LLR-BP) decoding algorithm is proposed, which effectively
accelerated decoding and reduced the complexity of the hardware. In the LLR-BP algorithm, the soft
information is the LLR and each final decision depends on the LLR acquired by iterative decoding.
The judgment rules are as follows. The final soft information which is larger than or equal to 0 is
judged as information bit “1”. Thus, the soft information less than 0 is judged as information bit
“0”. There is a very important property of the LLR-BP algorithm that the soft information, of which
the absolute values are very large, has a small error probability of judgment. This property will be
proven in Section 4.2. Based on this property, we proposed an improved belief propagation (IBP)
decoding algorithm.



Electronics 2019, 8, 307 6 of 16

Demapping

Pass CRC?

Received 

symbols

Sender ACK

No

Demodulation

Enough symbols?

(a)

Demodulation

Enough 

symbols?

Received 

symbols

Demapping

No

Pass CRC?

No

Send ACK

 Numbers of symbols 

reaches maximum 

value?

Initialize prior 

soft information

Use  the last  

soft information

Yes No

(b)

Figure 2. Comparison between original receiver model and improved receiver model. (a) Original
receiver model. (b) Improved receiver model.

Due to the low error probability of judgment of larger value, the IBP sets a threshold of absolute
value when the CRC fails. The portion of the soft information that is higher than the threshold is
reserved. In contrast, the portion of soft information below the threshold is discarded. The reserved
soft information is taken as the initial information at the beginning of the next iteration.

To keep the improved system stable and effective, we set the maximum value for the number
of received symbols. The specific operation of setting the maximum value is as follows. When the
maximum number of received symbols is not reached, we use the IBP algorithm to reserve the soft
information whose absolute value is greater than the threshold. In contrast, When the maximum
number of received symbols is reached and the CRC is still not passed, we will not reserve the soft
information. Such a system design not only ensures the stability of the system, but also improves the
efficiency of system decoding. The specific improved receiver model is shown in Figure 2b.

4.2. Analysis of Error Probability of Soft Information

At present, the additive white Gaussian noise (AWGN) channel model is mainly considered by
RCM. Suppose the received symbol vector is r ∈ RM×1. r is denoted as follow:

r = G · x + e, (9)

where e ∈ RM×1 , ei ∈ e and ei ∼ N (0, σ2). The task of receiver is finding out the source bits with
the maximum a posterior (MAP) probability. In [8], belief propagation algorithm has been used
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for decoding which is initially proposed in [23] for sparse signal recovery of compressive sensing.
The decoding process is to find the optimal solution for the following problem:

x̂ = argmax p(x|r). (10)

For the RCM, the BP iterative decoding algorithm is used. The process of iterative decoding
repeatedly updates the variable nodes and the symbol nodes through the information exchange
between the symbol nodes and the variable nodes. Suppose ri is the received symbol and ri ∈ r.
As Figure 3 shows, the set of variable nodes xi =

{
xi1 , xi2 , · · · , xiL

}
are connected to the symbol node

ri. The number of the weight is L, Ws = {w1, w2, w3, · · · , wL}. The information transmitted by the
symbol node to the variable nodes xik is vik = p(ri|xi\k), where xi\k denotes the set of variable nodes
connected to the symbol node ri excluding xik .

1
i
x

2
i
x

3
i
x

1
i
v

2
i
v

3
i
v

1
w

2
w

3
w

i
r

L
w

L
i
v

L
i
x

Figure 3. Symbol node conveys message to its all neighboring variable nodes.

The two conditional probability function sent by the symbol node to the variable nodes are
as follow:

v(0)ik
= p(ri|xik = 0)

=

si\kmax

∑
s=si\kmin

p(si\k = s) · 1√
2πσ

· e−
(ri−s)2

2σ2
, (11)

v(1)ik
= p(ri|xik = 1)

=

si\kmax

∑
s=si\kmin

p(si\k = s) · 1√
2πσ

· e−
(ri−s−wk)

2

2σ2
, (12)

where si\k = ∑L
d=1,d 6=k wdxid , si\kmin

and si\kmax represent the maximum and minimum values of
si\k respectively.

As Figure 4 shows, the set of symbol nodes rj =
{

rj1 , rj2 , · · · , rjn
}

are connected to the variable
nodes xj. The information transmitted by the variable node to the symbol nodes is ujk = p(xj|rj/k),
where rj/k denotes the set of the symbol nodes connected to the variable node xj excluding rjk .

j
x

1
j
u

2
j
u

3
j
u

nj
u

1
j
r

2
j
r

3
j
r

nj
r

Figure 4. Variable node conveys message to its all neighboring symbol nodes.
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The two conditional probability function passed to the symbol nodes by the variable node are
as follow:

u(0)
jk

= p(xj = 0|rj\k) =

n
∏

m=1,m 6=k
p(rjm |xj = 0)

∑
b∈{0,1}

n
∏

m=1,m 6=k
p(rjm |xj = b)

, (13)

u(1)
jk

= p(xj = 1|rj\k) =

n
∏

m=1,m 6=k
p(rjm |xj = 1)

∑
b∈{0,1}

n
∏

m=1,m 6=k
p(rjm |xj = b)

. (14)

The transmitted symbols through the AWGN channel are independent of noise. As for transmitted
symbol s and received symbol ri , the conditional probability function of the channel can be
expressed as:

p(ri|s) =
1√
2πσ

· e−
(ri−s)2

2σ2 . (15)

Taking the LLR-BP in the decoding is equivalent to taking the logarithm of the conditional
probability function of the channel.

ln p(ri|s) = ln
1√
2πσ

− (ri − s)2

2σ2 , (16)

where ri − s = ei. The specific operation of BP-LLR is as follow. In the decoding of symbol nodes
of the BP algorithm, symbol nodes transmit a message including v(0)ik

and v(1)ik
to variable nodes as

Equations (11) and (12). Using LLR, The transmitted message vl
ik

will become the logarithmic form
as follow:

vl
ik = ln (

v(0)ik

v(1)ik

). (17)

In the decoding of variable nodes, variable nodes transmit a message include u(0)
ik

and u(1)
ik

to
variable node as Equations (13) and (14). Using LLR, it only needs to add an operation rather than
multiplication. The information u(l)

jk
of variable nodes transmitted to symbol nodes is denoted as:

ul
jk = ln (

u(0)
jk

u(1)
jk

) = ∑
jk 6=ik

ln (
v(0)ik

v(1)ik

). (18)

In LLR-BP, the LLR ul
jk

is the soft information acquired by iterative decoding. The decision process
is as follow:

b =

1, ul
jk < 0;

0, ul
jk ≥ 0;

(19)

Combining (11) and (12), vl
ik

is further represented as:

vl
ik =

si\kmax

∑
s=si\kmin

ln s−
si\kmax

∑
s=si\kmin

(ri − s)2

2σ2 −
si\kmax

∑
s=si\kmin

ln s +
si\kmax

∑
s=si\kmin

(ri − s− wk)
2

2σ2

=

si\kmax

∑
s=si\kmin

wk
2 − 2wk(ri − s)

2σ2 = ∑
wk
2σ2 −

wk
σ2

si\kmax

∑
s=si\kmin

(ri − s)

. (20)
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ri is the received symbol and s represents the possible transmitted symbol, ri − s can be simplified
to ei + d, where ei is the noise and d represents different values among possible symbols. Due to the
reason that these possible transmitted symbols are accurate, d can be seen as a constant. wk and σ2

both can be seen as constants. Let A represent an additive constant and let p represent a multiplier
constant. We can further simplify vl

jk
.

vl
ik = A + p ·∑ ei. (21)

ei satisfies Gaussian distribution. As can be found from Equation (21), vl
ik

satisfies a distribution
obtained by linear operation of Gaussian distribution. During the decoding, the variable nodes only
perform the add operation ul

jk
is also a linear function of ei as Equation (22):

ul
jk = ∑

{
A + p ·∑ ei

}
. (22)

According to the above analysis, the distribution of soft information is closed to Gaussian
distribution. According to the property, the closer the absolute value of soft information is to
0, the greater the error probability of soft information. This property is helpful in the selection
of thresholds.

5. Simulation

In this section, we first obtain the threshold of soft information through simulation. Then,
we compare the performance of MMwoFR and IBP with the original RCM. We also have compared the
complexity of the improved scheme. In order to evaluate the stability of the improved scheme, we also
have performed a sensitivity analysis.

5.1. Threshold of Soft Information

In a practical system, a receiver should choose a suitable threshold. When the threshold is too
large, less valid soft information is retained. Conversely, if the threshold is too small, the retained
error soft information will increase. We have previously summarized the distribution of wrong soft
information. It is verified below.

Simulation is performed at SNR from 5 dB to 30 dB. In the experiment, we choose 105 bits as a block
and run 10,000 blocks for each SNR. For each block of bits, we find the soft information corresponding
to error bits. Then, we got the probability density function (PDF) of these soft information values and
averaged the 300 blocks to get the means. Figure 5 shows the PDF of wrong soft information values
when SNR = 5 dB, 10 dB, 15 dB, 20 dB, 25 dB and 30 dB. It also shows that the probability will decrease
when the soft information value is far from 0.

In order to obtain reliable thresholds, the cumulative distribution function (CDF) of soft
information corresponding to error bits has been obtained according to the simulation results.
According to the CDF, select the point corresponding to the probability at about 99% as the threshold.
The final selected threshold is at Table 1.

Table 1. Thresholds of soft information for different SNR.

SNR(dB) 5 6 7 8 9 10 11 12 13
Threshold 8.06 7.57 7.35 6.90 6.81 6.5 6.34 6.17 6.00
SNR(dB) 14 15 16 17 18 19 20 21 22

Threshold 5.91 5.80 5.33 5.14 4.67 4.47 4.25 4.13 4.04
SNR(dB) 23 24 25 26 27 28 29 30

Threshold 3.91 3.75 3.55 3.46 3.40 3.24 3.10 3.07
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At the end of each iteration, the remaiing soft information is scaled down according to the
threshold value so that the maximum value of soft information retained each time would not exceed
the threshold.

Although these thresholds are based on simulations, they are not sensitive within a certain range.
We also have done simulation analysis of sensitivity of the thresholds. The results will be shown
in Section 5.4.
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Figure 5. Probability density function of wrong soft information.

5.2. Performance Evaluation

In order to confirm the improved scheme’s performance, a lot of experiments are performed
in this section. Utilizing the mapping matrix without four rings (MMwoFR) and improved belief
propagation (IBP) algorithm, we implement four different situations. The first is the original RCM.
The second only uses the MMwoFR. The third only uses the IBP. The last combines MMwoFR and IBP
(MMwoFR-IBP). The presentation of these four situations will be more intuitive to the comparison of
the performance of different schemes.

The weight set of the original RCM is {±1,±2,±4,±4}. In [13,15], the weight sets
{±1,±2,±4,±8} and {±1,±1,±2,±2} have been discussed for RCM. In order to show the
universality of the improved scheme, we take experimental simulations using the three weight sets
(shown in Table 2). It can be found from Table 2 that different weight sets have different elements;
therefore, the classes of generated symbols are different.



Electronics 2019, 8, 307 11 of 16

Table 2. Three weight sets of RCM.

Name Weight Set L Type of Symbol

RCM1 {±1,±1,±2,±2} 8 13
RCM2 {±1,±2,±4,±4} 8 23
RCM3 {±1,±2,±4,±8} 8 31

Simulation is performed under the AWGN channel. Every 400 bits are a block. The dimension of
mapping matrix is designed as 400× 400. When the channel conditions are very poor, the number of
generated symbols may exceed 400. At this time, the mapping matrix is repeated. Symbols generated
by the same row of mapping matrix are merged using the maximum merger ratio.

During transmission, the demapping threshold is the same as the original RCM [8]. When CRC is
failed, the receiver will increase the received symbols. In the original receiver model, the additional
number of symbols is 10. As for IBP, less additional symbols may succeed during decoding due to the
retention of soft information . However, the number of decoding will increase when the additional
number of symbols is reduced. Therefore, the additional number of symbols is chosen based on the
performance and the number of decoding. We simulated the performance of MMwoFR-IBP when
the additional number is in the range of 1–10. According to the result of simulations, we choose the
additional number which has the best performance. When the performance is equivalent, we choose the
additional number which has less number of decoding. According to the above selection, the number
of additional symbols is shown in Table 3.

Table 3. Additional number of symbols for different SNR.

SNR(dB) 5 6 7 8 9 10 11 12 13
Number 10 10 10 10 10 10 10 10 10
SNR(dB) 14 15 16 17 18 19 20 21 22
Number 7 7 7 5 5 5 3 3 3
SNR(dB) 23 24 25 26 27 28 29 30
Number 2 2 2 1 1 1 1 1

In order to maintain a more stable system, a maximum number of received symbols is set.
When the number of received symbols is lower than the maximum number, the soft information
will be retained. In contrast, when the number of received symbols is higher than the maximum
number, all the soft information will be discarded. In [8], the cumulative distribution function (CDF)
of successful decoding at different SNR has been obtained. In our simulations, we ran 1000 blocks of
data. In this case, we can get 1000 numbers of symbols for successful decoding at each SNR. We choose
the maximum number in the 1000 numbers as the threshold of the maximum number of symbol.
The maximum number of symbols for each SNR is shown in Table 4.

Table 4. Maximum number of received symbols for different SNR.

SNR(dB) 5 6 7 8 9 10 11 12 13
Number 2650 2100 1280 1100 980 770 710 450 350
SNR(dB) 14 15 16 17 18 19 20 21 22
Number 300 290 260 240 230 200 190 170 170
SNR(dB) 23 24 25 26 27 28 29 30
Number 170 150 150 150 150 150 150 140

In order to evaluate the performance, we use goodput as the evaluation metric, which is
the rate of correctly received bits. The goodput performance of different weight sets is shown in
Figures 6–8. When the weight set is {±1,±1,±2,±2}, RCM1 achieves the rate of 4.81 bits/s/Hz at
27 dB, while MMwoFR achieves the same rate at 25 dB, IBP at 26 dB and MMwoFR-IBP at 24 dB.
MMwoFR-IBP’s most goodput reaches 5.28 bits/s/Hz and achieves 9.1% goodput gain.
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Figure 6. Goodput comparison in different system with weight set {±1,±1,±2,±2}.

5 10 15 20 25 30

ES/N0(dB)

0

1

2

3

4

5

6

7

8

9

10

G
o
o
d

p
u

t(
b
it
s
/s

/H
Z

)

NMMCM-IBP-RCM2

NMMCM-RCM2

IBP-RCM2

RCM2

Shannon limit

Figure 7. Goodput comparison in different system with weight set {±1,±2,±4,±4}.
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When the weight set is {±1,±2,±4,±4}, RCM2 achieve the rate of 6.25 bits/s/Hz at 30 dB,
while MMwoFR achieve the same rate at 27 dB, IBP at 24 dB and MMwoFR-IBP at 23 dB.
MMwoFR-IBP’s most goodput reaches 7.29 bits/s/Hz and achieves 16.3% goodput gain.

When the weight set is {±1,±2,±4,±8}, RCM3 achieves the rate of 7.3 bits/s/Hz at 30 dB,
while MMwoFR achieves the same rate at 28 dB, IBP at 28 dB and NMMCM-IBP-RCM2 at 26 dB.
MMwoFR-IBP’s most goodput reaches 7.96 bits/s/Hz and achieves 7.2% goodput gain. As depicted
from the curve in the figure, the performance of MMwoFR-IBP is optimal. Both MMwoFR and IBP can
improve the spectrum efficiency. As the SNR increases, the increment of spectrum efficiency will be
more obvious, and especially apparent at high SNR.

Through the comparison of performance of four situations, we find that MMwoFR-IBP, MMwoFR
and IBP are all superior to the original RCM at high-SNR range. The reason resides in the following two
points. First, when using MMwoFR, the speed of transmission and update of the soft information in the
iterative decoding is accelerated. The result of demapping is more reliable. Second, the IBP algorithm
retained valid information which is discarded for the original RCM. These valid information as initial
information of next decoding will increase the correct probability of decoding so that the number of
symbols required for decoding is reduced. The two points are both beneficial to the improvement of
spectrum efficiency.

5.3. Comparison of Complexity

The iteration decoding algorithm of RCM is complex. The complexity mainly depends on the
process of decoding. In the decoding, the complexity of the process of symbol nodes dominates.
Existing improved decoding algorithms all aim to simplify the process of symbol nodes. When weight
set is settled the same, the complexity of decoding depends just on the decoding number at each
round. Under the condition that they use the same weight sets, the complexity of four schemes can be
compared by the decoding number.

Figure 9 shows the average number of decoding for the original RCM, MMwoFR, IBP and
MMwoFR-IBP with the weight sets {±1,±2,±4,±4}. As can be seen from the figure, the average
decoding number at low SNR is much higher than that at high-SNR and the average decoding number
of four schemes is comparable at low SNR. Due to the reason that the additional number of symbol
is reduced, the complexity of IBP and MMwoFR-IBP is slightly higher than the original RCM and
MMwoFR at high SNR. Overall, the complexity is comparable.
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5.4. Sensitivity to SNR Estimation Error

In practical communication systems, the threshold will change as SNR changes. However, existing
channel estimation techniques do not usually achieve accurate and real-time channel information.
One obvious advantage of the original RCM is that it does not need accurate channel information.
Therefore, it is necessary to evaluate whether the proposed scheme is sensitive to inaccurate SNR
estimated value. According to [24], 98% of the SNR estimation error is within −6 dB to 6 dB. Therefore,
our sensitivity analysis is within this range.

In the simulation, we chose four situations of 10 dB, 15 dB, 20 dB and 25 dB. Assume the estimated
error within −6 dB to 6 dB ×107 bits were used in the experiment. The experimental results are shown
in Figure 10. It can be found that the goodput performance has small fluctuation. According to the
simulation result, we conclude that the proposed schemes are not sensitive to the SNR estimation error.
It is crucial for the proposed scheme to adapt the actual communication environment.

-6 -4 -2 0 2 4 6

ES/N0(dB)

1

2

3

4

5

6

7

8

G
o

o
d

p
u
t(

b
it
s
/s

/H
Z

)

10dB

15dB

20dB

25dB

Figure 10. Sensitivity to SNR estimation errors.

6. Conclusions

In this paper, a new mapping matrix construction method of RCM is proposed. This method
is able to construct the mapping matrix without four rings (MMwoFR), which improves the update
rate of information between symbol nodes and variable nodes during decoding. Based on the
LLR-BP decoding algorithm, an improved belief propagation (IBP) decoding algorithm which uses
soft information by last decoding is proposed. When the CRC is failed, the soft information from
the last decoding, which is higher than the threshold, is reserved as the initial information of the
following decoding, which greatly improves the decoding efficiency. Simulation shows that these
two methods achieve great goodput gain. We have evaluated the performance of MMwoFR, IBP and
the combination of both (MMwoFR-IBP) in the additive white Gaussian noise (AWGN) channel.
Compared to the original RCM, these three schemes all achieved performance gain at high SNR.
MMwoFR achieves about 3% goodput gain within the SNR region from 25 dB to 30 dB. IBP achieves at
least 3% goodput gain from 14 dB to 30 dB and achieves a maximum goodput gain of 8% at 30 dB.
Especially, using MMwoFR-IBP achieves at least 12% goodput gain from 25 dB to 30 dB and achieves
16% goodput gain at 30 dB. In the future, we aim to further research RCM and the transmission system.
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