Beam Scanning Capabilities of a 3D-Printed Perforated Dielectric Transmitarray
Abstract
:1. Introduction
2. Unit-Cell Analysis
3. Beam Scanning Transmitarray Design
4. Prototype Manufacturing and Experimental Characterization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Encinar, J.A. Reflectarray Antennas; Wiley IEEE Press: Hoboken, NJ, USA, 2008. [Google Scholar]
- Abdelrahman, A.H.; Yang, F.; Esherbeni, A.Z.; Nayeri, P. Analysis and Design of Transmitarray Antennas; M&C Publishers: San Francisco, CA, USA, 2017. [Google Scholar]
- Ryan, C.G.M.; Chaharmir, M.R.; Shaker, J.R.B.J.; Bray, J.R.; Antar, Y.M.; Ittipiboon, A. A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 2010, 58, 1486–1493. [Google Scholar] [CrossRef]
- Abdelrahman, A.H.; Elsherbeni, A.Z.; Yang, F. High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1288–1291. [Google Scholar] [CrossRef]
- Cai, Y.M.; Li, W.; Li, K.; Gao, S.; Yin, Y.; Zhao, L.; Hu, W. A Novel Ultra-Wideband Transmitarray Design Using Tightly Coupled Dipole Elements. IEEE Trans. Antennas Propag. 2019, 67, 242–250. [Google Scholar] [CrossRef]
- Abdelrahman, A.H.; Esherbeni, A.Z.; Yang, F. Transmitarray antenna design using cross slot elements with no dielectric substrate. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 177–180. [Google Scholar] [CrossRef]
- Rahmati, B.; Hassani, H.R. High-efficient wideband slot transmitarray antenna. IEEE Trans. Antennas Propag. 2015, 63, 5149–5155. [Google Scholar] [CrossRef]
- Mahmoud, A.-E.; Hong, W.; Zhang, Y.; Kishk, A. W-band mutlilayer perforated dielectric substrate lens. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 734–737. [Google Scholar] [CrossRef]
- Yi, H.; Qu, S.W.; Ng, K.B.; Chan, C.H.; Bai, X. 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans. Antennas Propag. 2016, 64, 442–449. [Google Scholar] [CrossRef]
- Massaccesi, A.; Pirinoli, P. Enhancing the bandwidth in transmitarray antennas using tapered transmission line matching approach. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Massaccesi, A.; Pirinoli, P.; Vardaxoglou, J.C. A multilayer unit-cell for perforated dielectric transmitarray antennas. In Proceedings of the 2018 IEEE International Symposium on Antennas and Prop & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 263–264. [Google Scholar]
- Massaccesi, A.; Pirinoli, P.; Bertana, V.; Scordo, G.; Marasso, S.L.; Cocuzza, M.; Dassano, G. 3D-Printable dielectric transmitarray with enhanced bandiwidth at millimiter-waves. IEEE Access 2018, 6, 46407–46418. [Google Scholar] [CrossRef]
- Beccaria, M.; Massaccesi, A.; Pirinoli, P. Multibeam transmitarrays for 5G antenna systems. In Proceedings of the 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 18–20 July 2018; pp. 217–221. [Google Scholar]
- Jiang, M.; Chen, Z.N.; Zhang, Y.; Hong, W.; Xuan, X. Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans. Antennas Propag. 2017, 65, 464–472. [Google Scholar] [CrossRef]
- Hou, Y.; Chang, L.; Li, Y.; Zhang, Z.; Feng, Z. Linear Multibeam Transmitarray Based on the Sliding Aperture Technique. IEEE Trans. Antennas Propag. 2018, 66, 3948–3958. [Google Scholar] [CrossRef]
- Liu, G.; Pham, K.; Cruz, E.M.; Ovejero, D.G.; Sauleau, R. A millimeter wave transparent transmitarray antenna using meshed double circle rings elements. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Lima, E.B.; Matos, S.A.; Costa, J.R.; Fernandes, C.A.; Fonseca, N.J.G. Circular polarization wide-angle beam steering at Ka-band by in-plane translation of a plate lens antenna. IEEE Trans. Antennas Propag. 2015, 63, 5443–5455. [Google Scholar] [CrossRef]
- Liu, G.; Cruz, E.M.; Pham, K.; Ovejero, D.G.; Sauleau, R. Low Scan Loss Bifocal Ka-band Transparent Transmitarray Antenna. In Proceedings of the 2018 IEEE International Symposium on Antennas and Prop & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1449–1450. [Google Scholar]
- Clemente, A.; Dussopt, L.; Sauleau, R.; Potier, P.; Pouliguen, P. Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band. IEEE Trans. Antennas Propag. 2013, 61, 5017–5027. [Google Scholar] [CrossRef]
- Pan, W.; Huang, C.; Ma, X.; Jiang, B.; Luo, X. A dual linearly polarized transmitarray element with 1-Bit phase resolution in X-band. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 167–171. [Google Scholar] [CrossRef]
- Di Palma, L.; Clemente, A.; Dussopt, L.; Sauleau, R.; Potier, P.; Pouliguen, P. Circularly-polarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities. IEEE Trans. Antennas Propag. 2017, 65, 529–540. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Pichot, C. Unit-Cell loaded with PIN diodes for 1-bit linearly polarized reconfigurable transmitarrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 98–102. [Google Scholar] [CrossRef]
- Padilla, P.; Munoz-Acevedo, A.; Sierra-Castaner, M.; Sierra-Perez, M. Electronically reconfigurable transmitarray at Ku band for microwave applications. IEEE Trans. Antennas Propag. 2010, 58, 2571–2579. [Google Scholar] [CrossRef]
- Lau, J.Y.; Hum, S.V. A wideband reconfigurable transmitarray element. IEEE Trans. Antennas Propag. 2012, 60, 1303–1311. [Google Scholar] [CrossRef]
- Lau, J.Y.; Hum, S.V. Reconfigurable transmitarray design approaches for beamforming applications. IEEE Trans. Antennas Propag. 2012, 60, 5679–5689. [Google Scholar] [CrossRef]
- Sazegar, M.; Yuliang, Z.; Kohler, C.; Maune, H.; Nikfalazar, M.; Binder, J.R.; Jakoby, R. Beamsteering transmitarray using tunable frequency selective surface with integrated ferroelectric varactors. IEEE Trans. Antennas Propag. 2012, 60, 5690–5699. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Ma, X.; Jiang, B.; Cui, J.; Luo, X. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications. IEEE Trans. Antennas Propag. 2015, 63, 4801–4810. [Google Scholar] [CrossRef]
- Rengarajan, S.R. Scanning and defocusing characteristics of microstrip reflectarray. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 163–166. [Google Scholar] [CrossRef]
Gain | 29.97 dBi | 29.30 dBi | 27.96 dBi | 27.07 dBi |
Ap. Eff. (30 GHz) | 35.1% | 30.1% | 22.2% | 18.1% |
HPBW (30 GHz) | 3.8 | 3.9 | 4.1 | 4.3 |
HPBW (30 GHz) | 3.9 | 3.9 | 4.1 | 4.8 |
SLL (30 GHz) | −22.6 dB | −20.4 dB | −16.0 dB | −11.1 dB |
SLL (30 GHz) | −22.6 dB | −22.4 dB | −20.1 dB | −15.5 dB |
BDF | 1 | 0.9 | 0.9 | 0.9 |
X-pol (30 GHz) | −40.4 dB | −39.6 dB | −38.5 dB | −36.3 dB |
1-dB BW | 23.5% | 24.5% | 23.3% | 24% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massaccesi, A.; Dassano, G.; Pirinoli, P. Beam Scanning Capabilities of a 3D-Printed Perforated Dielectric Transmitarray. Electronics 2019, 8, 379. https://doi.org/10.3390/electronics8040379
Massaccesi A, Dassano G, Pirinoli P. Beam Scanning Capabilities of a 3D-Printed Perforated Dielectric Transmitarray. Electronics. 2019; 8(4):379. https://doi.org/10.3390/electronics8040379
Chicago/Turabian StyleMassaccesi, Andrea, Gianluca Dassano, and Paola Pirinoli. 2019. "Beam Scanning Capabilities of a 3D-Printed Perforated Dielectric Transmitarray" Electronics 8, no. 4: 379. https://doi.org/10.3390/electronics8040379
APA StyleMassaccesi, A., Dassano, G., & Pirinoli, P. (2019). Beam Scanning Capabilities of a 3D-Printed Perforated Dielectric Transmitarray. Electronics, 8(4), 379. https://doi.org/10.3390/electronics8040379