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Abstract: This paper addresses the problem of motion prediction and tracking control for cloud
robotic systems with time-varying delays in measurements. A novel method using an observer-based
structure for position and velocity prediction is developed to estimate the real-time information of
robot manipulator. The prediction error can converge to zero even if model uncertainties exist in
the robot manipulator. Based on the predicted positions and velocities, some sufficient conditions
are derived to design suitable tracking controllers such that semi-globally uniformly ultimately
bounded tracking performance of the predictor–controller couple can be guaranteed. Finally,
the effectiveness and robustness to model uncertainties of the proposed method are verified by
a two degree-of-freedom (DOF) robot system.
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1. Introduction

Nowadays, with the development of Internet and communication technologies, cloud robotics
combining cloud computing with robotics have become an attractive research topic in the recent
years [1–3]. As a consequence, remote control of robot systems can be performed in a cloud platform
through data connection with a robot manipulator. Important applications of cloud robotics can be
found in space exploration, remote surgery, intelligent housing systems, unmanned vehicles, and so
on [4–9].

Due to remote communication between robot sensors and control platforms, time delays are
inevitable in measurement channels of a robotic system [10–12]. As such, real-time information of
robot manipulator cannot arrive at the cloud platform on time, which may break down the operational
capability or even destabilize the robotic system [13–15]. Thus, time delays in measurement channels
are a non-negligible issue [16,17], and several approaches have been proposed to deal with the delayed
measurements [18]. For instance, in [19], a dynamically smooth controller based on linear matrix
inequality (LMI) techniques was studied to guarantee asymptotic tracking of a robot system subject to
delayed measurements. In [20], a position feedback controller for Internet-based telerobotic systems
with time delays was proposed using the Lyapunov–Krasovskii functional method [21]. However,
these works focus mainly on the stability issue of controller designs. The delayed information of
position measurements of the robot was still used in the controller, which results in a delayed tracking
performance of the robot system. Thus, a prediction method that can provide more precise real-time
motion feedback from robots to control platforms and human operators is very essential.

Recently, various prediction methods have been developed for linear robotic systems with delayed
measurements. For examples, a Smith predictor approach was proposed to estimate robot models [22].
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An optimal estimation approach for continuous-time systems was carried out based on Kalman filtering
using delayed measurements in [23]; and a linear predictor was designed for a mobile robot in [24].
Nevertheless, for nonlinear systems, especially for the Euler–Lagrange system, few results taking
delayed measurements into account are available. In recent years, some observer-based methods were
proposed to predict actual states using delayed outputs. In [25], an observer-based predictor was
proposed under LMI conditions to estimate the position and force based on time-delayed data. In [26],
interval observers for linear time-delay systems were devised to obtain guaranteed interval estimate of
system states. In [27,28], the cascade observers (predictors) were utilized for the long constant time
delay. However, accurate mathematical models of systems were required in some existing literature,
which restricts the application area of the proposed methods. In addition, in [25–28], the controller
design problem was not considered.

As for the problem of global motion tracking for nonlinear robot systems with an observer–
controller structure, in [29], global uniform asymptotic stability was studied under an output feedback
controller by employing nonlinear cascaded system theory. In [30], asymptotic stability of the
observer–controller system was guaranteed through the Lyapunov functional approach. However,
time delays were not considered in those works. Moreover, the nondelayed measurements of
joint positions rather than the observation results were directly used in the controllers. Hence,
such approaches cannot be applied to the case of delayed measurements. To the authors’ best
knowledge, few tracking controller design methods have been reported using only the predictions for
the Euler–Lagrange system.

Motivated by the work in [31], where a tracking controller design method was presented for
the Euler–Lagrange system with constant input delay, this paper proposes a novel observer-based
prediction method for an n-DOF telerobotic system with a time-varying delay in position
measurements. Both positions and velocities can be estimated through a simple model-independent
predictor, which has a proportion-integration-differentiation(PID)-like regulator for delayed prediction
error. It is proven that the prediction error can converge to zero by applying the Lyapunov method.
The proposed predictor can also be put into use independently of the controller, such that the cloud
platform can feed back more precise real-time messages of robots to the human operator. Moreover,
as an important part of the proposed control framework, a tracking controller based on both predicted
positions and velocities is designed such that the closed-loop system can achieve semi-globally
uniformly ultimately bounded tracking. Finally, simulation is made through a two-DOF robot system
to demonstrate the effectiveness of the proposed results.

The main contributions of this paper lie in two aspects. First, we propose a model-independent
predictor–controller structure for motion tracking control of robotic systems subject to measurement
(output) delay, which is different from [31–33], where some control design methods are presented for
nonlinear systems with input delays. Second, we design suitable tracking controller based on prediction
information about positions and velocities rather than based on non-delayed measurements as done
in [29,30]. Therefore, the proposed method in this paper is more appropriate for applications of cloud
robotics compared with the ones in [29,30].

This paper is organized as follows. In the next section, some preliminaries and problem
formulation are given. The motion prediction method is presented in Section 3. A tracking controller is
designed in Section 4. Simulation results are shown in Section 5. Conclusions and some future works
are discussed in Section 6.

2. Problem Statement

Consider a class of uncertain nonlinear n-DOF robot system represented by

M(q)q̈ + C(q, q̇)q̇ + F(q, q̇) = u− fe, (1)
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where q ∈ Rn is the vector of the joint positions, q̇ is the the vector of the joint velocities, u ∈ Rn is the
control input, fe ∈ Rn is the unknown environment force generated by objective target, F(q, q̇) ∈ Rn×n

is an unknown function which represents unmodeled dynamics of robot manipulator, M(q) ∈ Rn×n is
the positive definite inertia matrix, and Cm(q, q̇) ∈ Rn×n is the matrix of the centripetal and coriolis
torque, which satisfy the following structural property of robotic systems:

Property 1: The inertia matrix M(q) is definitely positive. There exist the positive constants m1 and m2

such that m1 I ≤ M(q) ≤ m2 I, where I is an identity matrix.
Property 2: The matrix Ṁ(q)− 2C(q, q̇) is skew symmetric.
Property 3: There exists a positive scalar c such that ||C(q, q̇)|| ≤ c ‖ q̇ ‖.

Our first main objective is to predict the actual state of system (1) by using the delayed
position measurements:

yd = q(t− τ(t)), (2)

where τ(t) is a time-varying delay. Then, the control objective is tracking a desired trajectory qd(t) ∈ Rn,
which is given by the human operator. The proposed control structure of the cloud robotic system is
shown in Figure 1.

Figure 1. Control structure of cloud robot system with delayed measurement.

To facilitate the subsequent design, we rewrite the system (1) as

ẋ1(t) = x2(t), (3)

ẋ2(t) = f (x1, x2, u, t) + S1(t), (4)

where x1 = q, x2 = q̇, x =
[

xT
1 xT

2

]T
, and

f (x1, x2, u, t) = M−1(x1)(−C(x1, x2)ẋ2 + u), (5)

S1(t) = M−1(x1)(−F(x1, x2)− fe). (6)

The predictor and controller design will be carried out under the following usual assumptions:

Assumption 1: The desired trajectory xd = qd ∈ Rn is designed such that the i− th (i = 1, 2, 3) time
derivative of xd exist and are bounded by known positive constants.

Assumption 2: f (x1, x2, u, t) is an `2 function.
Assumption 3: The time-varying delay τ(t) is bounded and satisfies [34–36]

0 ≤ τ(t) ≤ τ0. (7)

Assumption 4: The unknown part S1(t) with its time derivative are bounded functions and satisfy

||S1|| ≤ d1, ||Ṡ1|| ≤ d2. (8)
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Remark 1. As explained and illustrated in [33,37], these assumptions are quite common in the framework of
state observation of nonlinear time delay systems. It will be shown in the following analysis that the uncertain
part S1(t) will not determine the global asymptotic convergence of prediction errors. However, we also find in
our simulations that a more accurate model can make a faster convergence rate.

3. Predictor Design

3.1. Predictor Formulation

Let us denote the prediction errors as

e1 =x1 − x̂1, (9)

e2 =ė1 + αe1, (10)

where x̂1, x̂2 represent the prediction results of x1, x2, respectively, and α is a positive constant.
The proposed prediction method with an observer-based structure is given as

˙̂x1(t) = x̂2(t), (11)
˙̂x2(t) = f (x̂1, x̂2, u, t) + ϕ(t− τ(t)), (12)

with

ϕ(t) =K
(

e2(t) + β
∫ t

t0

e2(σ)dσ

)
+ K0Π(t) + K

∫ t

t0

(ϕ(θ − τ(t))− ϕ(θ))dθ, (13)

Π̇(t) =Sgn(η(t)), (14)

where K = Ka + Kb and K0 represent the predictor gains, β is a positive constant, and Sgn(·) represents
the standard signum function. Let

eϕ(t) = ϕ(t− τ(t))− ϕ(t). (15)

Then, the auxiliary error η ∈ Rn is defined as

η = e2 + eϕ f , (16)

where eϕ f ∈ Rn is a filtered version of eϕ, i.e.,

ėϕ f = −βeϕ f + eϕ. (17)

Remark 2. It should be noticed that the proposed predictor (12) has a PID structure for the delayed prediction
error e1(t− τ(t)) = x1(t− τ(t))− x̂1(t− τ(t)), which means that the prediction results x̂1 and x̂2 should be
reserved for later use of the predictor.

To facilitate the subsequent analysis, an auxiliary observation error r(t) ∈ Rn is defined as

r(t) = η̇(t) + βη(t) = ė2(t) + βe2(t) + eϕ(t). (18)

It can be obtained that
ϕ̇(t) = Kr(t) + K0Sgn(η). (19)

Using the system functions (3)–(4) and definitions (9)–(10), we have

r =ẋ2 − ˙̂x2 + αė1 + βe2 + ˙̂x2 − f (x̂1, x̂2, u, t)− ϕ

=S1 + S2 − ϕ,
(20)
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where S1 has been defined in (6) and S2 ∈ Rn is given as

S2 = f (x1, x2, u, t)− f (x̂1, x̂2, u, t) + αė1 + βe2. (21)

The time derivative of (20) can be obtained as follows:

ṙ(t) = Nd + N − e2(t)− Kr(t)− K0Sgn(η), (22)

where

Nd = Ṡ1, (23)

N = Ṡ2 + e2(t). (24)

The Mean Value Theorem can be utilized to find an upper bound for N as [32]:

||N|| ≤ ρ(||z||)||z||, (25)

where || · || denotes the standard Euclidean norm, ρ(·) is a positive and non-decreasing function, and
z ∈ R4n is defined as

z =
[

eT
1 eT

2 eT
ϕ rT

]T
. (26)

Then, based on Assumption 3, we can deduce

||Nd|| ≤ d2. (27)

3.2. Prediction Error Analysis

Theorem 1. The predictor described by Equations (11) and (12) ensures semi-global asymptotic regulation of e1

and e2 in the sense that e1 → 0 and e2 → 0 as t→ ∞, provided that the matrix Ka are selected sufficiently large
relative to the system initial conditions and the following conditions are simultaneously satisfied:

α− 1
2
> 0, (28)

β− 1
2
− δ

2
> 0, (29)

1
τ0
− 1− 1

2δ
> 0, (30)

Kb > 0, (31)

K0 > ||Nd||∞ + ||Ṅd||∞, (32)

where δ is a positive constant, and || · ||∞ denotes the `∞ norm.

Proof of Theorem 1. Let y(t) ∈ R3n+1 be defined as

y =
[

eT
1 eT

2 rT √
Q
√

P
]T

, (33)

where Q(t) ∈ R, and P(t) ∈ R are selected as

Q =
∫ t

t−τ0

∫ t

s
||ϕ̇(ϑ)||2dθds, (34)

P =ξ −
∫ t

t0

r(θ)[Nd(θ)− K0Sgn(η(θ))]dθ. (35)
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The non–negativeness of P(t) has been proved in [32,37], provided that the gain K0 satisfies
inequality (32) and ξ is selected as:

ξ =
n

∑
i=1

K0i||ei(0)|| − eT(0)Nd(0), (36)

where the subscript i denotes the ith element of the vector or diagonal matrix.
Let V(y, t) ∈ R be a Lyapunov functional which is defined as follows:

V =
1
2

eT
1 e1 +

1
2

eT
2 e2 +

1
2

rTr + Q + P, (37)

and it can be bounded as
1
2
||y||2 ≤ V(y, t) ≤ ||y||2. (38)

After taking the time derivative of V, we have

V̇ =eT
1 (e2 − αe1) + eT

2 (r− βe2 − eϕ) + rT(N + Nd − e2 − Kr) + Q̇ + Ṗ

=− α||e1||2 − β||e2||2 + e1e2 − e2eϕ + rT N − rTKr

+ τ0||ϕ̇(t)||2 −
∫ t

t−τ0

||ϕ̇(θ)||2dθ.

(39)

Using Young’s inequality, we have

||eT
2 eϕ|| ≤

δ

2
||e2||2 +

1
2δ
||eϕ||2, (40)

||eT
1 e2|| ≤

1
2
||e1||2 +

1
2
||e2||2. (41)

Then, we use Jensen’s inequality to derive

||eϕ||2 ≤ τ0

∫ t

t−τ0

||ϕ̇(θ)||2dθ, (42)

||ϕ̇(t)||2 ≤
∫ t

t−τ0

||ϕ̇(θ)||2dθ. (43)

Substituting the inequalities (40)–(43) into (39), the upper bound of V̇ can be obtained as

V̇ ≤− (α− 1
2
)||e1||2 −

(
β− 1

2
− δ

2

)
||e2||2 + ||r||ρ(||z||)||z|| − KrTr

− 1
τ0

(
1− τ0 −

τ0

2δ

)
||eϕ||2.

(44)

Then, after completing the squares by using the definition of ||z|| in (26), the inequality in (44) can
be bounded as

V̇ ≤−
[

ω− ρ2(||z||)
4Ka

]
||z||2, (45)

where ω ∈ R is defined as

ω = min
{

α− 1
2

, β− 1
2
− δ

2
,

1
τ0
− 1− 1

2δ
, Kb

}
. (46)
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Thus, the negative semi-definiteness of V̇(t) can be ensured once

Ka ≥
ρ2(||z||)

4ω
≥ ρ2(||z0||)

4ω
, (47)

where ||z0|| is the initial condition of ||z||.
Since V̇(t) ≡ 0 means e1 ≡ 0, e2 ≡ 0, and eϕ ≡ 0, according to the definitions in Equations (34)

and (35), we have
√

P ≡ 0 and
√

Q ≡ 0. By using LaSalle’s invariance theorem, we have

lim
t→∞

e1 = 0, (48)

lim
t→∞

e2 = 0. (49)

This completes the proof of Theorem 1.

4. Controller Development

In this section, we consider the tracking controller design problem for the robotic system using
the estimated positions and velocities. Let the tracking errors be denoted as

ε0 =xd − x, (50)

s0 =ε̇0 + αε0. (51)

Because of the time delay in measurement channel, ε0 and s0 cannot be used for the controller
design. The auxiliary errors are respectively defined as

ε =xd − x̂1 = ε0 + e1, (52)

s =ε̇ + αε = ε0 + αε̇0 + e2 = s0 + e2. (53)

Utilizing the system model (1) and the definition of tracking error (51), we can obtain the dynamics
of s0 as

M(q)ṡ0 = −C(q, q̇)s0 + Yθ − u + fe + F(q, q̇), (54)

Yθ = M(q)(q̈d + αε̇0) + C(q, q̇)(q̇d + αε0). (55)

The proposed tracking controller is given as

u = Kus = Kus0 + Kue2, (56)

where Ku = Kc +Kd represents the controller gain. The block diagram of proposed predictor–controller
structure is shown in Figure 2.

Figure 2. Block diagram of proposed predictor–controller structure.
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Theorem 2. The predictors of (11)–(12) and the control law in (56) ensure semi-globally uniformly ultimately
bounded tracking for the system (1) in the sense that

||ε0(t)|| ≤ ε0(0)e−γt +
d
γ

, (57)

provided that the matrix Kc are selected sufficiently large relative to the system initial conditions and the
following conditions are simultaneously satisfied:

α− 1
2
> 0, (58)

β− 1
2
− δ

2
− 1

2δ
> 0, (59)

1
τ0
− 1− 1

2δ
− 1

δ2 > 0, (60)

Kb > 0, Kd > 0, (61)

K0 > ||Nd||∞ + ||Ṅd||∞, (62)

where γ, d ∈ R+ denote constants.

Proof of Theorem 2. Let Ydθ ∈ Rn be defined as

Ydθ = M(qd)q̈d + C(qd, q̇d)q̇d. (63)

According to Assumption 1, Ydθ can be bounded as

||Ydθ|| ≤ dθ . (64)

Similar to the upper bound of N in (25), we can use the Mean Value Theorem to obtain that

||Yθ −Ydθ|| ≤ ρv(||v||)||v||, (65)

where ρv(·) is a positive known bounding and nondecreasing function. Moreover, v(t) ∈ R2n is
defined as

v =
{

εT
0 sT

0

}T
. (66)

Then, the Equation (54) can be rewritten as

M(q)ṡ0 = −C(q, q̇)s0 + Yθ −Ydθ − u + fe + Ydθ + F(q, q̇). (67)

Consider following Lyapunov functional defined as

Vc =
1
2

sT
0 M(q)s0 +

1
2

εT
0 ε0 + V̇. (68)

Acording to Property 1, we have

l1||yc||2 ≤ Vc ≤ l2||yc||2, (69)

where l1 = min
{

1
2 , m1

}
, l2 = min {1, m2} , and

yc =
[

vT yT
]T

. (70)
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Taking the time derivative of the Lyapunov functional in (68) and using the Property 2 result in

V̇c ≤||s0||ρv(||v||)||v|| − Ku||s0||2 − Ku||s0||||e2||
+ dm||s0||+ ||s0||||ε0|| − α||ε0||2 + V̇,

(71)

where dm = d1
m1

+ dθ . Using the Young’s inequalities

||s0||||e2|| ≤
δ

2
||s0||2 +

1
2δ
||e2||2, (72)

||s0||||ε0|| ≤
1
2
||s0||2 +

1
2
||ε0||2, (73)

we have

V̇c ≤||s0||ρv(||v||)||v|| −
(

Ku +
1
2
(δKu − 1)

)
||s0||2

− (α− 1
2
)||ε0||2 +

1
2δ
||e2||2 + dm||s0||+ V̇.

(74)

After substituting V̇ of (44) and completing the squares, the upper bound of inequality (74) can be
determined as

V̇c ≤−
[

λ1 −
ρ2

v(||v||)
4Kc

]
||v||2 + d2

m
4Kd

−
[

λ2 −
ρ2(||z||)

4Ka

]
||z||2 − τ

δ2

∫ t

t−τ
||ϕ̇(θ)||2dθ,

(75)

where

λ1 = min
{

1
2
(δKu − 1), α− 1

2

}
, (76)

λ2 =min
{

α− 1
2

, β− 1
2
− δ

2
− 1

2δ
,

1
τ0
− 1− 1

2δ
− 1

δ2 , Kb

}
. (77)

Using the definitions of z in (26), y in (33), yc in (70), and the following inequality

Q =
∫ t

t−τ0

∫ t

s
||ϕ̇(θ)||2dθds ≤ τ0

∫ t

t−τ0

||ϕ̇(θ)||2dθ, (78)

we can obtain

V̇c ≤ −γ||yc||2 + d = −γVc + d, (79)

where

d =
d2

m
4Kd

+
ξ

δ2 , (80)

γ = min
{

λ1 −
ρ2

v(||v||)
4Kc

, λ2 −
ρ2(||z||)

4Ka
,

1
δ2

}
, (81)

and γ ∈ R is a positive constant, provided that

Ka ≥
ρ2(||z||)

4λ2
, Kc ≥

ρ2(||v||)
4λ1

. (82)

Then, we have

Vc(y, t) ≤ Vc(0)e−γt +
d
γ

. (83)



Electronics 2019, 8, 398 10 of 15

Together with Vc in (68), the tracking error ε0 converges to the bounded region exponentially and
its bound is determined by d. This completes the proof of Theorem 2.

Remark 3. Since ρ(·) and ρv(·) are positive nondecreasing functions and ||z||, ||v|| are decreasing,
the inequalities in (82) are equivalent to

Ka ≥
ρ2(||z0||)

4λ2
, Kc ≥

ρ2(||v0||)
4λ1

, (84)

where z0 and v0 are initial conditions of z and v, respectively.

Remark 4. Since ε0 is unavailable for the controller due to the measurement delay, the uncertain term d1||s0||
in (71) can not be compensated by using Sgn(ε0). On the other hand, in the uncertainty-free case (d1 = d2 = 0),
the compensation function Π(t) in predictors (11)–(12) and P(t) in Lyapunov functional (37) can be omitted.
In addition, the controller can be designed as u = −Ydθ + Kus to compensate for the term Yθ and eliminate
dθ as in [30]. Then, from (83), we can obtain that d = 0 and the tracking error converges to 0 in the
uncertainty-free case.

5. Simulations

In this section, simulations are presented to verify the effectiveness of the proposed method
including position prediction and tracking control. We consider a two-DOF robot system which is
shown in Figure 3, where l1, l2, m1, m2 is the lengths and weights of robot arms, respectively. The inertia
matrix as well as the centripetal and coriolis matrix are given as

M(q) =

[
M11 M12

M21 M22

]
, C(q, q̇) =

[
C11 C12

C21 C22

]
,

with

M11 = (2l1 cos q2 + l2)l2m2 + l2
1(m1 + m2), M12 = M21 = l2

2m2 + l1l2m2 cos q2, M22 = l2
2m2,

C11 = −l1l2m2 sin(q2)q̇2, C12 = −l1l2m2 sin(q2)(q̇1 + q̇2), C21 = l1l2m2 sin(q2)q̇1, C22 = 0.

Figure 3. The 2-DOF robot.

To verify the robustness to system uncertainties of our method, we assume that the mathematical
model of robot manipulator is entirely unknown in the simulations. The matrices M(q) and C(q, q̇)
are unknown for the designer. Thus, we additionally treat C(q, q̇)q̇ and the input u as the uncertain
part when we rewrite the system model into the form of functions (3) and (4). That is, f (x1, x2, u, t) = 0
and S1 = M−1(x1)[−Cm(x1, x2)x2 + u− fe].

The desired position trajectories are given as qr1 = 0.2 sin(0.15t) and qr2 = 0.1 sin(0.15t) and
an environment force fe = 0.01q̇ + 0.05 sin(q) is applied to the robot. The previously mentioned
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parameters and control gains are given in Table 1. Then, we consider the time-varying measurement
delay which is randomly varying from 0–0.5 s as shown in Figure 4.

Table 1. Parameters.

m1 m2 l1 l2 K Ku α β

1 kg 0.5 kg 0.5 m 0.5 m 25 0.1 5 10

0 10 20 30 40 50 60 70 80 90 100

t(s)

-0.2

0

0.2

0.4

0.6

ti
m

e
 d

e
la

y
 (

s
)

Figure 4. Time-varying delay.

Firstly, the prediction results of positions and velocities of the proposed method are shown in
Figures 5 and 6, respectively. The real values of each joint positions and velocities are labeled as q1, q2

and v1, v2, while the predicted ones are labeled as q1e, q2e and v1e, v2e, respectively. It can be seen that
the elegant prediction performance of proposed observer-based predictor is achieved. Both predicted
positions and velocities can converge to the real ones. Meanwhile, the position tracking results are
given in Figure 7, where the desired positions are labeled as qr1 and qr2. Moreover, the proposed
controller is compared with the one without predictor (using the delayed output directly). The position
tracking errors are shown in Figure 8. The tracking performance and robustness to model uncertainties
of proposed controller can be proved.

0 10 20 30 40 50 60 70 80 90 100

t (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

p
o

s
it
io

n
s
 (

ra
d

)

q1

q2

q1e

q2e

Figure 5. Position predictions under time-varying delay.

Secondly, the proposed predictor of our work is compared with the high gain predictor utilized
in [27], which can be represented as

˙̂x(t) = f (x̂, u, t) + K′(x(t− τ(t))− x̂(t− τ(t)), (85)

where the predictor gain K′ = 3 is used in our simulation. The compared results of prediction errors of
positions and velocities are shown in Figures 9 and 10, respectively. It can be seen that, because of the
PID structure of our methods, the proposed predictor has faster convergence abilities of both position
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and velocity prediction errors than the high gain predictor does. Although the convergence rate can
be improved by a larger predictor gain K′, the stability of a high gain predictor will be destroyed
when K′ > 5 in our simulations. In addition, the controller design method using predictor (85) has not
been discussed in [27]. In our simulations, the instability has been shown when we combine the high
gain predictor with our proposed controller, which can also indicate better capability and stronger
robustness of the proposed predictor in this paper.
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Figure 6. Velocity predictions under time-varying delay.
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Figure 7. Position tracking performance under time-varying delay.

0 10 20 30 40 50 60 70 80 90 100
-0.04

-0.02

0

0.02

0.04

p
o

s
it
io

n
 t

ra
c
k
in

g
 e

rr
o

r 
(r

a
d

/s
)

0 10 20 30 40 50 60 70 80 90 100

t (s)

-0.02

0

0.02

proposed method

without predictor

q1

q2

Figure 8. Compared results of position tracking errors.



Electronics 2019, 8, 398 13 of 15

0 10 20 30 40 50 60 70 80 90 100

-5

0

5

q
1
 (

ra
d
)

10-3

proposed predictor

high gain predictor

0 10 20 30 40 50 60 70 80 90 100

t(s)

-5

0

5

q
2
 (

ra
d
)

10-3

Figure 9. Compared results of position prediction errors.
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Figure 10. Compared results of velocity prediction errors.

6. Conclusions

In this paper, a novel observer-based motion predictor has been developed for cloud robotic
systems with measurement delay. Both positions and velocities can be estimated though a simple
model-independent predictor. Then, a tracking controller using both predicted positions and velocities
has also been designed. The semi-global stability of both prediction and tracking errors has been
proved using the Lyapunov direct method. The measurement delay can be effectively compensated by
using the predictions. Simulation results have shown the good performance and strong robustness to
time-varying delays and model uncertainties of the proposed method. Further studies will be focused
on the advanced robust controller design with predictions for some nonlinear systems [38,39].
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