Enhancement of System Stability Based on PWFM
Abstract
:1. Introduction
2. Problem Description
3. Discussion of Compensator Gain
4. ADC Strategy
5. Basic Operating Principles
6. Resolution Design
6.1. Requirements of Resolution of DPWM and ADC
6.2. Calculation of VFB Duty
7. Gain Analysis of Digital Compensator
7.1. PID Calculation
7.2. Rounded Number Block
7.3. Anti-Saturation Block
7.4. Right z-Bit Shift Block
8. PWFM Control Concept
9. PWFM Procedure
10. Experimental Results
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peterchev, A.V.; Sanders, S.R. Quantization resolution and limit cycling in digitally controlled PWM converters. IEEE Trans. Power Electron. 2003, 18, 301–308. [Google Scholar] [CrossRef]
- Peng, H.; Prodic, A.; Alarcon, E.; Maksimovic, D. Modeling of quantization effects in digitally controlled DC-DC converters. IEEE Trans. Power Electron. 2007, 22, 208–215. [Google Scholar] [CrossRef]
- Prodic, A.; Maksimovic, D.; Erickson, R.W. Design and Implementation of a digital PWM controller for a high-frequency switching DC-DC power converter. In Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA, 29 November–2 December 2001. [Google Scholar]
- Bernstein, K.; Rohrer, N.J. SOI circuit design concepts; Springer: New York, NY, USA, 2007; pp. 6–9. [Google Scholar]
- Curran, B.; Fluhr, E.; Paredes, J.; Sigal, L.; Friedrich, J.; Chan, Y.H.; Hwang, C. Power-constrained high-frequency circuits for the IBM POWER6 microprocessor. IBM J. Res. Dev. 2007, 51, 715–731. [Google Scholar] [CrossRef]
- Dancy, A.P.; Chandrakasan, A.P. Ultra low power control circuits for PWM converters. In Proceedings of the 28th Annual IEEE Power Electronics Specialists Conference, Saint Louis, MO, USA, 27 June 1997. [Google Scholar]
- Foley, R.; Kavanagh, R.; Marnane, W.; Egan, M. Multiphase digital pulsewidth modulator. IEEE Trans. Power Electron. 2006, 21, 842–846. [Google Scholar] [CrossRef]
- Lukic, Z.; Wang, K.; Prodic, A. High-frequency digital controller for DC-DC converters based on multi-bit sigma-delta pulse-width modulation. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 6–10 March 2005. [Google Scholar]
- Foley, R.F.; Kavanagh, R.C.; Marnane, W.P.; Egan, M.G. An area efficient digital pulsewidth modulation architecture suitable for FPGA implementation. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 6–10 March 2005. [Google Scholar]
- Malley, E.O.; Rinne, K. A programmable digital pulse width modulator providing versatile pulse patterns and supporting switching frequencies beyond 15 MHz. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004. [Google Scholar]
- Wang, K.; Rahman, N.; Lukic, Z.; Prodic, A. All-digital DPWM/DPFM controller for low-power DC-DC converters. In Proceedings of the Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 19–23 March 2006. [Google Scholar]
- Yousefzadeh, V.; Takayama, T.; Maksimovic, D. Hybrid DPWM with digital delay-locked loop. In Proceedings of the 2006 IEEE Workshops on Computers in Power Electronics, Troy, NY, USA, 16–19 July 2006. [Google Scholar]
- Peterchev, A.V.; Xiao, J.; Sanders, S.R. Architecture and IC implementation of a digital VRM controller. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, BC, Canada, 17–21 June 2001. [Google Scholar]
- Lukic, Z.; Blake, C.; Huerta, S.C.; Prodic, A. Universal and fault tolerant multiphase digital PWM controller IC for high-frequency DC-DC converters. In Proceedings of the Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007. [Google Scholar]
- Zhang, J.; Sanders, S.R. A digital multi-mode multi-phase IC controller for voltage regulator application. In Proceedings of the Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007. [Google Scholar]
- Huerta, S.C.; de Castro, A.; Garcia, O.; Cobos, J.A. FPGA based digital pulse width modulator with time resolution under 2 ns. IEEE Trans. Power Electron. 2008, 23, 3135–3141. [Google Scholar] [CrossRef]
- Syed, A.; Ahmed, E.; Maksimovic, D.; Alarcon, E. Digital pulse width modulator architectures. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004. [Google Scholar]
- Kelly, A.; Rinne, K. High resolution DPWM in a DC-DC converter application using digital sigma-delta techniques. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005. [Google Scholar]
- de Castro, A.; Todorovich, E. DPWM based on FPGA clock phase shifting with time resolution under 100 ps. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [Google Scholar]
- Carosa, T.; Zane, R.; Maksimovic, D. Scalable digital multiphase modulator. IEEE Trans. Power Electron. 2008, 23, 2201–2205. [Google Scholar] [CrossRef]
- Batarseh, M.G.; Al-Hoor, W.; Huang, L.; Iannello, C.; Batarseh, I. Segmented digital clock manager-FPGA based digital pulse width modulator technique. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [Google Scholar]
- Foley, R.F.; Kavanagh, R.C.; Marnane, W.P.; Egan, M.G. A versatile digital pulsewidth modulation architecture with area-efficient FPGA implementation. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005. [Google Scholar]
- Li, P.; Kang, Y.; Pei, X.; Chen, J. A novel PWM technique in digital control. IEEE Ind. Electron. 2007, 54, 338–346. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, J.; Xu, M.; Ha, D.S.; Lee, F.C. Proposed DPWM scheme with improved resolution for switching power converters. In Proceedings of the Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007. [Google Scholar]
- Li, J.; Qiu, Y.; Sun, Y.; Huang, B.; Xu, M.; Ha, D.S.; Lee, F.C. High resolution digital duty cycle modulation schemes for voltage regulators. In Proceedings of the Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007. [Google Scholar]
- Yau, Y.T.; Hwu, K.I. One-comparator sampling design for digital power converters. In Proceedings of the 2018 7th International Symposium on Next Generation Electronics, Taipei, Taiwan, 7–9 May 2018. [Google Scholar]
Traditional PWM | PWM Period | Duty (%) | Proposed PWFM | PWFM Period | Duty (%) |
---|---|---|---|---|---|
154 | 512 | 30.08 | 154 | 512 | 30.08 |
154 | 511 | 30.14 | |||
155 | 512 | 30.27 | 155 | 512 | 30.27 |
155 | 511 | 30.33 | |||
156 | 512 | 30.47 | 156 | 512 | 30.47 |
156 | 511 | 30.53 | |||
157 | 512 | 30.66 | 157 | 512 | 30.66 |
157 | 511 | 30.72 | |||
158 | 512 | 30.86 | 158 | 512 | 30.86 |
158 | 511 | 30.92 | |||
159 | 512 | 31.05 | 159 | 512 | 31.05 |
159 | 511 | 31.12 | |||
160 | 512 | 31.25 | 160 | 512 | 31.25 |
256 | 512 | 50.00 | 256 | 512 | 50.00 |
256 | 511 | 50.10 | |||
257 | 512 | 50.20 | 257 | 512 | 50.20 |
257 | 511 | 50.29 | |||
258 | 512 | 50.39 | 258 | 512 | 50.39 |
258 | 511 | 50.49 | |||
259 | 512 | 50.59 | 259 | 512 | 50.59 |
259 | 511 | 50.68 | |||
260 | 512 | 50.78 | 260 | 512 | 50.78 |
410 | 512 | 80.08 | 410 | 512 | 80.08 |
410 | 511 | 80.23 | |||
411 | 512 | 80.27 | 411 | 512 | 80.27 |
411 | 511 | 80.43 | |||
412 | 512 | 80.47 | 412 | 512 | 80.47 |
412 | 511 | 80.63 | |||
413 | 512 | 80.66 | 413 | 512 | 80.66 |
413 | 511 | 80.82 | |||
414 | 512 | 80.86 | 414 | 512 | 80.86 |
414 | 511 | 81.02 | |||
415 | 512 | 81.05 | 415 | 512 | 81.05 |
415 | 511 | 81.21 | |||
416 | 512 | 81.25 | 416 | 512 | 81.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwu, K.I.; Wang, C.W.; Yau, Y.T. Enhancement of System Stability Based on PWFM. Electronics 2019, 8, 399. https://doi.org/10.3390/electronics8040399
Hwu KI, Wang CW, Yau YT. Enhancement of System Stability Based on PWFM. Electronics. 2019; 8(4):399. https://doi.org/10.3390/electronics8040399
Chicago/Turabian StyleHwu, K. I., C. W. Wang, and Y. T. Yau. 2019. "Enhancement of System Stability Based on PWFM" Electronics 8, no. 4: 399. https://doi.org/10.3390/electronics8040399
APA StyleHwu, K. I., Wang, C. W., & Yau, Y. T. (2019). Enhancement of System Stability Based on PWFM. Electronics, 8(4), 399. https://doi.org/10.3390/electronics8040399