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Abstract: We exploited the temporal correlation of channels in the angular domain for the downlink
channel estimation in a massive multiple-input multiple-output (MIMO) system. Based on the slow
time-varying channel supports in the angular domain, we combined the channel support information
of the downlink angular channel in the previous timeslot into the channel estimation in the current
timeslot. A downlink channel estimation method based on variational Bayesian inference (VBI)
and overcomplete dictionary was proposed, in which the support prior information of the previous
timeslot was merged into the VBI for the channel estimation in the current timeslot. Meanwhile
the VBI was discussed for a complex value in our system model, and the structural sparsity was
utilized in the Bayesian inference. The Bayesian Cramér–Rao bound for the channel estimation mean
square error (MSE) was also given out. Compared with other algorithms, the proposed algorithm
with overcomplete dictionary achieved a better performance in terms of channel estimation MSE
in simulations.
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1. Introduction

Massive multiple-input multiple-output (MIMO) is the key technology for next generation wireless
communication. The large number of antennas enable high spectrum efficiency and lower power
consumption [1]. To get these benefits, the base station (BS) needs to acquire the channel stated
information (CSI) for uplink and downlink. Pilot-based channel estimation is widely used in wireless
communication systems. In the time division duplex (TDD) system, the channel reciprocity is used to
get the CSI by only estimating the uplink channel at BS. In the frequency division duplex (FDD) system,
the channel reciprocity cannot be used directly. In FDD massive MIMO system it is challenging to get
the downlink CSI with the conventional feedback scheme. In the conventional feedback scheme each
user estimates its channel and then feeds back the estimated CSI to the BS. The pilot and feedback
overheads are high for massive MIMO, since they are scaling linearly with the number of antennas.
Hence, it is important to design an efficient downlink channel estimation and feedback scheme for a
FDD massive MIMO system.
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By exploiting the sparsity in massive MIMO channel, compressed sensing (CS) was applied in
the channel estimation and feedback. The users could feed the compressed training measurements
back to the BS, and an orthogonal matching pursuit (OMP) was used for downlink CSI recovery in [2].
In [3] the modified basis pursuit (MBP) was proposed by utilizing the partial priori signal support
information to improve the recovery performance. In [4] the support information of a signal in the
discrete fourier transform domain was incorporated into the weighted l1 minimization approach for CS
recovery, which could reduce the number of measurements by the size of the known part of support.
In [5] a three-level weighting scheme based on the support information was used for the weighted
l1 minimization and the simulation results showed superiority. In [6] we exploited the reciprocity
between uplink and downlink channels in the angular domain, and diagnosed the supports of the
downlink channel from the estimated uplink channel, and proposed a weighted subspace pursuit
(SP) channel estimation algorithm for FDD massive MIMO. It can be seen that CS was effective in the
channel estimation for massive MIMO.

However, most of these algorithms need the sparsity level in the estimation algorithm, which is
not practical in engineering scenarios. The Bayesian framework can be applied to the compressive
channel estimation. In [7], Bayesian estimation of sparse massive MIMO channel was developed in
which neighboring antennas shared among each other their information about the channel support.
In [8] a variational expectation maximization strategy was used for massive MIMO channel estimation,
and a Gaussian mixture prior model was designed to capture the individual sparsity for each channel
and the joint sparsity among users. In [9] a sparse Bayesian learning algorithm was proposed for FDD
massive MIMO channel estimation with arbitrary 2D-array. By the Bayesian framework in compressive
channel estimation the sparsity level is unnecessary, and it has relatively better recovery performance.
Additionally, there exists angular reciprocity in massive MIMO. For example, the channel covariance
matrices for uplink and downlink are reconstructed by making use of the angle reciprocity between
uplink and downlink channels in [10]. Hence it is promising to apply the angular reciprocity and
Bayesian framework in the compressive massive MIMO channel estimation.

Additionally, there exists angular reciprocity in the FDD massive MIMO. There is also time
correlation of channels. In [11] a differential compressive feedback in FDD massive MIMO was proposed
based on the channel impulses response (CIR) between timeslots, which were slow time-varying and
sparse, and the differential CIR between two CIRs in adjacent timeslots was sparse. Inspired by the
sparsity in the angular domain and time correlation of channels, the correlated angular sparsity can
also be exploited for massive MIMO channel estimation.

In this paper we proposed a downlink channel estimation in a TDD/FDD massive MIMO system.
The timeslots were divided into groups. In each group the estimated channel support information
of the previous timeslot was utilized by the following timeslot. The correlated angular sparsity
between timeslots in the downlink channel was utilized in the Bayesian inference for channel recovery.
We transformed the complex sparse vector to the real sparse vector recovery by Bayesian inference,
and the structural sparsity of the transformed real sparse vector was utilized. Meanwhile, the prior
support information from the estimated channel in the previous timeslot was made use of in modeling
the hidden hyperparameters in the Bayesian model. A Bayesian Cramér–Rao bound analysis is
presented, and simulations are given out to verify the performance of the proposed algorithm.
The main contributions were as follows: (1) a group-based channel estimation scheme was proposed,
in which previous estimated channel support information was used as the priori information in
the following timeslot due to the sparsity correlation; (2) priori information was merged into the
Bayesian inference algorithm for channel recovery; (3) the Bayesian Cramér–Rao bound for the channel
estimation mean square error (MSE) was analyzed.

The system model is illustrated in Section 2, while the proposed channel estimation algorithm
based on Bayesian inference is presented in Section 3. The Bayesian Cramér–Rao bound (BCRB) for the
channel estimation of mean square error (MSE) is given out in Section 4. Simulations and conclusions
are presented in Sections 5 and 6.



Electronics 2019, 8, 473 3 of 16

In the paper, we used the following notations. Scalars, vectors and matrices were denoted by
lower-case, boldface lower-case and boldface upper-case symbols. The probability density function
of a given random variable was denoted by p(·). Gamma(x|a, b) was the Gamma probability density
function (PDF) with shape parameters a and b for x, while Normal(x|c, d) was the Gaussian PDF with
parameters mean c and variance d for x. Γ(·) was the Gamma function, and ln(·) was the logarithm
function. Tr(·) stood for the trace operator.
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a(·) denoted the expectation operation with the PDF of
variable a.

2. System Model

We considered a massive MIMO TDD/FDD system with a single user, and assumed that the BS
was equipped with N antennas and the user terminal (UT) had a single antenna. For the downlink
channel estimation in the massive MIMO system, the BS transmitted the pilots to UT. The UT received
the pilots and fed back the received signal to the BS directly. The received signal yd(t) at the UT in the
t-th timeslot was written as

yd(t) =
√
ρdAhd(t) + nd(t) (1)

where hd(t) ∈ CN×1 is the downlink channel, A ∈ CTd×N is the downlink pilots, Td is the pilot length,
ρd is the downlink received power, nd

∈ CTd×1 is the received noise with each element to be i.i.d
Gaussian with mean 0 and variance σ2, yd(t) ∈ CTd×1 is the received signal at UT.

Since in the massive MIMO there existed sparsity, when Dd
∈ CN×M was the channel dictionary

for downlink channel which could be unitary dictionary or overcomplete dictionary (M > N,
their column vector had the form of steering vector with a different sampling angle), hd

a(t) was
the sparse representation with hd(t) = Ddhd

a(t). In this paper we applied the overcomplete dictionary
to present the sparse angular channel to get a better recovery performance. In the downlink channel

estimation, we needed to obtain ĥ
d
a(t) the estimated downlink channel in the angular domain in the

t-th timeslot.
By utilizing the sparse channel representation we then had

yd(t) =
√
ρdADdhd

a(t) + nd(t) (2)

For simplicity, the timeslot mark is omitted in the following equations. Since yd(t), hd
a(t), and nd(t)

are complex number vectors, we could rewrite Equation (2) into real number vectors as

[
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Im(yd)

]
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√
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Im(
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where Re(·) and Im(·) denote the real and imaginary parts respectively. For simplicity, we rewrote
Equation (3) as

y = Ah + n (4)

where y =

[
Re(yd)

Im(yd)

]
, A =

 Re(
√
ρdADd) −Im(

√
ρdADd)

Im(
√
ρdADd) Re(
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, h =

[
Re(hd
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Im(hd
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]
and n =[

Re(nd(t))
Im(nd(t))

]
.

On the other hand, we considered the meaning of sparse angular channel representation hd
a(t).

If the transmission angles were allocated exactly at the sampling points in the channel dictionary Dd,
then the corresponding coefficient in the hd

a(t) was nonzero. If the path number was smaller than
the antenna number, then hd

a(t) was sparse. However, there was leakage effect induced by dictionary
mismatch which will have deteriorated the sparsity of the angular channel representation [12]. When the
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movement velocity of UT was not very high, e.g., v = 12 km/h, and the typical timeslot duration
τ = 0.5 ms, the movement distance of UT in one timeslot was 0.017 m. When the distance of UT and BS
was 200 m, the angle change for the line of sight (LoS) transmission in one timeslot was 0.0049◦ which
was much smaller than the sampling interval in the dictionary. For the non-LoS (NLoS) transmission,
the angle change was also small which is discussed in Section 4.1. Hence the transmission angle change
between two timeslots is very small if the transmission environment doesn’t change dramatically,
and there is correlation in the angular channel sparsity between adjacent timeslots. In other words,
the information regarding the estimated angular channel in the previous timeslot could be utilized in
the current channel estimation.

It was proven that the prior support information could improve the channel recovery
performance [3–6]. Hence in this paper we made use of the prior support information from the previous
timeslot to improve the Bayesian channel estimation. In the following section we have discussed how
to merge the prior information into the Bayesian inference algorithm for channel estimation.

3. Proposed Algorithm

We designed a three-layer hierarchical graphical model as shown in Figure 1. In the first layer,
h was assigned a Gaussian prior distribution

p(h|α) =
2N∏
i=1

p(hi

∣∣∣∣αi) (5)

where hi and αi are the i-th entry in h and α respectively, p(hi

∣∣∣∣αi) = Normal(hi

∣∣∣∣0,αi) and αi is the

inverse variance of the Gaussian distribution. When hi is close to 0, then αi is very large, and vice versa.
In the second layer, we assumed a Gamma distribution as hyperpriors over the hyperparameters

αi, and it can be presented as

p(α) =
2N∏
i=1

Gamma(αi
∣∣∣ai, bi) (6)

where Gamma(·) is the Gamma PDF, and the parameters ai and bi characterize the shape of Gamma
PDF. For fixed ai, the larger bi is, the smaller αi is; then hi tends to be nonzero. In the sparse Bayesian
learning ai and bi were set to be very small for non-informative hyperprior over αi [13].

In our model, we set ai to be constant with a predefined value, and we modeled bi as random
parameters. In Figure 1 it could be found that the entries of y were divided into two sets by their
indices, i.e.,

{
S, S+N

}
and

{
S, S+N

}c, where S was the set with channel support indices from the previous
timeslot, and S+N was the set with each index in S added by N, since we converted the complex
system model to the real system model as Equation (3).

{
S, S+N

}c was the complementary set of
{
S, S+N

}
.

For example, in the (t − 1)-th timeslot, the positions of nonzero entries or called supports in hd
a(t− 1)

were S = {4, 5, 6}, then S+N = {4 + N, 5 + N, 6 + N}. The probable supports for hd
a(t) in the current

t-th timeslot can be assumed to be the same as those for previous (t − 1)-th timeslot for simplicity.
On the other hand, we could have also diagnosed the probable channel supports further by taking the
angle deviation and leakage effects into consideration. In this paper we adopted the support diagnosis
algorithm, and the details can be found in [6].

For y j, j ∈
{
S, S+N

}
, we employed a Gamma distribution over the hyperparameters bi in the third

layer as
Gamma(bi|c, d) = Γ(c)−1dcbc−1

i e−dbi (7)

where c and d characterize the shape of Gamma PDF. By the system model and assumptions for massive
MIMO, we could use a Bayesian inference to perform the sparse channel recovery.
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Figure 1. Graphical model for the channel estimation with Bayesian inference. The nodes with
double circle, single circle and square correspond to the observed data, hidden variables and
parameters, respectively.

According to the standard Bayesian inference [14], let z ,
{
h,α, b

}
, we have

ln p(zi) = Ezi,i, j[ln p(y, z)] + constant
∝ Ezi,i, j[ln p(y, z)]

(8)

where constant is a constant used for p(zi) normalization, p(y, z) is the joint pdf for h and z, and zi can
be h,α, andb. We have p(y, z) = p(z

∣∣∣y)p(y) . We assume p(z
∣∣∣y) posterior independence among the

hidden variables z, then p(z
∣∣∣y) ≈ p(z) , and p(z) is the product of PDF of h,α, and b.

In order to make use of the prior support information from the previous timeslot and the structure
sparsity in Equation (4), we needed to make some modifications to the standard Bayesian inference.
The main considerations for the modifications were as follows:

(I) Since we rewrote Equation (2) as Equation (4), if hd
a,i was nonzero, then hi and hi+N were

nonzero simultaneously. Hence it was wise to assume that bi and bi+N were the same;
(II) In the standard Bayesian learning ai and bi were set to be very small for non-informative

hyperprior over αi. This assumption was valid if no prior information was provided. If the prior
support information was available, such as that the support information of the previous timeslot could
be used for channel estimation in the coming timeslot by sparsity correlation, it was wise to assume
that the supports between adjacent timeslots were partially common. If the i-th element in the angular
channel vector was nonzero, then the hyperparameter bi and bi+N tended to be variables rather than to
be fixed small numbers, which meant only for the indices from the prior support set S the third layer
prior model was adopted.

It can be seen that the consideration (II) was similar to [15]. However, our proposed algorithm
was extended for a complex number system and the structure sparsity was considered. However,
on the other hand, the overcomplete dictionary was adopted in our algorithm.

The proposed uplink-aided downlink channel estimation based on Bayesian inference was
as follows:

(i) Update of p(h)

According to Equation (8), by ignoring the terms which are independent of h, we have
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ln p(h) ∝ Eα,b
[
ln p(y

∣∣∣h) + ln p(h
∣∣∣α) + ln p(b)

]
∝ Eα,b

[
ln p(y

∣∣∣h) + ln p(h
∣∣∣α)]

= −1
2σ2 (y−Ah)

T
(y−Ah) − 1

2 h
T

Λh

(9)

where Λ = diag
{
Eα[αi]

}
, σ2 is the noise variance in the system model, the vectors b and α are comprised

by bi and αi respectively. Since p(y
∣∣∣h) and p

(
h
∣∣∣α) are a Gaussian distribution, then p

(
h
)

follows a
Gaussian distribution with the mean µ and covariance φ given by

µ =
1
σ2 ΦA

T
y (10)

Φ =
( 1
σ2 A

T
A + Λ

)
(11)

(ii) Update of p(α)

According to Equation (8), by ignoring the terms which are independent of α, we have

ln p(α) ∝ Eh,b

[
ln p(y

∣∣∣h) + ln p(h
∣∣∣α) + ln p(α|a, b ) + ln p(b)

]
∝ Eh,b

[
ln p(h

∣∣∣α) + ln p(α|a, b )
]

=
2N∑
i=1

Eh,b

{
(ai − 0.5) lnαi −

(
0.5h

2
i + bi

)
αi

}
=

∑
i∈{S,S+N}

Eh,b

{
(ai + 0.5− 1) lnαi −

(
0.5h

2
i + bi

)
αi

}
+

∑
i∈{S,S+N}

c
Eh,b

{
(a− 0.5) lnαi −

(
0.5h

2
i + bi

)
αi

}

=
∑

i∈{S,S+N}

(ai + 0.5− 1) lnαi −

Eh,b(bi+bi+N)

2 +
Eh,b(h

2
i +h

2
i+N)

4

αi

+
∑

i∈{S,S+N}
c

(ai + 0.5− 1) lnαi −

bi +
Eh,b(h

2
i +h

2
i+N)

4

αi



(12)

where S is the estimated support set from the previous timeslot. Since the complex system model was
converted in Equation (4). By (II), S+N , {si + N} was also the support set in the converted system
model in Equation (4). For i ∈

{
S, S+N

}
, bi is variable number, bi and bi+N were assumed to be the same,

we used 0.5Eh,b(bi + bi+N) to present Eh,b(bi). The same assumption was applied to hi and hi+N with

Eh,b(h
2
i ) = 0.5Eh,b(h

2
i + h

2
i+N). In this way the structural sparsity was utilized.

Since p(α|a, b ) is the Gamma distribution and p
(
h
∣∣∣α) is the Gaussian distribution, p(α) is the

Gamma distribution. Then p(αi) is also the Gamma distribution with the updated parameters ãi and b̃i
given by

ãi = ai + 0.5 (13)

b̃i =


Eh,b(bi+bi+N)

2 +
Eh,b(h

2
i +h

2
i+N)

4 , i ∈
{
S, S+N

}
bi +

Eh,b(h
2
i +h

2
i+N)

4 , i ∈
{
S, S+N

}c

(14)

(iii) Update of p(b{S,S+N})
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According to Equation (8), by ignoring the terms which are independent of b, we have

ln p(b{S,S+N}) ∝ E
α,h

[
ln p(y

∣∣∣h) + ln p(h
∣∣∣α) + ln p(α

∣∣∣a, b) + ln p(b
∣∣∣c, d)

]
∝ E

α,h[ln p(α
∣∣∣a, b) + ln p(b

∣∣∣c, d)]

=
∑

i∈{S,S+N }

{
−biEα(αi) + (ci − 1) ln bi − dibi

} (15)

where b{S,S+N} is comprised by the entries indicated by
{
S, S+N

}
in b. In (15) the α, a, b, c, d are also

comprised by their indicated
{
S, S+N

}
, the subscript

{
S, S+N

}
is omitted for simplicity. As shown

in Figure 1, b{S,S+N} was modelled as a Gamma distribution. Since p(αi|ai, bi) and p(bi|ci, di) were a

Gamma distribution, p(
~
b{S,S+N}) was Gamma( b̃i∈{S,S+M}

∣∣∣∣̃ci, d̃i ), and the updated c̃i and d̃i were given by

c̃i = ai + ci (16)

d̃i = di +Eα(αi) (17)

Then the Bayesian inference for the channel estimation was executed iteratively among (i), (ii),
and (iii). The details of the algorithm are summarized in step 3 of Algorithm 1. When the estimated
channel vector h′ was recovered, we needed to convert it to the complex vector hd

a according to
Equation (3).

Algorithm 1 Downlink channel estimation with variational inference algorithm and overcomplete dictionary.

Input: A, y,σ2

Output: h′

1. Divide the timeslots into groups, and with each group comprised by tg timeslots.
2. For the first timeslot in the group, use variational Bayesian inference (VBI) for channel estimation, and

obtain the angular channel supports.
3. For the rest of the timeslots in the group, utilize the support information from the previous timeslot for

channel estimation one by one. The recovery algorithm in each timeslot is as follows:

3.1. Initialize α, a, b, c, d.

3.2. µ = 1
σ2 φA

T
y,φ = ( 1

σ2 A
T

A + Λ), Eh,b(h
2
i ) = µ2

i +φi,i, where Λ = diag
{
Eα[αi]

}
, µi is the i-th

entry in µ, and φi,i is the i-th diagonal entry in φ.

3.3. Update ãi and b̃i according to Equations (13) and (14) in (ii) (̃ai and b̃i are the updated ai and bi,
and ai and bi are the results from last iteration); then according to the property of the Gamma
distribution variable, Eα(αi) = ãi/ b̃i.

3.4. Update c̃ and d̃ according to Equations (16) and (17) in (iii) (̃c and d̃ are the updated c and d, and c
and d are the results from last iteration); then according to the property of the Gamma
distribution variable, Eα (̃bi) = c̃/d̃.

3.5. Go to step 3.2 until stop criteria meets.

3.6. Then h′ = µ.

4. Go back to step 2 for a new group of timeslots.

In a practical massive MIMO system, the transmission environment may change suddenly, in this
way the correlation of sparsity between adjacent timeslots will deteriorate, and the previous channel
support information cannot be utilized. On the other hand, the error will accumulate if the previous
channel support information is utilized timeslot by timeslot. Hence, the initialization is important for
the robustness and efficiency of the algorithm. As shown in Figure 2 divided the timeslots into groups,
and each group was comprised of several timeslots. During the channel estimation for each group,
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the VBI was used for the channel estimation in the first timeslot, and then the proposed algorithm was
executed for the remaining timeslots in which the channel support information of the previous timeslot
was made use of by the current timeslot. This procedure is detailed in steps 1, 2 and 4 in Algorithm 1.
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Figure 2. Channel estimations by group. Each block represents one timeslot, and the block filled with
grey is the timeslot with variational Bayesian inference (VBI) for the channel estimation, while the
blank blocks are the timeslots with the proposed algorithm for channel estimation.

4. Discussion

4.1. Sparsity Correlation Analysis

The UT movement distance was very small when the velocity of UT was small and the timeslot
was 0.5 ms. The reflector for the transmission was static during the UT moving between timeslots.
The ellipse geometry channel model is shown in Figure 3. The line of sight (LoS) distance between BS
and UT was dLos, the non-LoS (NLoS) distance by reflector between BS and UT was dNLoS, and the UT
movement distance in one timeslot was d∆. If the transmission path was still reflected by the same
reflector as shown in Figure 3, the maximum and minimum NLoS distances from BS to UT between
timeslots were dNLoS + d∆ and dNLoS − d∆. The transmission angle change was ∆θ. The distance
between the reflector and BS was d1. By some mathematical manipulations shown in Appendix A,
we got

∆θ ≈
2d∆(dNLoS − d1)

2d1dLoS

1
√

1− cos2 θ
(18)
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shown in Figure 4, the angle change was not more than 0.025°. It should be noted that when the LoS 
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inequality. Hence, the angle of arrival or departure changed slowly and then there was sparsity 
correlation among the angular channels for adjacent timeslots. 

Figure 3. Ellipse geometry channel model for line of sight (LoS) and non-LoS (NLoS) transmission.

In order to illustrate the angle change ∆θ during one timeslot, we assumed that dNLoS was 800 m,
the velocity of UT was 14.4 km/h, and the typical timeslot duration τ = 0.5 ms, then the movement
distance of UT in one timeslot was 0.02 m. By changing the distance between BS and reflector, as shown
in Figure 4, the angle change was not more than 0.025◦. It should be noted that when the LoS distance
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and the dNLoS were fixed, BS and reflector distance could not be arbitrary vales due to triangle inequality.
Hence, the angle of arrival or departure changed slowly and then there was sparsity correlation among
the angular channels for adjacent timeslots.
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Figure 4. Transmission angle change during one timeslot with a different LoS distance and different
distances between the base station (BS) and reflector.

4.2. Bayesian Cramér-Rao Bound Analysis

In this section we have discussed the Bayesian Cramér–Rao bound (BCRB) for the channel
estimation with the proposed algorithm. Let z ,

{
h, σ

}
, then the BCRB for the channel vector h is given

by the inverse of the Fisher information matrix J as:

J = Ez

{
−
∂2 log p(y, z)

∂zi∂z j

}
(19)

According to the system model in Section 2, h, σ are independent, the Fisher information matrix J
is block diagonal. We can rewrite p(y, z) as

p(y, z) = p(y
∣∣∣z)p(h∣∣∣α)p(α∣∣∣b)p(b) (20)

Then the BCRB on the MSE of the estimated channel vector h′ is given by

E
{
‖h
′

− h‖
2
}
≥ tr

(
J−1

hih j

)
(21)

where Jhi h j
= Ez

{
−
∂2 log p(y,z)
∂hi∂h j

}
is the fisher information sub-matrix. Thus, we can obtain the Bayesian

Cramér–Rao bound of the minimum mean square error for the estimated channel h′ as shown in
Proposition 1.
Proposition 1. The BCRB of MSE for the channel estimation h′ is represented as
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E
{
‖h
′

− h‖
2
}
≥ tr

(diag(E
(

1
αi

)
) +

1
σ2 A

T
A
)−1 = ∑

i∈S

1
1+c
adi

+ λi
σ

+
∑
i<S

1
bi
a + λi

σ

(22)

where S is the diagnosed support set, λi is the eigenvalues of A
T

A, and A
T

A ∈ R2N×2N, and a, bi, c, and di are
the parameters in the Bayesian model in Figure 1. When Td, M→∞ and Td

M = β, according to the random
matrix theory, we have

E
{(

h− ĥ
)H(

h− ĥ
)}
≥ |S| · 1

|S|
∑
i∈S

1
1+c

a min(d)++
λi
σ

+ (N − |S|) · 1
(N−|S|)

∑
i<S

1
max(b)

a +
λi
σ

→ |S| amin(d)
1+c

(
1− F(snr1,β)

4βsnr1

)
+ (N − |S|) a

max(b)

(
1− F(snr2,β)

4βsnr2

) (23)

where snr1 =
amin(d)
(1+c)σ , snr2 = a

σmax(b) , F(x, z) =

(√
x
(
1 +
√

z
)2
+ 1−

√
x
(
1−
√

z
)2
+ 1

)2

, min(d) and

max(b) are the minimum and maximum entries in d and b.

The proof of proposition 1 is presented in Appendix B. From proposition 1, we can see that the
MSE lower bound is related to the priori support size |S|, (1 + c)/min(d) and max(b) for the massive
MIMO channel estimation.

5. Simulations

In the simulation, the support diagnosis algorithm in [6] was adopted, and we assumed that
the transmission angle change between timeslots was within 1 degree. The pilot length was 50,
and antenna number at the BS was 100. The channel was generated according to the spatial model as
defined in 3GPP TR25.996. We compared our proposed algorithm with a unitary dictionary with a
size of 100 and the overcomplete dictionary with a size of 150, 200, and 250, and compared this with a
Bayesian sparse learning (SL) [16], weighted subspace pursuit (WSP) [6], weighted l1 minimization
(W-l1 min) [5], weighted iteratively reweighted least square(W-IRLS), IRLS [17], compressive sampling
matched pursuit (COSAMP) in [11], and l1 minimization (l1 min) [18].

In order to evaluate the channel estimation performance, we used a normalized mean-square
error (MSE) between true and estimated channel vectors as follows:

MSE =
1
T

∑
T

∥∥∥ĥd
− hd

∥∥∥2∥∥∥hd
∥∥∥2 (24)

where T is the number of trials, ĥ
d

and hd are the estimated and original channel vector, respectively
for each trial. In the simulations the trial number T was 250.

In Figure 5 the overcomplete dictionary size was 150 in the proposed algorithm. It could be seen
that when the unitary dictionary was used, our proposed algorithm outperformed WSP, COSAMP
and IRLS, but was a little worse than W-l1 with a small gap. However, when the overcomplete
dictionary was used, our proposed algorithm outperformed other algorithms, but almost had the
same performance as SL with a little performance improvement which could be seen in the zoomed-in
subfigure. The overcomplete dictionary in the proposed algorithm can dramatically improve the MSE
performance due to the fact that there are more atoms in the overcomplete dictionary than in the
unitary dictionary which can improve the sparsity in the angular channel; however, it doesn’t mean
that the larger the overcomplete dictionary size is, the better performance it has, which is shown in
Figure 6.
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We compared the performance of the proposed algorithm with different dictionary sizes in
Figure 6. It can be seen that in the high SNR region the performance improved when an overcomplete
dictionary was used, but the MSE performance gain did not improve when increasing the dictionary
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size. For example, the algorithm with a dictionary size of 150 had a relatively better performance than
with a dictionary size of 100. However, the performances with a dictionary size of 200 and 250 almost
gave the same trends as that with a dictionary size of 150. This was because the larger dictionary would
induce angel ambiguity because the correlation of atoms increased. Hence, in the practical engineering,
the dictionary size is not recommended to be very large. A large dictionary size is computationally
expensive and the benefit is limited. It also should be noted that in the low SNR region the MSE
performance with a larger dictionary size did not always do better than those with a smaller dictionary
size. For example, when the SNR was 0 dB, they hadsimilar performance. The reason was that in
the low SNR region the estimated channel support of the previous timeslot was not accurate enough,
and on the other hand larger dictionary size would have deteriorated the dictionary incoherence.

We compared the runtime and convergence performance of the proposed algorithm with a
different dictionary size in Figure 7. The relative error was defined as the ratio of the difference of
adjacent iteration results to the previous iteration result. It can be seen that the proposed algorithm with
dictionary size 150 converged fast than with a dictionary size of 100. However, the improvement had
its price, and the runtime for the proposed algorithm with dictionary size 150 was longer which meant
that the computational complexity was higher with a larger dictionary size. Based on the simulation
results shown in Figures 6 and 7, when the antenna at BS is 100, the dictionary size is recommended to
be set at 150 or so to balance the performance improvement and computation complexity.
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6. Conclusions

In this paper we proposed a downlink channel estimation algorithm based on overcomplete
dictionary and variational Bayesian inference. We converted the complex system model to a real model
and exploited the correlation of angular channel sparsity in adjacent timeslots. In the algorithm we
divided the timeslots into groups and made use of the channel support information of the previous
timeslot to the channel estimation in the current timeslot within each group. The sparsity correlation
and Bayesian Cramér–Rao bound for the MSE of channel estimation was analyzed. Compared with
other recovery algorithms, such as WSP, IRLS, WIRLS, l1 min, W-l1 min and COSAMP, our proposed
algorithm with overcomplete dictionary had a relatively better performance. Moderate overcomplete
dictionary can improve the MSE performance of channel estimation to balance the computational
complexity and performance gain.
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Appendix A

Proof of angle change with UT movement.
According to the cosine law, we have

cosθ =
d2

1 + d2
LoS − (dNLoS − d1)

2

2d1dLoS
, (A1)

cos(θ± ∆θ) =
d2

1 + d2
LoS − (dNLoS ± d∆ − d1)

2

2d1dLoS
. (A2)

Then we can get

θ± ∆θ = arccos

d2
1 + d2

LoS − (dNLoS − d1)
2
− d2

∆ ∓ 2d∆(dNLoS − d1)

2d1dLoS

. (A3)

Since d2
∆ is very small compared with d1 and dLoS, by the first-order approximation we have

θ± ∆θ ≈ arccos
(

d2
1+d2

LoS−(dNLoS−d1)
2
∓2d∆(dNLoS−d1)

2d1dLoS

)
≈ arc cos(

d2
1+d2

LoS−(dNLoS−d1)
2

2d1dLoS
) ±

2d∆(dNLoS−d1)
2d1dLoS

1
√

1−cos2 θ

= θ±
2d∆(dNLoS−d1)

2d1dLoS
1

√

1−cos2 θ

. (A4)

Then we have

∆θ ≈
2d∆(dNLoS − d1)

2d1dLoS

1
√

1− cos2 θ
. (A5)

�

Appendix B

Proof of Proposition 1.

Let z ,
{
h, σ

}
, the we have

Ez
{
(z− ẑ)(z− ẑ)T

}
≥ J−1. (A6)

Since h, σ are independent, the Fisher information matrix J is block diagonal, and can be presented as

J =

 Jh,h 0
0 Jσ,σ

. (A7)

Then the inverse of matrix J is

J−1 =

 Jh,h
−1 0

0 Jσ,σ
−1

. (A8)
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Because p(y, z) = p
(
y
∣∣∣z)p(h∣∣∣∣α)p(α∣∣∣∣b)p(b)p(σ) , we have

J = Ez

{
−
∂2 log p(y,z)
∂zi∂z j

}
= Ez

{
−
∂2 log p(y|z)

∂zi∂z j

}
+Ez

{
−
∂2 log p(h

∣∣∣α)

∂zi∂z j

}
+Ez

{
−
∂2 log p(α|b)

∂zi∂z j

}
+

Ez

{
−
∂2 log p(b)
∂zi∂z j

}
+Ez

{
−
∂2 log p(σ)
∂zi∂z j

} (A9)

Since we mainly focus on the MSE of h, we only need to analyze Jh,h. We discuss the above
formula part by part as follows:

1) Let Jh,h(y) = Ez

{
−
∂2 log p(y|z)

∂zi∂z j

}
, according to the Bayesian model in Figure 1, we have

p
(
y
∣∣∣z) ∼ Normal(y|Ah,σI)thenJh,h(y) = Ez{

A
T

A
σ
} =

A
T

A
σ

.

2) Let Jh,h(h) = Ez

{
−
∂2 log p(h

∣∣∣α)

∂zi∂z j

}
, and we have P

(
h
∣∣∣α)

=
2N∏
i=1

Normal(hi

∣∣∣∣0,αi) , then we get Jh,h(h) =

Ez
{

1
αi

}
.

3) Because Ez

{
−
∂2 log p(α|b)

∂zi∂z j

}
, Ez

{
−
∂2 log p(b)
∂zi∂z j

}
and Ez

{
−
∂2 log p(σ)
∂zi∂z j

}
are independent with h, they are

all 0. Then in summary, we get Jh,h = diag(E
(

1
αi

)
) + 1

σ2 A
T

A.

Since the priori support set information is used in our proposed algorithm, a three-layer model is
constructed for the elements belonging to the priori support set, and a two-layer model is used for the
elements not belonging to the priori support set, so EZ

{
1
αi

}
has different expressions for the two cases.

EZ
{

1
αi

}
in the two cases are discussed as follows:

1) When i belongs to the priori support set, according to the three-layer graph model we have

p(α) =
2N∏
i=1

Gamma(αi
∣∣∣a, bi) , (A10)

p(bi) = Gamma(bi

∣∣∣∣c, di) = Γ(c)−1dc
i b

c−1
i e−dibi . (A11)

Then we get
p(αi) =

∫
∞

0 p(αi
∣∣∣bi)p(bi)dbi

=
∫
∞

0 Γ(a)−1ba
iα

a−1
i e−biαi Γ(c)−1dc

i b
c−1
i e−dibidbi

= Γ(a)−1Γ(c)−1αa−1
i dc

i
Γ(a+c)

(ai+di)
a+c

. (A12)

Accordingly, we have

E
{

1
αi

}
=

∫
∞

0
1
αi

Γ(a)−1Γ(c)−1αa−1
i dc

i
Γ(a+c)

(ai+di)
a+c dαi

=
∫
∞

0
1
αi

Γ(a+c)
Γ(a)Γ(c)

(
αi
d1

)a−1( αi
d1

+ 1
)−a−c

d αi
d1

, (A13)

where Γ(a+c)
Γ(a)Γ(c)

(
αi
di

)a−1(αi
di
+ 1

)−a−c
satisfies the probability density function of Beta prime

distribution. According to the properties of the Beta prime distribution, when −a < −1 < c,
we have
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E
{(

h− ĥ
)H(

h− ĥ
)}
≥ |S| · 1

|S|
∑
i∈S

1
1+c

a min(d)++
λi
σ

+ (N − |S|) · 1
(N−|S|)

∑
i<S

1
max(b)

a +
λi
σ

→ |S| amin(d)
1+c

(
1− F(snr1,β)

4βsnr1

)
+ (N − |S|) a

max(b)

(
1− F(snr2,β)

4βsnr2

) . (A14)

2) When i does not belong to the priori support set, according to the high-order moment properties
for the general gamma distribution, we have

E
{

1
αi

}
=

bi
a

. (A15)

Then in summary, we have

E
{
‖h
′

− h‖
2
}
≥ tr

(diag(E
(

1
αi

)
) +

1
σ2 A

T
A
)−1 = ∑

i∈S

1
1+c
adi

+ λi
σ

+
∑
i<S

1
bi
a + λi

σ

, (A16)

where S is the diagnosed support set, λi is the eigenvalues of A
T

A,and A
T

A ∈ R2M×2M.

When overcomplete dictionary is as Dd =
{

1
√

N
e− j 2π

M kn
}

n,k
, k ∈ {1, · · · , M}, n ∈ {1, · · · , N}, and A is

Gaussian random matrix with each element is mean 0 and variance 1
Td

, then ADd is complex Gaussian

random matrix. Then A is Gaussian random matrix with mean 0 and variance ρd

2Td
.

According to the random matrix theory, for N×K dimensional random matrix H with each element
is independent and is variable with mean 0 and variance 1/N, when K, N→∞ and K

N → β ,then the

empirical distribution of eigenvalues of HTH converges almost surely as fβ(x) =
(
1− 1

β

)+
δ(x) +

√
(x−a)+(b−x)+

2πβx , where (x)+ = max(0, x), a =
(
1−

√
β
)2

, b =
(
1 +

√
β
)2

.

Since A ∈ R2Td×2M, and its element is Gaussian random variable with mean 0 and variance ρd

2Td
By

applying the above results for the empirical distribution of eigenvalues of HTH, when Td, M→∞ and
Td
M = β, the empirical distribution of eigenvalues λ of A

T
A converges almost surely as

fβ(λ) =
(
1−

1
β

)+
δ(λ) +

√
(λ− a′)+(b′ − λ)+

2πβλ
√
ρd

(A17)

where a′ =
√
ρd

(
1−

√
β
)2

, b′ =
√
ρd

(
1 +

√
β
)2

. When s , M→∞ and s
M = µ, we have

E
{(

h− ĥ
)H(

h− ĥ
)}
≥ |S| · 1

|S|
∑
i∈S

1
1+c

a min(d)++
λi
σ

+ (N − |S|) · 1
(N−|S|)

∑
i<S

1
max(b)

a +
λi
σ

→ |S| amin(d)
1+c

(
1− F(snr1,β)

4βsnr1

)
+ (N − |S|) a

max(b)

(
1− F(snr2,β)

4βsnr2

) , (A18)

where snr1 =
amin(d)
(1+c)σ , snr2 = a

σmax(b) and F(x, z) =
(√

x
(
1 +
√

z
)2
+ 1−

√
x
(
1−
√

z
)2
+ 1

)2

.

Then the proofs are complete. �
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