
electronics

Article

A Data-Driven Based Voltage Control Strategy for
DC-DC Converters: Application to DC Microgrid

Kumars Rouzbehi 1 , Arash Miranian 2, Juan Manuel Escaño 1 , Elyas Rakhshani 3 ,
Negin Shariati 4 and Edris Pouresmaeil 5,*

1 Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, 41092 Sevilla, Spain;
krouzbehi@us.es (K.R.); jescano@us.es (J.M.E.)

2 Department of Electrical Engineering, University of Tehran, Tehran 1417466191, Iran; ar.miranian@gmail.com
3 Department of Electrical Sustainable Energy, Delft University of Technology, Mekelweg 4, 2628 CD Delft,

The Netherlands; E.Rakhshani@tudelft.nl
4 Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia;

negin.shariati@uts.edu.au
5 Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
* Correspondence: edris.pouresmaeil@aalto.fi; Tel.:+358-50-59-844-79

Received: 27 March 2019; Accepted: 22 April 2019; Published: 30 April 2019
����������
�������

Abstract: This paper develops a data-driven strategy for identification and voltage control for DC-DC
power converters. The proposed strategy does not require a pre-defined standard model of the
power converters and only relies on power converter measurement data, including sampled output
voltage and the duty ratio to identify a valid dynamic model for them over their operating regime.
To derive the power converter model from the measurements, a local model network (LMN) is
used, which is able to describe converter dynamics through some locally active linear sub-models,
individually responsible for representing a particular operating regime of the power converters. Later,
a local linear controller is established considering the identified LMN to generate the control signal
(i.e., duty ratio) for the power converters. Simulation results for a stand-alone boost converter as well
as a bidirectional converter in a test DC microgrid demonstrate merit and satisfactory performance of
the proposed data-driven identification and control strategy. Moreover, comparisons to a conventional
proportional-integral (PI) controllers demonstrate the merits of the proposed approach.

Keywords: DC-DC power converter; Takagi–Sugeno fuzzy system; hierarchical binary tree

1. Introduction

DC-DC power converters have been extensively used in the infrastructure such as PV power
converters, DC motor drives, and wind farm power converters [1–3]. The DC-DC converters are
increasingly being used to integrate sustainable resources such as photovoltaic (PV) with high variability
in their outputs to DC microgrids [4–7]. Due to the wide-ranging applications of these converters,
proper modeling and control techniques are required for their voltage regulation.

Control of the power converters poses challenges to the researchers due to their nonlinear
characteristics. Specifically, such difficulties stem from the following phenomena and requirements:

• DC-DC power converters are characterized by three different modes of operation, namely
rising inductor current, falling inductor current and zero inductor current (which happens in
discontinuous conduction operation), where each mode features linear continuous-time dynamics.
Such complexities may even lead to chaotic behavior of the DC-DC converters [8].

• Converter topology requires the control input of the converter (i.e., duty cycle) to be bounded
between zero and one.
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• The inductor current of power converter must be non-negative when it is operating in the
discontinuous conduction mode (DCM) [9].

Apart from the above-mentioned issues, for an efficient controller design of a DC-DC converter,
expert designer should address wide input and output changes to guarantee the stability of the
converter in any working state with a reasonable transient response [10]. In addition, general stability
analysis is introduced in [11]. It is worth noting that the input voltage and output load variations
change the operating point of the power converter. These issues further contribute to the complication
of the DC-DC converter control problem.

Various techniques have been presented for DC-DC converters voltage control, from conventional
PI and PID controllers [11,12] to fuzzy and Artificial Neural Networks (ANNs) controllers [13–15] and
sliding model control [16]. Conventional PI and PID controllers present several valuable properties,
for example, easily designed and being inexpensive. However, they are designed based on a locally
linearized model of the system and hence their performance reduces while the operating point of the
converter changes.

On the other hand, fuzzy logic controllers seem to provide satisfactory control actions, but, when
there are large numbers of fuzzy rules and for high switching frequencies (small switching cycles),
evaluation of all rules may turn into a problem. Moreover, proper tuning of the positions of the
membership functions is a time-consuming procedure, which requires great expert knowledge.

Artificial Neural Network-based controllers are data-driven approaches that use input–output
measurement of the converter to develop a valid converter model and then employ the developed
model to design controller for the converters. There are also difficulties associated with the ANN-based
controllers such as initialization of the ANN’s parameters.

To eliminate the above-mentioned limitations, this paper proposes a data-driven strategy (DDS)
that does not experience the problem associated with the conventional ANN-based control strategies,
for identification and voltage control of DC-DC converters. The proposed DDS includes two stages as
stated below:

• Stage 1: Identification of the power converter dynamics directly from measured data.
• Stage 2: Design of the voltage regulator based on the identified converter model.

In the first stage, the proposed DDS employs a local model network (LMN) for identification of
a DC-DC converter. The LMN is made up of local linear models (LLM) and each LLM is responsible
for modeling the dynamics of the converter along a specific operating regime, decided by its validity
function. The LMN structure is determined directly from the input–output measurement using learning
algorithm of hierarchical binary tree (HBT). Next, in the second stage, the identified LMN is used for
the local linear control (LLC) considering the inverse error dynamics controller design.

In this paper, the identification and control stages are first explained for a standalone DC-DC boost
converter. Then, the approach is applied on a bidirectional converter, connected to a DC microgrid
with photovoltaic and storage. In both cases, the results of the proposed LLC strategy are compared to
PI controllers.

Section 2 describes the framework for power converter identification. The structure of the LMN is
presented in Section 3. The LLC design is described in Section 4. Simulation results and comparisons
for the standalone converter are discussed in Section 5. Then, the proposed method is applied to
a bidirectional converter in a DC microgrid in Section 6. Finally, the paper is concluded in Section 7.

2. Identification Methodology

As shown in Figure 1, DC-DC converter can be found in applications such as delivering the
harvested energy from the PV panels to the main DC microgrid. Voltage regulation in DC microgrid is
one of the critical issues for effective power delivery.
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In this paper, initially, a simple standalone DC-DC boost converter, as shown in Figure 2,
is identified and controlled using the proposed DDS. Then, application of the DDS to a DC microgrid
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Figure 2. (a) Standalone DC-DC boost converter circuit; and (b) the identification framework using 
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The identification framework of the boost converter, based on Equation (1), is depicted in Figure 
2b. In this series-parallel identification framework, symbol q−1 realizes unit delay. 

To estimate a model that is dynamically valid from measured data, a dataset that contains rich 
enough information about the converter behavior should be generated. This is fulfilled by designing 
an appropriate excitation signal, which is the duty cycle of the system (d) in this case. To generate 
precise datasets, an amplitude-modulated pseudo-random binary signal (APRBS) with 59 different 
duty cycle levels is planned to form the excitation signal. The APRBS signals are proper choices for 
identification of nonlinear plants as they can extract information about the different operating modes 
of the nonlinear system [16,17]. The minimum hold time for this excitation signal, illustrated in Figure 
3a, is 0.7 ms, which was obtained based on the step response of the boost converter.  

Figure 2. (a) Standalone DC-DC boost converter circuit; and (b) the identification framework using
the LMN.

For the boost converter in Figure 2a, the input–output relationship is as follows:

vout(k + 1) = g(vout(k− 1), vout(k), iL(k− 1), iL(k), d(k− 1), d(k)) (1)
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where g is a nonlinear function mapping the inputs to the output of the DC-DC boost power converter,
vout(k) is the converter’s output voltage at time kTs (with Ts as sampling time), and iL and d are
inductor’s current and duty ratio of the power converter, respectively.

The identification framework of the boost converter, based on Equation (1), is depicted in Figure 2b.
In this series-parallel identification framework, symbol q−1 realizes unit delay.

To estimate a model that is dynamically valid from measured data, a dataset that contains rich
enough information about the converter behavior should be generated. This is fulfilled by designing an
appropriate excitation signal, which is the duty cycle of the system (d) in this case. To generate precise
datasets, an amplitude-modulated pseudo-random binary signal (APRBS) with 59 different duty cycle
levels is planned to form the excitation signal. The APRBS signals are proper choices for identification
of nonlinear plants as they can extract information about the different operating modes of the nonlinear
system [16,17]. The minimum hold time for this excitation signal, illustrated in Figure 3a, is 0.7 ms,
which was obtained based on the step response of the boost converter.Electronics 2019, 8, x FOR PEER REVIEW 5 of 15 
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Figure 3. (a) The APRBS signal (duty cycle) for identification of boost converter; (b) waveform of
converter output voltage obtained by applying the APRBS signal; and (c) waveform of inductor current
obtained by applying the APRBS signal.

Then, the designed excitation signal is employed as the input of the boost converter to generate
data for the inductor’s current and the converter’s output voltage, while the simulation sampling time
is Ts = 1 µs. In this period, 7000 input–output data samples are produced, the first 4000 samples are
used to build the system model by the LMN and the remaining 3000 data are considered to validate the
identified model. Figure 3b, c shows the output voltage and inductor’s current waveforms, respectively,
achieved by applying the excitation signal.
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Local model network (LMN) is utilized for modeling, identification and prediction of numerous
nonlinear systems [18–20]. They are appropriate for identification and modeling of complex systems
that feature several operating regimes, such as DC-DC converters, as each operating regime can be
described by an LLM.

3. Framework

3.1. Network Structure

The LMN output of u = [u1 u2 . . . up]T and M local linear models can be expressed as,

ŷ =
M∑

i=1

hi(u).Φi(u) (2)

hi(u) = θi,0 + θi,1u1 + . . .+ θi,pup (3)

where hi (·) describes ith local linear model (LLMi), θi = [θi,0 θi,1 . . . θi,p] is the vector parameter of
the LLMi, Φi denotes the corresponding validity function of the LLMi and ŷ presents the LMN’s
output. The LMN in Equation (2) can be interpreted as a Takagi–Sugeno (TS) [21] fuzzy inference
system with M rules, and Φi (u) and hi (u) represent the rule premises and associated rule consequents,
respectively [22].

The validity functions (premises) should form a partition of unity to have a rational interpretation
of local models,

M∑
i=1

Φi(u) = 1 (4)

In the structure of the LMN, two sets of parameters must be estimated from the measured data.
The parameters of the consequent functions, θi, are estimated using a weighted least squares (WLS)
algorithm [23]. On the other hand, the structure of the validity functions is determined by HBT.

3.2. Estimation of LLMs’ Parameters

Application of the WLS algorithm for estimation of the parameters of the LLMs from N measured
samples leads to the following solution,

θi =
(
RT

i .Di.Ri

)−1
.RT

i .Di.y (5)

where y = [y(1), . . . , y(N)]T is a vector that contains N target outputs and Ri and Di are regression and
diagonal weighting matrices associated with the ith LLM, respectively, which are expressed as follows:

Ri =


1 u1(1) u2(1) · · · up(1)
. . . . . . .
...

...
...

...
1 u1(N) u2(N) . . . up(N)


N×p

(6)

Di =


Φi(u(2)) 0 . . . 0

0 Φi(u(2)) . . . 0
...

...
...

0 0 . . . Φi(u(N))


N×N

(7)

The solution in Equation (5) is obtained by local error minimization of each LLM over the N
training samples [20].
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3.3. Learning Algorithm

The hierarchical binary tree-learning algorithm is used to identify the parameters of the validity
functions. The HBT algorithm starts by an LMN with a single LLM and then adds more LLMs and their
validity functions in every iteration to refine LMN and improve its performance. This refinement is
realized by partitioning of the input space into hyper-rectangles through axis-orthogonal splits [21,22].
In each iteration of HBT heuristic search, the validity region of the worst LLM is divided into two
new regions. The division is tried in all dimensions and the best division associated with the highest
improvement in LMN’s performance is considered. Then, two new validity functions are constructed
for these regions and parameters of their LLMs are estimated by Equation (5).

In each iteration of the HBT algorithm, the validity functions are constructed by proper
multiplication of sigmoid splitting functions, ψi,

ψi =
1

1 + e−σi(wi,0+wi,1u1+...+wi,pup)
(8)

where direction vector wi = [wi,1 . . . wi,px]T sets division direction, position parameter wi,0 determines
the position of the split and the smoothness parameter σi determines the smoothness of the split.
A detailed description of the HBT algorithm can be found in [22,23].

4. Design of Local Linear Control

While the DC-DC system model identification is developed/ derived, the LLC is designed to meet
the requirements of the power converter. The inverse error dynamics control pursued in this paper
includes precise tracking control.

In the exact tracking controller, the error equation is solved to define the control input which is
essential for the next error value, i.e.,

vre f (k + 1) − vout(k + 1)= 0 (9)

Considering Equations (1) and (2), the estimated converter output voltage is as follows,

v̂out(k + 1) =
M∑

i=1

Φi ×


θi,0 + θi,1vout(k− 1)
+θi,2vout(k) + θi,3iL(k− 1)
+θi,4iL(k)

+ (10)

+
M∑

i=1

Φi(θi,5d(k− 1)) +
M∑

i=1

Φi(θi,6d(k))

If we set,
θi = [θi,0θi,1 . . . θi,5], (11)

x(k) = [1 vout(k− 1) vout(k)iL(k− 1)iL(k)d(k− 1)]T

ci = θi,6

Then, Equation (10) becomes,

v̂out(k + 1) =
M∑

i=1

Φi ×
(
θi × x(k)

)
+

M∑
i=1

Φi × (ci × d(k)) (12)
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By replacing Equation (12) into Equation (9),

d(k) =
vre f (k + 1) −

∑M
i=1 Φi ×

(
θi × x(k)

)
∑M

i=1 Φici
(13)

Note that, by defining,

di(k) =
vre f (k + 1) − θi × x(k)

ci
(14)

The control input recommended by the ith local linear model, the control input of Equation (12),
is as follows,

d(k) =

∑M
i=1 Φicidi(k)∑M

i=1 Φici
(15a)

Or

d(k) =
M∑

i=1

αidi(k) (15b)

where αi =
Φici∑M

i=1 Φici
and

∑M
i=1 αi = 1.

Therefore, based on Equation (15), the control input in Equation (13) is the same as the weighted
average of the control inputs of all local linear models, stated in Equation (14). Therefore, a local linear
controller is obtained. The schematic diagram of the LLC is illustrated in Figure 4.
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5. Simulation Results for a Standalone Boost Converter

This section reports the identification and voltage regulation results for the boost converter
of Figure 2.

5.1. Results of Converter Identification

To assess performance of the LMN in the identification of boost converter dynamic behavior,
two error criteria, namely root mean square error (RMSE) and mean absolute percentage error (MAPE),
were used

RMSE =

√√√
1
T

T∑
k=1

(vout(k) − v̂out(k))
2 (16)
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MAPE =
( 1

T

)
.

T∑
k=1


∣∣∣vout(k) − v̂out(k)

∣∣∣
vout(k)

 (17)

where T is the number of test samples.
Figure 5 presents the actual and estimated converter output voltage for the test samples. Clearly,

the LMN successfully captured the converter dynamic behaviors since the estimated voltages flawlessly
matched the actual values. The RMSE and MAPE for estimation of test data are listed in Table 1.
The identified system’s robustness against measurement noise is also shown in Table 1.
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Figure 5. Identification results for the test dataset.

Table 1. Clean and noisy measurement data comparison of the LMN performance.

Case Study RMSE (Volt) MAPE (Percent)

Clean data 0.5504 1.0553
Noise contaminated 0.5806 1.0905

5.2. Voltage Regulation

The switching frequency of 100 kHz was adopted for converter control. Using the LLC scheme,
the step response of the converter was evaluated for the input voltage of 12 V and the reference voltage
of 24 V. The converter step response is illustrated in Figure 6a and the numerical evaluations of the
step response are presented in Table 2.

To evaluate the controller performance against the source voltage variations, two-step changes
from 12 to 15 V and from 15 to 12 V were applied to the input at time instants 1 ms, 2 ms and 3 ms,
respectively. Robustness of the proposed controller against fast variations in the source voltage is
noticeable in Figure 6b.

Simulations were performed to evaluate robustness of the controller with respect to load changes.
The load changed from 20 Ω to 40 Ω at time instant 5 ms and back again to 20 Ω at 6 ms. The erformance
of the proposed controller is depicted in Figure 6c. As can be seen, the LLC almost kept the output
voltage unchanged during the load variations.

For more investigation of the proposed LLC, its performance in reference to output voltage
tracking was analyzed. Figure 6d shows the LLC performance is tracking various reference voltages
including 24 V, 26 V, 28 V and 25 V. Interestingly, the proposed control approach quickly followed
variations in reference voltage.
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Figure 6. (a) Boost converter step response for 24 V reference output voltage; (b) response to variations
in source voltage; (c) response to load variations; and (d) ability of the proposed LLC to reference
voltage tracking.

Table 2. Numerical evaluations of the step response achieved by the proposed method.

Controller
Criterion

Rise Time Settling Time Overshoot

PI 340 µs 850 µs 12%
LLC 110 µs 350 µs 6.2%

Apart from the proposed control performance of the approach against variations in the source
voltage, load resistance or reference voltage, its robustness against variations in converter’s parameters
is also of importance. To assess this capability, converter’s parameters (the value of inductance and
capacitance in Figure 2a) were varied between −10% to +10% with 5% steps. Then, in each case, the
step response was simulated and the integral of time multiplied by the absolute error (ITAE), which is
defined by Equation (18), was computed,

ITAE =

∫ 0.002

0
t.
∣∣∣vout(t) − v̂out(t)

∣∣∣dt (18)

Table 3 compares the values obtained for ITAE in each simulation case. It is clear that ITAEs for all
simulations were of the same order. Therefore, it can be concluded that the proposed control approach
exhibited great robustness against variations in converter parameters.
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Table 3. LLC robustness against variations in parameters of the boost converter.

Parameters Variation ITAE

−10% 3.12 × 10−7

−5% 3.31 × 10−7

Base case 3.51 × 10−7

5% 5.17 × 10−7

10% 7.66 × 10−7

6. Application to a test DC Microgrid

To better investigate the effectiveness of the proposed approach, a DC microgrid was considered.
The DC microgrid featured a photovoltaic (PV) panel as well as battery storage and resistive load,
as illustrated in Figure 7. The network voltage was 685 V. A DC-DC boost converter interfaced the
PV panel to the microgrid. The duty ratio of this converter (dMPPT) was tuned by the incremental
conductance algorithm [24] for the maximum power point tracking (MPPT). On the other hand, energy
storage was connected to the DC microgrid via a bidirectional DC-DC converter. The bidirectional
converter regulated the grid’s voltage based on the DDS, inside the microgrid. The DC microgrid
specifications are provided in Table 4.
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Table 4. Microgrid Specifications.

Device Specification

PV panel converter with MPPT 20 kW
Bidirectional converter 20 kW

Battery 500 Ah
Load 15 kW

6.1. Identification of Bidirectional Converter Dynamics

Similar to the previous simulation study, the dynamic model of the bidirectional converter was
derived from the measurement data. Hence, an APRBS considering 55 duty cycle levels was utilized to
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produce measurement data. The sampling time was considered 5 µs. Totally, 3000 input–output data
sample were produced, 2000 of them served as the training data and the rest were used to validate the
identified model.

For modeling of the bidirectional converter, 5-LMN was generated as the best-performing
model. The actual and estimated output voltage of the bidirectional converter are shown in Figure 8.
Next, the LLC for the bidirectional converter was designed based on the derived LMN.
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6.2. LLC of the Bidirectional Converter

The design of the local linear controller was carried on based on Equation (15). In this study,
three case studies, namely step response, load resistance variation and solar irradiance variation,
were applied. Furthermore, PI-based control scheme was designed for comparison. The PI controller
comprised the voltage control loop (VCL) and current control loop (CCL), as proposed in [23–26]:

TFVCL =
4.26S + 400

S
(19)

TFCCL =
0.0026S + 0.4938

S + 1
(20)

6.2.1. Response to Step Change

The response to step change for the LLC is shown in Figure 9a. The achieved response featured
speed with negligible overshoot. Table 5 presents the comparison between LLC and PI step responses.
Evidently, the proposed LLC provided lower rise time and settling time as well as less overshoot
compared to PI.

Table 5. Comparison of the Step Response for the Bidirectional Converter.

Controller
Criterion

Rise Time (ms) Settling Time (ms) Overshoot (%)

PI 14.15 35.66 6.12
LLC 7.01 11.10 2.62
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Figure 9. (a) Step response of the proposed LLC for the bidirectional converter; (b) response to load
resistance variations; (c) load current during load resistance variation; and (d) battery current during
load resistance variations.

6.2.2. Load variations

The load variation scenario included load changing from 31 Ω to 15 Ω and back again.
The performance of the PI controller and LLC against the load variation is depicted in Figure 9b.
As can be seen, the LLC showed outstanding performance.

To present a more detailed comparison, the load and battery currents achieved by both controllers
are demonstrated in Figure 9c,d.

6.2.3. Variations in Solar Irradiance

The last study on the DC microgrid was dedicated to the irradiance variations. Based on the
control system action, it is expected that the load side voltage is maintained at the reference value
during variations in irradiance. The solar irradiation was changed from 1000 to 0 W/m2 at 130 ms.

Based on the results illustrated in Figure 10a, it is evident that the LLC demonstrated more
satisfactory robustness against the variations in the solar irradiance, compared to the PI controller.
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The PI controller yielded around 3% of pre-specified voltage with slowly-damped undershoot,
while the LLC restored the voltage back to the pre-specified value rapidly with around 1.5% undershoot.

The profile of the battery current in Figure 10b shows the charge to discharge mode transition, due
to the absence of PV generation. It is clear that the achieved results by the LLC reached the steady-state
more quickly than the PI controller.

7. Conclusions

This paper develops a data-driven identification strategy by use of LMNs for DC-DC converters
identification and voltage control. The proposed LMNs employ input–output measurement data to
identify converter dynamics at the first step. Then, the identified model was used to derive the control
law for the voltage regulation of the converter. The proposed approach was used for identification and
voltage regulation of converters in both standalone mode as well as grid-connected operation.

For the standalone converter, step response as well as response to load and source variations
confirmed the pleasing performance of the LLC. Furthermore, for the DC-DC converters in a DC
microgrid, simulations were performed under various scenarios indicating satisfactory performance
with the proposed control technique. In both test scenarios, comparisons to conventionally tuned PI
control demonstrated the superiority of the proposed approach.
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