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Abstract: Discrete orthogonal transforms such as the discrete Fourier transform, discrete cosine
transform, discrete Hartley transform, etc., are important tools in numerical analysis, signal processing,
and statistical methods. The successful application of transform techniques relies on the existence of
efficient fast algorithms for their implementation. A special place in the list of transformations is
occupied by the discrete fractional Fourier transform (DFrFT). In this paper, some parallel algorithms
and processing unit structures for fast DFrFT implementation are proposed. The approach is based
on the resourceful factorization of DFrFT matrices. Some parallel algorithms and processing unit
structures for small size DFrFTs such as N = 2, 3, 4, 5, 6, and 7 are presented. In each case, we describe
only the most important part of the structures of the processing units, neglecting the description of
the auxiliary units and the control circuits.

Keywords: discrete fractional Fourier transform; VLSI-oriented algorithms; processing unit structure

1. Introduction

Traditional discrete orthogonal transforms such as the discrete Fourier transform (DFT), discrete
cosine transform (DCT), the discrete Hartley transform (DHT), discrete Walsh–Hadamard transform
(DWHT), discrete Haar transform (DHT), and the Slant transform (ST) are important tools in signal
and image processing, numerical analysis, and statistical methods. Discrete fractional transforms
are another important type of discrete orthogonal transformation. Discrete fractional transforms
are the generalizations of the ordinary discrete transforms with one additional fractional parameter.
Various discrete fractional transforms including the discrete Fourier transform [1–3], the discrete
fractional Hartley transform [4], and the discrete fractional cosine and sine transforms [5] have been
introduced and found wide applications in many scientific and technological areas including digital
signal processing [4], image encryption [6–8], digital watermarking [9], and others. Different fast
algorithms for their implementation have been separately developed to minimize computational
complexity and implementation costs. A striking example is the discrete fractional Fourier transform
(DFrFT), the discrete version of the integral fractional Fourier transform (FrFT). Besides its numerical
side appropriateness, the DFrFT has proven over the years to be a powerful signal processing tool.

Today, there are many types of definitions of DFrFT. A first approach is represented by direct
sampling of the FrFT [10]. It is the least complicated approach, and there are a few different algorithms
that have been developed for computing this type of DFrFT. But these discrete realizations could lose
many important properties of the FrFT like unitarity, reversibility, additivity; therefore, its applications
are limited. A second approach relies on a linear combination of ordinary Fourier operators raised to
different powers [11,12]. However, as emphasized in [3], these realizations often produce an output that
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does not match the output of the continuous FrFT. In other words, it is not the discrete version of the
continuous transform. The third approach is based on the idea of an eigenvalue decomposition [1–3].

A decisive factor for applications of the various types of DFrFT has been the existence of fast
algorithms for computing it. However, only DFrFT based on the eigenvalue decomposition [1–3]
has all the properties which are required for DFrFT such as unitarity, additivity, reduction to discrete
Fourier transform when the power is equal to 1, an approximation of the continuous FrFT [3]. We will
call this type of DFrFT as “true” [13]. Fast algorithms for this type of transformation were described
in papers [5,14]. The limited volume of these publications did not allow the presentation of all the
details of the organization of the calculations for the specific lengths of the original data sequences. In
particular, the fast algorithms and schemes for discrete orthogonal transformations for short lengths
of input sequences are of practical interest. For example, in [15] the fast algorithms for small-size
DFTs were presented. In [16], some schemes for small-size DHTs are given. In the case of DFrFT, such
algorithms are not given anywhere. We want to eliminate this shortcoming. To this end, we present
fast algorithms and processing unit structures to compute a true DFrFT for N = 2, 3, 4, 5, 6, and 7.

2. Preliminary Remarks

The definition of true DFrFT was first introduced by Pei and Yeh [1,2]. They defined the DFrFT
in terms of a particular set of eigenvectors, which constitute the discrete counterpart of the set of
Hermite–Gaussian functions (these functions are well-known eigenfunctions of DFT, and the fractional
Fourier transform was defined through a spectral expansion in this base [3]):

YN×1 = FαNXN×1, (1)

where FαN—is (N ×N) discrete fractional Fourier transform matrix, XN×1 = [x0, x1, . . . , xN−1]
T, and

YN×1 = [y0, y1, . . . , yN−1]
T—are input and output data vectors, respectively, and α is a fractional

parameter (real number).
The fractional power of the matrix, including the DFT matrix, can be obtained from its eigenvalue

decomposition and the power of eigenvalues:

FαN = ZNΛα
NZT

N, (2)

where Λα
N is the diagonal matrix of size N, whose diagonal entries are powers of eigenvalues of the

DFT matrix with an exponent α, while ZN is the matrix whose columns are normalized mutually
orthogonal eigenvectors of the DFT matrix.

It is easy to check that the DFrFT matrix, calculated from (2), is symmetric [14]. Moreover the first
row (and column) of the matrix FαN is an even vector and a matrix which we obtain after removing
the first row and the first column from the matrix FαN is persymmetric [14]. Based on that general
considerations, we can describe the entries of the DFrFT matrix in the following way:

FαN =


f (α)0,0 f (α)0,1 · · · f (α)0,1

f (α)0,1 f (α)1,1 · · · f (α)1,N−1
...

...
. . .

...

f (α)0,1 f (α)1,N−1 · · · f (α)1,1


(3)

The entries of this matrix are complex numbers, and their values depend on both the fractional
parameter α and the number N. However, it will be more convenient for us to denote the numerical
values of the matrix entries by means of the letters of the ordinary Latin alphabet {a(α)N , b(α)N , c(α)N , . . . , z(α)N }.
In this case, the subscript N will indicate the size of the DFrFT matrix, while the superscript α will
indicate the value of the fractional parameter. This will simplify the identification of the structural
features of the matrix and the presence in it of compositions of the same values of the entries.
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3. Algorithm and Processing Unit Structure for Small Size DFrFTs

3.1. Computing the Two-Point DFrFT

Let X2×1 = [x0, x1]
T and Y2×1 = [y0, y1]

T be two-dimensional input and output data
vectors, respectively.

The problem is to calculate a product

Y2×1 = Fα2 X2×1, (4)

where

Fα2 =

 a(α)2 b(α)2
b(α)2 c(α)2

.
Direct computation of (4) takes four multiplications and two additions of complex numbers. From

the symmetry of the DFrFT matrix follows that for any value of the parameter α, the matrix Fα2 contains
the same elements on the secondary diagonal. Therefore [17], the number of multiplications in the
calculation of the two-point DFrFT can be reduced.

With this in mind, the rationalized computational procedure for computing the two-point DFrFT
has the following form:

Y2×1 = T2×3D(α)
3 T3×2X2×1, (5)

where

T3×2 =


1
1 1

1

, T2×3 =

[
1 1

1 1

]
, D(α)

3 = diag(
a
ϕ
(α)

2 , b(α)2 , ϕ̆(α)
2 ),

and
a
ϕ
(α)

2 = a(α)2 − b(α)2 , ϕ̆(α)
2 = c(α)2 − b(α)2 .

As can be seen, the implementation of the two-point DFrFT requires only three multipliers and
three two-input adders of complex numbers.

Figure 1 shows a data flow structure for the implementation of the two-point DFrFT. In this
paper, data flow structures are oriented from left to right. Straight lines in the figures denote the
operations of data transfer. The circles in these figures indicate complex-valued multipliers. These
blocks multiply the input data by the numbers inscribed inside the circles. Points where lines converge
denote summation and dotted lines indicate the sign-change operations. We use the usual lines without
arrows on purpose, so as not to clutter the picture.
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3.2. Computing the Three-Point DFrFT

Let X3×1 = [x0, x1, x2]
T and Y3×1 = [y0, y1, y2]

T be three-dimensional input and output data
vectors, respectively.

The three-point DFrFT can be represented in the following form:

Y3×1 = Fα3 X3×1, (6)



Electronics 2019, 8, 509 4 of 14

where

Fα3 =


a(α)3 b(α)3 b(α)3
b(α)3 c(α)3 d(α)3
b(α)3 d(α)3 c(α)3

.
Taking into account the specific structure of the matrix Fα3 , we can propose the following procedure

for the efficient calculation of a three-point DFrFT:

Y3×1 = A3×5A5D(α)
5 P5×3A3X3×1, (7)

where

A3 = 1⊕H2 =


1

1 1
1 −1

, P5×3 =


1
1

1
1

1


,

A5 = I3 ⊕H2 =


1

1
1

1 1
1 −1


, A3×5 =


1 1

1 1
1 1

,

D(α)
5 = diag(a(α)3 , b(α)3 , b(α)3 ,

.
s(α)3 ,

..
s(α)3 ),

.
s(α)3 =

1
2
(c(α)3 + d(α)3 ),

..
s(α)3 =

1
2
(c(α)3 − d(α)3 ),

and IN is an identity N ×N matrix, H2 =

[
1 1
1 −1

]
is the (2 × 2) Hadamard matrix, and the sign ⊕

denotes the direct sum of two matrices [18].
Figure 2 shows a data flow structure for the implementation of 3-point DFrFT. It is easy to see that

the computation of Y3×1 requires only five multipliers and seven two-input adders of complex numbers.
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3.3. Computing the Four-Point DFrFT

Let X4×1 = [x0, x1, x2, x3]
T and Y4×1 = [y0, y1, y2, y3]

T be four-dimensional input and output data
vectors, respectively.

The four-point DFrFT can be represented in the following form:

Y4×1 = Fα4 X4×1, (8)

where
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Fα4 =


a(α)4 b(α)4 c(α)4 b(α)4
b(α)4 d(α)4 e(α)4 f (α)4
c(α)4 e(α)4 g(α)4 e(α)4
b(α)4 f (α)4 e(α)4 d(α)4

.
Taking into account the specific structure of the matrix Fα4 , we can propose the following procedure

for the efficient calculation of a four-point DFrFT:

Y4×1 = PT
4 A4×7A7×10D(α)

10 P10×4A4P4X4×1, (9)

where

P4 =


1

1
1

1

, A4 = I2 ⊕H2 =


1

1
1 1
1 −1

,

P10×4 = 13×1 ⊕ 13×1 ⊕ 13×1 ⊕ 1 =



1
1
1

1
1
1

1
1
1

1



,

A7×10 =



1
1 1 1

1
1 1

1
1 1
1 −1


,

A4×7 =


1

1 1 1
1 1
1 1

,
D(α)

10 = diag
(
c(α)4 , e(α)4 , g(α)4 , a(α)4 , b(α)4 , c(α)4 , b(α)4 , e(α)4

.
s(α)4 ,

..
s(α)4

)
,

.
s(α)4 =

1
2

(
d(α)4 + f (α)4

)
,

..
s(α)4 =

1
2

(
d(α)4 − f (α)4

)
,

where 1M×N is an (M×N) matrix of ones (a matrix in which every entry is equal to one).
Figure 3 shows a data flow structure for the implementation of a four-point DFrFT. It is easy

to see that the computation of Y4×1 requires only 10 multipliers, seven two-input adders, and two
three-inputs adders of complex numbers.
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3.4. Computing the Five-Point DFrFT

Let X5×1 = [x0, x1, x2, x3, x4]
T and Y5×1 = [y0, y1, y2, y3, x4]

T be five-dimensional input and output
data vectors, respectively.

The five-point DFrFT can be represented in the following form:

Y5×1 = Fα5 X5×1, (10)

where

Fα5 =



a(α)5 b(α)5 c(α)5 c(α)5 b(α)5
b(α)5 d(α)5 e(α)5 f (α)5 g(α)5
c(α)5 e(α)5 h(α)5 i(α)5 f (α)5
c(α)5 f (α)5 i(α)5 h(α)5 e(α)5
b(α)5 g(α)5 f (α)5 e(α)5 d(α)5


.

Taking into account the specific structure of the matrix Fα5 , we can propose the following procedure
for the efficient calculation of a five-point DFrFT:

Y5×1 = PT
5 A5×7A7×9P9A9×11D(α)

11 A11×9P9×5A5P5X5×1, (11)

where

P5 =


1

1
1

1
1


, A5 =


1

1 1
1 −1

1 1
1 −1


, P9×5 =



1
1
1

1
1

1
1

1
1


,
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A11×9 =



1
1

1
1

1
1
1 1

1
1
1 1

1



,

A9×11 =



1
1

1
1

1
1 1

1 1
1 1

1 1


,

P9 =



1
1

1
1

1
1

1
1

1


,

A7×9 =



1 1 1
1

1
1 1
1 −1

1 1
1 −1


,

A5×7 =


1

1 1
1 1

1 1
1 1


,

D(α)
11 = diag(a(α)5 , b(α)5 , c(α)5 , b(α)5 , c(α)5 , s̆(α)5 ,

a
s
(α)
5 , s̃(α)5

.
s(α)5 ,

..
s(α)5 ,

...
s (α)

5 ),

s̆(α)5 =
1
2
(d(α)5 − e(α)5 + g(α)5 − f (α)5 ),

a
s
(α)
5 =

1
2
(e(α)5 + f (α)5 ),

s̃(α)5 =
1
2
(h(α)5 − e(α)5 + i(α)5 − f (α)5 ),

.
s(α)5 =

1
2
(d(α)5 − e(α)5 − g(α)5 + f (α)5 ),
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..
s(α)5 =

1
2
(e(α)5 − f (α)5 ),

...
s (α)

5 =
1
2
(h(α)5 − e(α)5 − i(α)5 + f (α)5 ).

Figure 4 shows a data flow structure for the implementation of 5-point DFrFT. It is easy to see that
the computation of Y5×1 requires only 11 multipliers, 18 two-input adders, and 1 three-input adder of
complex numbers.
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3.5. Computing the 6-Point DFrFT

Let X6×1 = [x0, x1, x2, x3, x4, x5]
T and Y6×1 = [y0, y1, y2, y3, x4, x5]

T be six-dimensional input and
output data vectors, respectively.

The 6-point DFrFT can be represented in the following form:

Y6×1 = Fα6 X6×1, (12)

where

Fα6 =



a(α)6 b(α)6 c(α)6 d(α)6 c(α)6 b(α)6
b(α)6 f (α)6 g(α)6 e(α)6 h(α)6 i(α)6
c(α)6 g(α)6 j(α)6 k(α)6 l(α)6 h(α)6
d(α)6 e(α)6 k(α)6 m(α)

6 k(α)6 e(α)6
c(α)6 h(α)6 l(α)6 k(α)6 j(α)6 g(α)6
b(α)6 i(α)6 h(α)6 e(α)6 g(α)6 f (α)6


Taking into account the specific structure of the matrix Fα6 , we can propose the following procedure

for the efficient calculation of a 6-point DFrFT:

Y6×1 = PT
6 A6×8A8×11P11A11×18D(α)

18 A18×16P16×6A6P6X6×1, (13)

where

P6 =



1
1

1
1

1
1


, A6 = I2 ⊕H2 ⊕H2 =



1
1

1 1
1 −1

1 1
1 −1


,
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P16×6 = 14×1 ⊕ 14×1 ⊕



1
1

1
1

1
1

1
1


, A18×16 = I12 ⊕



1
1 1

1
1
1 1

1


,

A11×18 =



1
1 1 1 1

1
1 1

1 1
1

1


⊕


1 1

1 1
1 1

1 1

,

P11 = I7 ⊕


1

1
1

1

,

A8×11 =


1

1 1 1
1

1

⊕H2 ⊕H2,

A6×8 =



1
1

1 1
1 1

1 1
1 1


,

D(α)
18 = D̆(α)

12 ⊕
a
D

(α)

6 ,

D̆(α)
12 = diag

(
d(α)6 , e(α)6 , k(α)6 , m(α)

6 , a(α)6 , b(α)6 , c(α)6 , d(α)6 , e(α)6 , b(α)6 , k(α)6 , c(α)6

)
,

a
D

(α)

6 = diag
(
s̆(α)6 ,

a
s
(α)
6 , s̃(α)6 ,

.
s(α)6 ,

..
s(α)6 ,

...
s (α)

6

)
,

s̆(α)6 =
1
2

(
f (α)6 − g(α)6 + i(α)6 − h(α)6

)
,
a
s
(α)
6 =

1
2

(
g(α)6 + h(α)6

)
,

s̃(α)6 =
1
2

(
j(α)6 − g(α)6 + l(α)6 − h(α)6

)
,

.
s(α)6 =

1
2

(
f (α)6 − g(α)6 − i(α)6 + h(α)6

)
,

..
s(α)6 =

1
2

(
g(α)6 − h(α)6

)
,

...
s (α)

6 =
1
2

(
j(α)6 − g(α)6 − l(α)6 + h(α)6

)
.

Figure 5 shows a data flow structure for the implementation of the six-point DFrFT. It is easy to
see that the computation of Y6×1 requires only 18 multipliers, 20 two-input adders, and two four-input
adders of complex numbers.
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3.6. Computing th eSeven-Point DFrFT

Let X7×1 = [x0, x1, x2, x3, x4, x5, x6]
T and Y7×1 = [y0, y1, y2, y3, x4, x5, x6]

T be seven-dimensional
input and output data vectors, respectively.

The seven-point DFrFT can be represented in the following form:

Y7×1 = Fα7 X7×1, (14)

where

Fα7 =



a(α)7 b(α)7 c(α)7 d(α)7 d(α)7 c(α)7 b(α)7
b(α)7 e(α)7 f (α)7 g(α)7 h(α)7 i(α)7 j(α)7
c(α)7 f (α)7 k(α)7 l(α)7 m(α)

7 n(α)
7 i(α)7

d(α)7 g(α)7 l(α)7 o(α)7 p(α)7 m(α)
7 h(α)7

d(α)7 h(α)7 m(α)
7 p(α)7 o(α)7 l(α)7 g(α)7

c(α)7 i(α)7 n(α)
7 m(α)

7 l(α)7 k(α)7 f (α)7
b(α)7 j(α)7 i(α)7 h(α)7 g(α)7 f (α)7 e(α)7


.

Taking into account the specific structure of the matrix Fα7 , we can propose the following procedure
for the efficient calculation of a seven-point DFrFT:

Y7×1 = PT
7 A7×10A10×13P13A13×19D(α)

19 A19×13P13×7A7P7X7×1, (15)

where

P7 =



1
1

1
1

1
1

1


,
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A7 = 1⊕ (I3 ⊗H2) =



1
1 1
1 −1

1 1
1 −1

1 1
1 −1


,

P13×7 =



1
1
1
1

1
1

1
1

1
1

1
1

1



, A19×13 = I7 ⊕



1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1



,

A13×19 = I7 ⊕



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


,

P13 = I7 ⊕



1
1

1
1

1
1


, A10×13 =


1 1 1 1

1
1

1

⊕ (I3 ⊗H2),

A7×10 =



1
1 1
1 1

1 1
1 1

1 1
1 1


,

D(α)
19 = D̆(α)

7 ⊕
a
D

(α)

12 ,

D̆(α)
7 = diag

(
a(α)7 , b(α)7 , c(α)7 , d(α)7 , b(α)7 , c(α)7 , d(α)7

)
,

a
D

(α)

12 = diag
(
s̆(α)7 ,

a
s
(α)
7 , s̃(α)7 ,

.
s(α)7 ,

..
s(α)7 ,

...
s (α)

7 ,
→
s
(α)

7 ,
←
s
(α)

7 ,
↔
s
(α)

7 , s′(α)7 , s′(α)7 , s′′′ (α)7

)
,

s̆(α)7 =
1
2

(
e(α)7 − f (α)7 − g(α)7 + j(α)7 − i(α)7 − h(α)7

)
,
a
s
(α)
7 =

1
2

(
f (α)7 + i(α)7

)
,
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s̃(α)7 =
1
2

(
k(α)7 − f (α)7 − l(α)7 + n(α)

7 − i(α)7 −m(α)
7

)
,

.
s(α)7 =

1
2

(
l(α)7 + m(α)

7

)
,

..
s(α)7 =

1
2

(
o(α)7 − g(α)7 − l(α)7 + p(α)7 − h(α)7 −m(α)

7

)
,

...
s (α)

7 =
1
2

(
g(α)7 + h(α)7

)
,

→
s
(α)

7 =
1
2

(
e(α)7 − f (α)7 − g(α)7 − j(α)7 + i(α)7 + h(α)7

)
,
←
s
(α)

7 =
1
2

(
f (α)7 − i(α)7

)
,

↔
s
(α)

7 =
1
2

(
k(α)7 − f (α)7 − l(α)7 − n(α)

7 + i(α)7 + m(α)
7

)
, s′(α)7 =

1
2

(
l(α)7 −m(α)

7

)
,

s′′ (α)7 =
1
2

(
o(α)7 − g(α)7 − l(α)7 − p(α)7 + h(α)7 + m(α)

7

)
, s′′′ (α)7 =

1
2

(
g(α)7 − h(α)7

)
.

The sign ⊗ denotes the Kronecker product of two matrices [18].
Figure 6 shows a data flow structure for the implementation of the seven-point DFrFT. It is easy to

see that the computation of Y7×1 requires only 19 multipliers and 24 two-input adders, six three-input
adders, and one four-input adder of complex numbers.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 13 

 

𝑠̆଻(ఈ) = ଵଶ (𝑒଻(ఈ) − 𝑓଻(ఈ) − 𝑔଻(ఈ) + 𝑗଻(ఈ) − 𝑖଻(ఈ) − ℎ଻(ఈ)), 𝑠̑଻(ఈ) = ଵଶ (𝑓଻(ఈ) + 𝑖଻(ఈ)),  

𝑠̃଻(ఈ) = ଵଶ (𝑘଻(ఈ) − 𝑓଻(ఈ) − 𝑙଻(ఈ) + 𝑛଻(ఈ) − 𝑖଻(ఈ) − 𝑚଻(ఈ)), 𝑠ሶ଻(ఈ) = ଵଶ (𝑙଻(ఈ) + 𝑚଻(ఈ)),  

𝑠ሷ଻(ఈ) = ଵଶ (𝑜଻(ఈ) − 𝑔଻(ఈ) − 𝑙଻(ఈ) + 𝑝଻(ఈ) − ℎ଻(ఈ) − 𝑚଻(ఈ)), 𝑠଻(ఈ) = ଵଶ (𝑔଻(ఈ) + ℎ଻(ఈ)),  

𝑠଻(ఈ) = ଵଶ (𝑒଻(ఈ) − 𝑓଻(ఈ) − 𝑔଻(ఈ) − 𝑗଻(ఈ) + 𝑖଻(ఈ) + ℎ଻(ఈ)), 𝑠⃖଻(ఈ) = ଵଶ (𝑓଻(ఈ) − 𝑖଻(ఈ)),  

𝑠⃡଻(ఈ) = ଵଶ (𝑘଻(ఈ) − 𝑓଻(ఈ) − 𝑙଻(ఈ) − 𝑛଻(ఈ) + 𝑖଻(ఈ) + 𝑚଻(ఈ)), 𝑠ᇱ଻(ఈ) = ଵଶ (𝑙଻(ఈ) − 𝑚଻(ఈ)),  

𝑠ᇳ଻(ఈ) = ଵଶ (𝑜଻(ఈ) − 𝑔଻(ఈ) − 𝑙଻(ఈ) − 𝑝଻(ఈ) + ℎ଻(ఈ) + 𝑚଻(ఈ)), 𝑠ᇵ଻(ఈ) = ଵଶ (𝑔଻(ఈ) − ℎ଻(ఈ)).  

The sign ⊗ denotes the Kronecker product of two matrices [18]. 
Figure 6 shows a data flow structure for the implementation of the seven-point DFrFT. It is easy 

to see that the computation of 𝐘଻×ଵ requires only 19 multipliers and 24 two-input adders, six three-
input adders, and one four-input adder of complex numbers. 

 

Figure 6. The data flow structure of the processing unit for the computation of the seven-point DFrFT. 

4. Implementation Complexity 

Since the lengths of the input sequences are relatively small, and the data flow structures 
representing the organization of the computation process are fairly simple, it is easy to estimate the 
computational complexity of the implementation of the presented solutions. Table 1 shows 
evaluations of the number of arithmetic blocks for the small-size DFrFTs hardware implementations. 
  

Figure 6. The data flow structure of the processing unit for the computation of the seven-point DFrFT.

4. Implementation Complexity

Since the lengths of the input sequences are relatively small, and the data flow structures
representing the organization of the computation process are fairly simple, it is easy to estimate the
computational complexity of the implementation of the presented solutions. Table 1 shows evaluations
of the number of arithmetic blocks for the small-size DFrFTs hardware implementations.

Table 1. Implementation complexities of naive and proposed solutions.

Size N Numbers of Arithmetic Blocks

Naive Method Proposed Algorithm

Multipliers N-Input Adders Multipliers 2-Input Adders 3-Input Adders 4-Input Adders

2 4 2 3 3 - -
3 9 3 5 7 - -
4 16 4 10 7 2 -
5 25 5 11 18 1 -
6 36 6 18 20 - 2
7 49 7 19 24 6 1
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5. Discussion

This paper presents some algorithms and parallel processing unit structures for small-size DFrFTs
with a minimalized number of complex-valued multiplications (or complex multipliers in the case of a
hardware implementation). Special attention is mainly focused on these operations because from the
point of view of the hardware implementation complexity; these operations are the most expensive.
This is because the complexity of implementing an adder depends linearly on the size of the operand,
and the complexity of implementing a multiplier depends quadratically on the size of the operand. A
binary multiplier occupies much more space and consumes much more power than a binary adder.
Therefore, a processing unit structure containing as few multipliers as possible, even by the cost of a
small increase in the number of adders, is preferable from the point of view of the application-specific
integrated circuit (ASIC) design. The developed algorithms can be used as building blocks in more
complex DSP algorithms. In the case of a hardware implementation of complex signal processing
systems, the developed structures can be used as embedded hardware-implemented processing cores.
Hopefully, these can be used as building blocks to reduce the hardware complexity of the DSP systems
that use them, thus making more complicated structural solutions worthy of consideration in practice.

In our next articles, we plan to show how and for what purposes we use the solutions proposed here.
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Transform. In Advances in Soft and Hard Computing; Pejaś, J., El Fray, I., Hyla, T., Kacprzyk, J., Eds.; Springer:
Cham, Switzerland, 2019; Volume 889, pp. 420–432. [CrossRef]

http://dx.doi.org/10.1364/OL.22.001047
http://www.ncbi.nlm.nih.gov/pubmed/18185746
http://dx.doi.org/10.1109/78.757221
http://dx.doi.org/10.1109/78.839980
http://dx.doi.org/10.1109/82.686685
http://dx.doi.org/10.1109/78.923302
http://dx.doi.org/10.1016/j.optcom.2003.08.030
http://dx.doi.org/10.1364/OL.26.001242
http://www.ncbi.nlm.nih.gov/pubmed/18049573
http://dx.doi.org/10.1117/1.1570429
http://dx.doi.org/10.1006/jnca.2000.0128
http://dx.doi.org/10.1109/78.536672
http://dx.doi.org/10.1109/78.492554
http://dx.doi.org/10.1109/TASSP.1982.1163843
http://dx.doi.org/10.1007/978-3-030-03314-9_36


Electronics 2019, 8, 509 14 of 14

14. Majorkowska–Mech, D.; Cariow, A. A low-complexity approach to computation of the discrete fractional
Fourier transform. Circuits Syst. Signal Process. 2017, 36, 4118–4144. [CrossRef]

15. Qureshi, F.; Garrido, M.; Gustafsson, O. Unified architecture for 2, 3, 4, 5, and 7-point DFTs based on
Winograd Fourier transform algorithm. Electron. Lett. 2013, 49, 348–349. [CrossRef]

16. De Oliveira, H.M.; Cintra, R.J.; Campello de Souza, R.M. A Factorization Scheme for Some Discrete Hartley
Transform Matrices. arXiv 2015, arXiv:1502.01038, 1–10.

17. Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products.
J. Signal Process. Theory Appl. 2014, 3, 1–19. [CrossRef]

18. Graham, A. Kronecker Products and Matrix Calculus: With Applications; Ellis Horwood Limited: Chichester,
UK, 1981.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00034-017-0503-z
http://dx.doi.org/10.1049/el.2012.0577
http://dx.doi.org/10.7726/jspta.2014.1001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminary Remarks 
	Algorithm and Processing Unit Structure for Small Size DFrFTs 
	Computing the Two-Point DFrFT 
	Computing the Three-Point DFrFT 
	Computing the Four-Point DFrFT 
	Computing the Five-Point DFrFT 
	Computing the 6-Point DFrFT 
	Computing th eSeven-Point DFrFT 

	Implementation Complexity 
	Discussion 
	References

