
electronics

Article

SHIYF: A Secured and High-Integrity
YARN Framework

Junyi Deng 1 , Yanheng Liu 1,2, Jian Wang 1,2,* and Shujing Li 1

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;
dengjunyi@vip.sina.com (J.D.); yhliu@jlu.edu.cn (Y.L.); lsj202jlu@163.com (S.L.)

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
Jilin University, Changchun 130012, China

* Correspondence: wangjian591@jlu.edu.cn; Tel.: +86-431-8515-9419

Received: 17 April 2019; Accepted: 11 May 2019; Published: 15 May 2019
����������
�������

Abstract: Cloud computing is becoming a powerful parallel data processing method, and it can
be adopted by many network service providers to build a service framework. Although cloud
computing is able to efficiently process a large amount of data, it can be attacked easily due to its
massively distributed cluster nodes. In this paper, we propose a secure and high-integrity YARN
framework (SHIYF), which establishes a close relationship between speculative execution and the
security of Yet Another Resource Negotiator (YARN, MapReduce 2.0). SHIYF computes and compares
the MD5 hashes of the intermediate and final results in the MapReduce process by launching the
speculative executions in a certain ratio, which is able to find actual and potentially malicious nodes
in the Hadoop cluster. The prototype of SHIYF is implemented based on Hadoop 2.8.0. In this paper,
theoretical derivations and experiments show that SHIYF not only guarantees the security and high
integrity of the MapReduce process but also successfully locates the malicious nodes and the potential
malicious ones in Hadoop, while increasing overhead slightly. Furthermore, the malicious node
detection ratio is more than 87%.

Keywords: cloud computing; Hadoop; MapReduce; YARN; speculative execution; security; integrity

1. Introduction

With the rapid development of hardware, software, and high-speed networks, many cloud
service providers (e.g., Google and Amazon) are establishing increasing cloud computing (CC) [1,2]
realities around the world, as shown in Figure 1. However, many organizations and customers remain
reluctant to accept CC because of security issues [3,4]. Therefore, solving relevant security problems
has considerable significance for the long-term development of CC [5].

Some safety precautions are already eliciting attention [6]. For instance, Gartner et al. identified
seven security issues of CC that must be solved [7]. Grobauer et al. discussed the security vulnerabilities
of the cloud platform [8]. Jansen et al. proposed guidelines on privacy in public CC [9]. Furthermore,
the security guidance of CC is published by the Cloud Security Alliance and IEEE [10].

Hadoop [11] is considered the most widely used CC platform [12], and it represents the
state-of-the-art efficient framework for processing vast amounts of distributed data [13]. However,
most researchers are still focusing on the performance and application of MapReduce rather than its
security. For example, Dawei Jiang et al. identified five design factors that affect the performance
of Hadoop [14]. Yanpei Chen et al. built the case for going beyond benchmarks for MapReduce
performance evaluations [15]. Rares Vernica et al. studied how set similarity joins can be efficiently
performed in parallel using the popular MapReduce framework [16]. A few studies have been
conducted on the security of MapReduce, such as one study that focused on Airavat, which is

Electronics 2019, 8, 548; doi:10.3390/electronics8050548 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-4631-4924
https://orcid.org/0000-0002-7701-8511
http://dx.doi.org/10.3390/electronics8050548
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/5/548?type=check_update&version=2

Electronics 2019, 8, 548 2 of 29

a MapReduce-based system that provides strong security and privacy guarantees for distributed
computations on sensitive data [17]. Reference [18] introduces a new privacy-preserving encoding
with “somewhat homomorphic” properties for MapReduce. In addition, some whitepapers about
security designs of Hadoop and MapReduce have been published [19–21].

Electronics 2019, 8, 548 2 of 28

IAAS(Infrastructure as a Service)

PAAS(Platform as a Service)

SAAS(Software as a Service)

Private CloudPublic Cloud

Hybid Cloud

Mobile

PC

Rialway
station &

Train

Car Airplain &
Airport

Data Center

Traffic
control

fire brigade
Hospital

Office
building

residence

School

Figure 1. The deployment model of the cloud computing.

Hadoop [11] is considered the most widely used CC platform [12], and it represents the state-of-

the-art efficient framework for processing vast amounts of distributed data [13]. However, most

researchers are still focusing on the performance and application of MapReduce rather than its

security. For example, Dawei Jiang et al. identified five design factors that affect the performance of

Hadoop [14]. Yanpei Chen et al. built the case for going beyond benchmarks for MapReduce

performance evaluations [15]. Rares Vernica et al. studied how set similarity joins can be efficiently

performed in parallel using the popular MapReduce framework [16]. A few studies have been

conducted on the security of MapReduce, such as one study that focused on Airavat, which is a

MapReduce-based system that provides strong security and privacy guarantees for distributed

computations on sensitive data [17]. [18] introduces a new privacy-preserving encoding with

“somewhat homomorphic” properties for MapReduce. In addition, some whitepapers about security

designs of Hadoop and MapReduce have been published [19–21].

However, there are still several security breaches in Hadoop 2.0 as follows.

• Service identity forging. Since there is not the service certification, any malicious

node can masquerade as a security node and join Hadoop cluster to get/calculate

data as long as it knows the ResourceManager (RM) address.

• User identity forging. Because there is not the user authentication, any malicious

client can fake the user identity to get Hadoop Distributed File System (HDFS) data

or do job management.

• Lack of authorization mechanism. A client can do anything, such as a job submitted

by user A can be killed by user B at will.

• Data communications are not encrypted. They are vulnerable to eavesdropping.

Yet Another Resource Negotiator (YARN, also known as MapReduce 2.0/MRv2) is one of the

key features in the second-generation Hadoop and provides resource management and scheduling

for large-scale MapReduce environments [22]. Research on the performance or security of YARN

remains in its infancy. For example, Li Ping et al. proposed an energy-efficient service level

agreement-aware scheduling scheme that allocates an appropriate amount of resources to

MapReduce applications with YARN architecture [23]. [24] presented a new methodology for

determining desired hardware and software configuration parameters for MapReduce 2.0

applications; thus, the representative applications achieved up to 5× performance improvement. An

energy-aware fair scheduling framework based on YARN (denoted as EFS) is proposed by Shao

Yanling et al., which can effectively reduce energy consumption whilst meeting the required service

level agreements (SLAs) [25]. Diarchy increases the reliability of YARN based on the sharing and

backup of responsibilities between two masters working as peers [26]. A SECapacity scheduler was

proposed for the requirement of isolating the user’s job and data security [27]. [28] proposed a novel

partitioner for improving YARN performance (NPIY) based on Hadoop 2.6.0, which adopts an

innovative parallel sampling method to distribute intermediate data.

Figure 1. The deployment model of the cloud computing.

However, there are still several security breaches in Hadoop 2.0 as follows.

• Service identity forging. Since there is not the service certification, any malicious node can
masquerade as a security node and join Hadoop cluster to get/calculate data as long as it knows
the ResourceManager (RM) address.

• User identity forging. Because there is not the user authentication, any malicious client can fake
the user identity to get Hadoop Distributed File System (HDFS) data or do job management.

• Lack of authorization mechanism. A client can do anything, such as a job submitted by user A
can be killed by user B at will.

• Data communications are not encrypted. They are vulnerable to eavesdropping.

Yet Another Resource Negotiator (YARN, also known as MapReduce 2.0/MRv2) is one of the key
features in the second-generation Hadoop and provides resource management and scheduling for
large-scale MapReduce environments [22]. Research on the performance or security of YARN remains
in its infancy. For example, Li Ping et al. proposed an energy-efficient service level agreement-aware
scheduling scheme that allocates an appropriate amount of resources to MapReduce applications with
YARN architecture [23]. Reference [24] presented a new methodology for determining desired hardware
and software configuration parameters for MapReduce 2.0 applications; thus, the representative
applications achieved up to 5×performance improvement. An energy-aware fair scheduling framework
based on YARN (denoted as EFS) is proposed by Shao Yanling et al., which can effectively reduce energy
consumption whilst meeting the required service level agreements (SLAs) [25]. Diarchy increases the
reliability of YARN based on the sharing and backup of responsibilities between two masters working
as peers [26]. A SECapacity scheduler was proposed for the requirement of isolating the user’s job
and data security [27]. Reference [28] proposed a novel partitioner for improving YARN performance

Electronics 2019, 8, 548 3 of 29

(NPIY) based on Hadoop 2.6.0, which adopts an innovative parallel sampling method to distribute
intermediate data.

In Hadoop, speculative execution is equal to replication (also known as double-check),
which sacrifices space for time. Replication-based techniques mainly rely on redundant computation
resources to execute duplicated individual tasks for verifying the consistency of results [29]. W. Wei et al.
proposed a service integrity assurance framework for MapReduce (SecureMR) based on Hadoop
1.0 [30]. SecureMR provides a decentralized replication-based integrity verification scheme for ensuring
the integrity of MapReduce in open systems. Although MapReduce is a programming model for data
processing on YARN, executing duplicated tasks (using speculative execution in Hadoop 2.0) is still an
effective way to prevent service identity forging for identifying the malicious nodes in Hadoop cluster.

In this paper, we focus on improving the security of YARN. A secure and high-integrity YARN
framework (SHIYF) is proposed by extending Hadoop 2.8.0. Sacrificing space for security is the
key idea of SHIYF. Extensive theoretical derivations and experiments are performed to prove the
framework’s validity, security, and malicious node detection efficiency. The main contributions are
summarized as follows.

1. Speculative execution is used for Hadoop YARN security.
2. Some significant security improvements are made to Hadoop 2.0 in SHIYF, such as ensuring

the correctness of MRv2 results and locating the malicious nodes and the potential ones in the
Hadoop cluster.

3. A prototype of SHIYF is implemented based on Hadoop 2.8.0.
4. Results of theoretical derivations show that SHIYF adds 30% speculative tasks in the MRv2 job

and achieves a malicious node detection ratio of more than 90%.
5. Experiment results show that SHIYF can ensure the security of MRv2 services while increasing

overhead slightly. Moreover, the malicious node detection ratio is between 87% and 93.3%.
6. This finding is in line with the expectation of theoretical derivation.

The remainder of the paper is organized as follows. In the next section, we introduce the SHIYF
design and implementation in detail. Section 3 provides the theoretical derivations. Section 4 reports
the experimental results of SHIYF and compares them with the theoretical results. Section 5 contains
the conclusions and prospects for future work.

2. SHIYF Design and Implementation

2.1. SHIYF Design

Given that SHIYF verified the validity of the intermediate and final results generated by Map and
Reduce in a programming model, more TaskAttempts launched the speculative executions in a certain
ratio, in contrast with YARN. These additional TaskAttempts executed the same tasks and computed
the MD5 Message-Digest Algorithm (MD5) hashes of results. The programming model of SHIYF is
shown in Figure 2.

Electronics 2019, 8, 548 3 of 28

In Hadoop, speculative execution is equal to replication (also known as double-check), which

sacrifices space for time. Replication-based techniques mainly rely on redundant computation

resources to execute duplicated individual tasks for verifying the consistency of results [29]. W. Wei

et al. proposed a service integrity assurance framework for MapReduce (SecureMR) based on Hadoop

1.0 [30]. SecureMR provides a decentralized replication-based integrity verification scheme for

ensuring the integrity of MapReduce in open systems. Although MapReduce is a programming model

for data processing on YARN, executing duplicated tasks (using speculative execution in Hadoop 2.0)

is still an effective way to prevent service identity forging for identifying the malicious nodes in Hadoop

cluster.

In this paper, we focus on improving the security of YARN. A secure and high-integrity YARN

framework (SHIYF) is proposed by extending Hadoop 2.8.0. Sacrificing space for security is the key

idea of SHIYF. Extensive theoretical derivations and experiments are performed to prove the

framework’s validity, security, and malicious node detection efficiency. The main contributions are

summarized as follows.

1. Speculative execution is used for Hadoop YARN security.

2. Some significant security improvements are made to Hadoop 2.0 in SHIYF, such as

ensuring the correctness of MRv2 results and locating the malicious nodes and the

potential ones in the Hadoop cluster.

3. A prototype of SHIYF is implemented based on Hadoop 2.8.0.

4. Results of theoretical derivations show that SHIYF adds 30% speculative tasks in the

MRv2 job and achieves a malicious node detection ratio of more than 90%.

5. Experiment results show that SHIYF can ensure the security of MRv2 services while

increasing overhead slightly. Moreover, the malicious node detection ratio is

between 87% and 93.3%.

6. This finding is in line with the expectation of theoretical derivation.

The remainder of the paper is organized as follows. In the next section, we introduce the SHIYF

design and implementation in detail. Section 3 provides the theoretical derivations. Section 4 reports

the experimental results of SHIYF and compares them with the theoretical results. Section 5 contains

the conclusions and prospects for future work.

2. SHIYF Design and Implementation

2.1. SHIYF Design

Given that SHIYF verified the validity of the intermediate and final results generated by Map

and Reduce in a programming model, more TaskAttempts launched the speculative executions in a

certain ratio, in contrast with YARN. These additional TaskAttempts executed the same tasks and

computed the MD5 Message-Digest Algorithm (MD5) hashes of results. The programming model of

SHIYF is shown in Figure 2.

Job

Task Task Task

TaskAttempt TaskAttempt
TaskAttempt

（MD5）
TaskAttempt

TaskAttempt

（MD5）

TaskAttempt

（MD5）

······

······
TaskAttempt

（MD5）

Figure 2. The programming model of a secure and high-integrity YARN framework (SHIYF).

Figure 2. The programming model of a secure and high-integrity YARN framework (SHIYF).

Electronics 2019, 8, 548 4 of 29

MRAppMaster is the ApplicationMaster implementation of MapReduce, which allows MapReduce
to be run directly on YARN. Its main function is to manage the life cycle of the job, including:

• Job creation, initialization, startup, and so on.
• Apply to RM for resources and reallocate resources.
• Container startup and release.
• Monitoring the operation status of the job.
• Job recovery.

In the runtime environment of SHIYF, MRAppMaster provided a set of security mechanisms,
including the secured task duplication and assignment, intermediate result check, and final results
verification. MRAppMaster could be applied to two containers to execute the same TaskAttempt
for a task by the speculative execution. When MRAppMaster received two MD5 hashes from
different containers, it would compare whether they were consistent or not. If they were the same,
then MRAppMaster considered that the task had been completed and the result was correct. Otherwise,
it applied for the third container to execute the same TaskAttempt again to verify the result. Finally,
MRAppMaster considerd two results with the same MD5 hashes as the right result. If not, then it would
judge that this task failed. Therefore, SHIYF is shown in Figure 3. Simply and clearly, an MRAppMaster
controls only one task so that three different jobs are used.

Electronics 2019, 8, 548 4 of 28

MRAppMaster is the ApplicationMaster implementation of MapReduce, which allows

MapReduce to be run directly on YARN. Its main function is to manage the life cycle of the job,

including:

• Job creation, initialization, startup, and so on.

• Apply to RM for resources and reallocate resources.

• Container startup and release.

• Monitoring the operation status of the job.

• Job recovery.

In the runtime environment of SHIYF, MRAppMaster provided a set of security mechanisms,

including the secured task duplication and assignment, intermediate result check, and final results

verification. MRAppMaster could be applied to two containers to execute the same TaskAttempt for

a task by the speculative execution. When MRAppMaster received two MD5 hashes from different

containers, it would compare whether they were consistent or not. If they were the same, then

MRAppMaster considered that the task had been completed and the result was correct. Otherwise, it

applied for the third container to execute the same TaskAttempt again to verify the result. Finally,

MRAppMaster considerd two results with the same MD5 hashes as the right result. If not, then it

would judge that this task failed. Therefore, SHIYF is shown in Figure 3. Simply and clearly, an

MRAppMaster controls only one task so that three different jobs are used.

Node
Manager

MRAppMaster
MD5 value
Compare

Node
Manager

Container
MD5 value

Compute
Client

Client

Job Submission

Node Status

Resource request

Resource
Manager

Re
po
rt
 n
od
e
st
at
us

Rep
ort

 no
de

sta
tus

Trasmit md5 value

Node
Manager

Trasmit md5 value

Report node status

Trasmit md5 value

Node
Manager

MRAppMaster
MD5 value
Compare

MRAppMaster
MD5 value
Compare

Trasmit md5 value

Trasmit md5 value

Node
Manager

Trasmit md5 value

Tr
as
mi
t
md
5
va
lu
e

Node
Manager

Applications
Manager

Scheduler

Rep
ort

 no
de

sta
tus

Report
 node

status

Report node status

Trasmit md5 value

Trasmit md5 value

Trasmit md5 value

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Container
MD5 value

Compute

Figure 3. The secured and high-integrity Yet Another Resource Negotiator (YARN) framework.

2.2. SHIYF Implementation

In YARN, RMApp is a data structure that preserves an application life cycle in RM. Its realization

class is RMAppImpl. This class maintains an application state machine that records several

application states and state-driven events. The finite-state machine (FSM) of RMAppImpl is shown

in Figure 4. When MRAppMaster is launched, the application will enter into the core state

“RUNNING.” Every application may run several times. The transitions of states are determined by

the return values of MRAppMaster. RMApp judges that an application has failed when all

RMAppAttempts failed. Therefore, MRAppMaster is the most important module in SHIYF.

Figure 3. The secured and high-integrity Yet Another Resource Negotiator (YARN) framework.

2.2. SHIYF Implementation

In YARN, RMApp is a data structure that preserves an application life cycle in RM. Its realization
class is RMAppImpl. This class maintains an application state machine that records several application
states and state-driven events. The finite-state machine (FSM) of RMAppImpl is shown in Figure 4.
When MRAppMaster is launched, the application will enter into the core state “RUNNING.”
Every application may run several times. The transitions of states are determined by the return
values of MRAppMaster. RMApp judges that an application has failed when all RMAppAttempts
failed. Therefore, MRAppMaster is the most important module in SHIYF.

Electronics 2019, 8, 548 5 of 29
Electronics 2019, 8, 548 5 of 28

NEW

ACCEPPTED

SUBMITTED

FINISHING

RUNNING
(MRAppMaster)

FINISHED

FAILEDKILLED

START

APP_
ACCEPTED

ATTEMPT
_FAILED

ATTEMPT_
REGISTERED

ATTEMPT_FAILED

ATTEMPT_FINISHEDATTEMPT_FINISHING

ATTEMPT_FINISHED

KILL
ATTEMPT_FINISHING

KILL
NODE_UPDATE

APP_REJECTEDAPP_REJECTED

KILL

KILL

KILL

KILL

APP_ACCEPTED
APP_REJECTED

KILL

ATTEMPT_FINISHED

ATTEMPT_FAILED

ATTEMPT_KILLED KILL
ATTEMPT_FINISHED

Figure 4. The finite-state machine of RMAppImpl.

In addition, because YARN uses the asynchronous programming model based on an event-

driven mechanism, every component is an event handler. MRAppMaster establishes the relations

with other components by the events and assigns all types of events to the corresponding schedulers.

Figure 5 shows the components and the services of MRAppMaster. ContainerAllocator (CA),

Speculator, Job, Task, and TaskAttempt must be redesigned to implement SHIYF.

Figure 5. The components and services of MRAppMaster.

2.2.1. SHIYF ContainerAllocator

CA is a resource scheduler. It divides the application resource tasks into three categories, such

as Failed Map, Reduce, and Map, from high to low priority. The workflow of SHIYF CA is as follows:

Step 1. To add the speculative tasks in a certain ratio, the chosen Maps/Reduces and their double

resource applications would be sent to RM at the same time.

Step 2. If the scheduling conditions of Reduces were met, then CA would give priority to them.

Step 3. CA would be allowed double resource occupation simultaneously in SHIYF.

Step 4. CA would apply resources for a task again once it failed before.

Step 5. If a task ran too slowly, the CA would apply extra resources to start its speculative task.

Figure 4. The finite-state machine of RMAppImpl.

In addition, because YARN uses the asynchronous programming model based on an event-driven
mechanism, every component is an event handler. MRAppMaster establishes the relations with other
components by the events and assigns all types of events to the corresponding schedulers. Figure 5
shows the components and the services of MRAppMaster. ContainerAllocator (CA), Speculator, Job,
Task, and TaskAttempt must be redesigned to implement SHIYF.

Electronics 2019, 8, 548 5 of 28

NEW

ACCEPPTED

SUBMITTED

FINISHING

RUNNING
(MRAppMaster)

FINISHED

FAILEDKILLED

START

APP_
ACCEPTED

ATTEMPT
_FAILED

ATTEMPT_
REGISTERED

ATTEMPT_FAILED

ATTEMPT_FINISHEDATTEMPT_FINISHING

ATTEMPT_FINISHED

KILL
ATTEMPT_FINISHING

KILL
NODE_UPDATE

APP_REJECTEDAPP_REJECTED

KILL

KILL

KILL

KILL

APP_ACCEPTED
APP_REJECTED

KILL

ATTEMPT_FINISHED

ATTEMPT_FAILED

ATTEMPT_KILLED KILL
ATTEMPT_FINISHED

Figure 4. The finite-state machine of RMAppImpl.

In addition, because YARN uses the asynchronous programming model based on an event-

driven mechanism, every component is an event handler. MRAppMaster establishes the relations

with other components by the events and assigns all types of events to the corresponding schedulers.

Figure 5 shows the components and the services of MRAppMaster. ContainerAllocator (CA),

Speculator, Job, Task, and TaskAttempt must be redesigned to implement SHIYF.

Figure 5. The components and services of MRAppMaster.

2.2.1. SHIYF ContainerAllocator

CA is a resource scheduler. It divides the application resource tasks into three categories, such

as Failed Map, Reduce, and Map, from high to low priority. The workflow of SHIYF CA is as follows:

Step 1. To add the speculative tasks in a certain ratio, the chosen Maps/Reduces and their double

resource applications would be sent to RM at the same time.

Step 2. If the scheduling conditions of Reduces were met, then CA would give priority to them.

Step 3. CA would be allowed double resource occupation simultaneously in SHIYF.

Step 4. CA would apply resources for a task again once it failed before.

Step 5. If a task ran too slowly, the CA would apply extra resources to start its speculative task.

Figure 5. The components and services of MRAppMaster.

2.2.1. SHIYF ContainerAllocator

CA is a resource scheduler. It divides the application resource tasks into three categories, such as
Failed Map, Reduce, and Map, from high to low priority. The workflow of SHIYF CA is as follows:

Step 1. To add the speculative tasks in a certain ratio, the chosen Maps/Reduces and their double
resource applications would be sent to RM at the same time.

Step 2. If the scheduling conditions of Reduces were met, then CA would give priority to them.
Step 3. CA would be allowed double resource occupation simultaneously in SHIYF.

Electronics 2019, 8, 548 6 of 29

Step 4. CA would apply resources for a task again once it failed before.
Step 5. If a task ran too slowly, the CA would apply extra resources to start its speculative task.
Step 6. CA would withdraw all resource distributions to this node when it failed too many times.

In SHIYF, if a node failed more than five times, then CA would withdraw all its resource applications
and judged it as the malicious node.

The CA in SHIYF is shown in Figure 6.

Electronics 2019, 8, 548 6 of 28

Step 6. CA would withdraw all resource distributions to this node when it failed too many times.
In SHIYF, if a node failed more than five times, then CA would withdraw all its resource applications
and judged it as the malicious node.

The CA in SHIYF is shown in Figure 6.

Figure 6. The ContainerAllocator in SHIYF.

2.2.2. SHIYF Speculator

In Hadoop, the speculative execution sacrifices space for time. However, sacrificing space for
security is the key idea of SHIYF. We designed it to conduct speculative execution repeatedly for
MD5 computation and hash comparison. The corresponding event handler of speculative execution
is referred to as a speculator.

Prior to launching a new speculator in SHIYF, the redesigned MRAppMaster must check
whether the current task conforms to the following three conditions:
1. Whether the current task had already a backup task. Every task could had two speculative tasks

and a maximum of three.
2. The ratio of completed tasks was not less than

MINIMUM_COMPLETE_PROPORTION_TO_SPECULATE (5%). Only then could the
Speculator had sufficient historical task information to estimate
estimatedReplacementEndTime.

3. DefaultSpeculator could launch speculative execution in a certain probability without
calculating the speculationValue.
Because when the Speculative Execution Ratio reached 30%, SHIYF could achieve a desired

malicious node detection ratio according to Section 3. We redesigned three parameters in SHIYF as
follows.
• MINIMUM_ALLOWED_SPECULATIVE_TASKS = 10. It represents the minimum number of

total speculative tasks that are allowed for a job.
• PROPORTION_TOTAL_TASKS_SPECULATABLE = 0.35. It denotes the highest percentage of

speculative tasks to the total tasks is 35%.
• PROPORTION_RUNNING_TASKS_SPECULATABLE = 0.3. It indicates the highest percentage

of speculative tasks to all running tasks is 30%.
Therefore, the number of speculative tasks that are allowed to perform in a job

(numberAllowedSpeculativeTasks) is the maximum of the following three values.
• MINIMUM_ALLOWED_SPECULATIVE_TASKS
• PROPORTION_TOTAL_TASKS_SPECULATABLE * totalTaskNumber
• PROPORTION_RUNNING_TASKS_SPECULATABLE * numberRunningTasks

Meeting the requirements of SHIYF and limiting the number of speculative tasks in a job, which
can effectively prevent the waste of resources caused by a large number of tasks launching speculative
tasks at the same time.

2.2.3. SHIYF Security Control

Figure 6. The ContainerAllocator in SHIYF.

2.2.2. SHIYF Speculator

In Hadoop, the speculative execution sacrifices space for time. However, sacrificing space for
security is the key idea of SHIYF. We designed it to conduct speculative execution repeatedly for
MD5 computation and hash comparison. The corresponding event handler of speculative execution is
referred to as a speculator.

Prior to launching a new speculator in SHIYF, the redesigned MRAppMaster must check whether
the current task conforms to the following three conditions:

1. Whether the current task had already a backup task. Every task could had two speculative tasks
and a maximum of three.

2. The ratio of completed tasks was not less than MINIMUM_COMPLETE_PROPORTION_TO
_SPECULATE (5%). Only then could the Speculator had sufficient historical task information to
estimate estimatedReplacementEndTime.

3. DefaultSpeculator could launch speculative execution in a certain probability without calculating
the speculationValue.

Because when the Speculative Execution Ratio reached 30%, SHIYF could achieve a desired
malicious node detection ratio according to Section 3. We redesigned three parameters in SHIYF
as follows.

• MINIMUM_ALLOWED_SPECULATIVE_TASKS = 10. It represents the minimum number of
total speculative tasks that are allowed for a job.

• PROPORTION_TOTAL_TASKS_SPECULATABLE = 0.35. It denotes the highest percentage of
speculative tasks to the total tasks is 35%.

• PROPORTION_RUNNING_TASKS_SPECULATABLE = 0.3. It indicates the highest percentage of
speculative tasks to all running tasks is 30%.

Therefore, the number of speculative tasks that are allowed to perform in a job
(numberAllowedSpeculativeTasks) is the maximum of the following three values.

• MINIMUM_ALLOWED_SPECULATIVE_TASKS
• PROPORTION_TOTAL_TASKS_SPECULATABLE * totalTaskNumber
• PROPORTION_RUNNING_TASKS_SPECULATABLE * numberRunningTasks

Electronics 2019, 8, 548 7 of 29

Meeting the requirements of SHIYF and limiting the number of speculative tasks in a job, which
can effectively prevent the waste of resources caused by a large number of tasks launching speculative
tasks at the same time.

2.2.3. SHIYF Security Control

To ensure the security of YARN, SHIYF should compute and compare the MD5 hashes of
intermediate and final results. This process involves three services, namely, Job, Task, and TaskAttempt.
Their communication processes in SHIYF are shown in Figure 7. Two types of tasks are used; one is the
normal task, and the other is chosen to check the MD5 hashes of results.

Electronics 2019, 8, 548 7 of 28

To ensure the security of YARN, SHIYF should compute and compare the MD5 hashes of
intermediate and final results. This process involves three services, namely, Job, Task, and
TaskAttempt. Their communication processes in SHIYF are shown in Figure 7. Two types of tasks
are used; one is the normal task, and the other is chosen to check the MD5 hashes of results.

Figure 7. The communication of Job, Task, and TaskAttempt in SHIYF.

To ensure the validity of results and locate the malicious nodes, Job, Task, and TaskAttempt
have the following additional functions:
• In Job, the hostnames of nodes that failed to execute tasks were recorded and written to HDFS

logs. If failure occurred more than five times, then SHIYF would consider these nodes the
malicious nodes.

• If two TaskAttempts disposed of the same data but returned the different hashes, then Task
launched the other speculative TaskAttempt to verify the result again. The node returned the
wrong hash once, it would be recorded as the potential malicious node. If the hash comparison
failed twice, then Task returned “JOB_TASK_UNCOMPLETED” to Job and restarted. Moreover,
the three nodes in this task would all be considered the potential malicious nodes.

• TaskAttempt with speculative execution should compute the MD5 hash of the result and
transmit it to Task; however, the normal one does not do that. They are highlighted in red in
Figure 7.
We could find the malicious nodes and the potential ones by reviewing the logs on HDFS.

2.2.4. SHIYF State Management

Many components and services were used in SHIYF. The FSMs of TaskAttempt, Task, and Job
should be changed accordingly to achieve SHIYF security control.

First, the FSM of SHIYF TaskAttempt is shown in Figure 8. “TA_MD5_COMPUTE” was added
to the state “RUNNING” to compute the MD5 hashes of the intermediate and final results. However,
only tasks selected to check the result validity executed the speculative tasks and MD5 hash
computations. The verification process of TaskAttempt in SHIYF is as follows:

Figure 7. The communication of Job, Task, and TaskAttempt in SHIYF.

To ensure the validity of results and locate the malicious nodes, Job, Task, and TaskAttempt have
the following additional functions:

• In Job, the hostnames of nodes that failed to execute tasks were recorded and written to HDFS
logs. If failure occurred more than five times, then SHIYF would consider these nodes the
malicious nodes.

• If two TaskAttempts disposed of the same data but returned the different hashes, then Task
launched the other speculative TaskAttempt to verify the result again. The node returned the
wrong hash once, it would be recorded as the potential malicious node. If the hash comparison
failed twice, then Task returned “JOB_TASK_UNCOMPLETED” to Job and restarted. Moreover,
the three nodes in this task would all be considered the potential malicious nodes.

• TaskAttempt with speculative execution should compute the MD5 hash of the result and transmit
it to Task; however, the normal one does not do that. They are highlighted in red in Figure 7.

We could find the malicious nodes and the potential ones by reviewing the logs on HDFS.

Electronics 2019, 8, 548 8 of 29

2.2.4. SHIYF State Management

Many components and services were used in SHIYF. The FSMs of TaskAttempt, Task, and Job
should be changed accordingly to achieve SHIYF security control.

First, the FSM of SHIYF TaskAttempt is shown in Figure 8. “TA_MD5_COMPUTE” was added to the
state “RUNNING” to compute the MD5 hashes of the intermediate and final results. However, only tasks
selected to check the result validity executed the speculative tasks and MD5 hash computations.
The verification process of TaskAttempt in SHIYF is as follows:

Electronics 2019, 8, 548 10 of 28

t

mat mct mnaP = 1- P = 1- P (9)

Step 8. The aim of SHIYF is to find all the malicious nodes in YARN. Therefore, detection ratio

Dratio is obtained by the above derivations, then

t-

]

]r

ratio mat mct mna

t

Nam

N t

am

b E t

D = P = 1 P = 1- P

1-(1- P P)

1-{1- [1-(1- P) P}

1-{1- [1-(1-1 / b) P}


 

 

 

 (10)

3.2. Theoretical Results

We experimented on the effects of b, P, t, and Er to the detection ratio Dratio based on the

theoretical arithmetic presented in Section 3.1.

Figure 8 shows the change of Dratio against the execution ratio Er and the number of the blocks b,

where t = 40 and P = 0.2. Dratio increases along with the increase of Er and decreases slightly with the

increase of b.

Figure 8. The effect of the number of blocks (b) on the Detection Ratio.

The change of Dratio against the Er and the malicious behavior probability P, where b = 20 and t =

10, are shown in Figure 9. Evidently, Dratio increases along with the increase of P. Given a certain Er,

the presence of more malicious behaviors corresponded to the increased effectiveness of the

operation of SHIYF.

Figure 8. The effect of the number of blocks (b) on the Detection Ratio.

Step 1. TaskAttempt judged whether the task was checked based on the signature added by Job.
Step 2. TaskAttempt saved the related messages of container runtime such as LaunchTime,

trackerName, httpPort, and MD5 hash of the result.
Step 3. TaskAttempt then renewed the counter messages and informs the history server and

speculator service.
Step 4. TaskAttempt computed and transmitted the MD5 hashes to Task and informed it that this

attempt was successful.
In addition, three relevant services, “TA_UPDATE,” “TA_UPDATE/StatusUpdater,”

and “TA_CONTAINER_COMPLETED,” need to be changed accordingly to control and trigger
the state transition, as emphasized in Figure A1.

Second, the FSM of SHIYF Task is shown in Figure A2. Three important improvements are
as follows:

1. To check some task results, SHIYF need TaskAttempts and their speculative executions to run
in parallel until they completed and returned MD5 hashes. Therefore, Task in SHIYF should be
allowed two or three speculative Attempts retained at the same time, namely, Task will not kill
other corresponding Attempts when it receives “T_ATTEMPT_COMMIT_PENDING” recording
the Attempt running.

2. When Task received “T_ADD_SPEC_ATTEMPT,” it created a new speculative Attempt to run the
same task. All the tasks were chosen for checking, and their speculative executions were added the
sign “Extra_SETask” as the determined criteria of launching MD5 computation in TaskAttempt.

3. When a TaskAttempt runs successfully, Task in YARN will receive “T_ATTEMPT_SUCCEEDED”
and kill other Attempts. However, SHIYF needed to compare the MD5 hashes of the two same
TaskAttempts to ensure the validity of the results. Therefore, even if an Attempt has been
completed and the MD5 hash has been returned, Task still should wait for the other speculative

Electronics 2019, 8, 548 9 of 29

TaskAttempts until the end. Thus, the other several relevant improvements had been occurred
as follows.

• An event “T_ATTEMPT_MD5_COMPARE” was added in “RUNNING.” This event triggered
MD5 hash comparison.

• If the first comparison failed, but the second or the third comparisons succeeded, Task would
add a “SUCCEED_FALSE” to mark the Attempt being executed successfully but returning a
wrong MD5 hash once. At the same time, Task recorded the hostnames of these TaskAttempt
machines as evidences of the potential malicious nodes.

• “TA_ATTEMPT_SUCCEEDED,” “T_ADD_SPEC_ATTEMPT,” and “T_ATTEMPT_COMMIT
_PENDING” in “SUCCEEDED” must be changed accordingly to control and trigger the
state transition.

Finally, the FSM of the SHIYF Job is shown in Figure A3. When the job entered a “RUNNING”
state, the entire event would turned into task until it returned the trigger events (e.g., JOB_TASK
_ATTEMPT_COMPLETED, JOB_MAP_TASK_RESCHEDULED, JOB_TASK_ATTEMPT_FETCH
_FAILURE, JOB_TASK_COMPLETED, and JOB_COMPLETED). The trigger events and the
corresponding states marked with red in Figure A3 must be redesigned. For instance, when SHIYF Job
received the “JOB_TASK_COMPLETED” trigger event, it not only calculated the numbers of completed
tasks, failed tasks, and killed tasks, but also recorded the hostnames of the malicious nodes and the
potential ones.

Therefore, the corresponding SHIYF ResourceManager and NodeManager implementations are
shown in Figures A4 and A5.

3. Theoretical Derivation

3.1. Theoretical Arithmetic

Although the Map speculative task and the Reduce speculative task are slightly different,
their principles are the same. Thus, we use the Map task replication as an example to show the
theoretical arithmetic.

To easily compare differences and similarities without losing generality, we set every MRv2 job
to dispose of the same size of data. Thus, the total blocks were fixed in every experiment; moreover,
the data of every block were different. Every Map task that processed only one block implied that
the number of the copied blocks was equal to the number of the replicated Map tasks. We assumed
the number of blocks (Map tasks) was b. A container was the abstraction conception of a resource set
in YARN. It would be allocated by RM and supervised by NodeManager (NM). Every task must be
executed in a container; thus, the number of containers was also b.

Despite the security in SHIYF, replicating all the MRv2 tasks by speculative executions is not
practical, because doing so consumes considerable resources and time. We introduced Execution Ratio
(Er) to indicate that b× Er blocks would be duplicated. We let N be the number of the Map speculative
tasks, then

N = b× Er (1)

If an MRv2 job involves one MRAppMaster and n containers, then m containers might be malicious
and m < n. The aims of SHIYF are to ensure the integrity of MRv2 results and find the malicious
nodes. Theoretical arithmetic will show the relationship between Detection Ratio (Dratio) and the
above parameters as follows:

Step 1. Pam denotes the probability that a malicious Map task is present in b Map tasks. It is
computed as

Pam = 1/b (2)

Electronics 2019, 8, 548 10 of 29

Pnm is the probability that any Map task is not malicious, and it is obtained as

Pnm = 1− 1/b = 1− Pam (3)

Step 2. If N duplicated blocks are in an MRv2 job, PNs denotes the probability that all N Map tasks
are secure, then

PNs = Pnm
N = (1− Pam)

N (4)

Step 3. In case a Map task is not executed in a secure container, PNam denotes the probability that
a malicious Map speculative task occurs in N at least, then

PNam = 1− PNs = 1− (1− Pam)
N (5)

Step 4. We suppose that malicious nodes execute the vicious actions in P probability. We let Pmea

be the probability of the malicious containers (nodes) executing the vicious actions, and it is obtained as

Pmea = PNam × P = (1− PNs) × P (6)

Step 5. We can obtain the probability that the malicious nodes do not conduct the baleful behaviors.
Pmna is computed as

Pmna = 1− Pmea = 1− PNam × P (7)

Step 6. The variable t represents the number of jobs executed by MRv2. If the malicious nodes
perform the tasks correctly in t MRv2 jobs, then we can obtain this probability Pmct as

Pmct = Pmna
t = (1− Pmea)

t (8)

Step 7. In case of the malicious nodes exposing themselves in t MRv2 jobs, the probability Pmat

can be obtained by
Pmat = 1− Pmct = 1− Pmna

t (9)

Step 8. The aim of SHIYF is to find all the malicious nodes in YARN. Therefore, detection ratio
Dratio is obtained by the above derivations, then

Dratio= Pmat = 1− Pmct = 1− Pmna
t

= 1− (1− PNam × P)t

= 1−
{
1− [1− (1− Pam)

N] × P
}t

= 1−
{
1− [1− (1− 1/b)b×Er] × P

}t
(10)

3.2. Theoretical Results

We experimented on the effects of b, P, t, and Er to the detection ratio Dratio based on the theoretical
arithmetic presented in Section 3.1.

Figure 8 shows the change of Dratio against the execution ratio Er and the number of the blocks b,
where t = 40 and P = 0.2. Dratio increases along with the increase of Er and decreases slightly with the
increase of b.

The change of Dratio against the Er and the malicious behavior probability P, where b = 20 and
t = 10, are shown in Figure 9. Evidently, Dratio increases along with the increase of P. Given a certain Er,
the presence of more malicious behaviors corresponded to the increased effectiveness of the operation
of SHIYF.

Electronics 2019, 8, 548 11 of 29
Electronics 2019, 8, 548 11 of 28

Figure 9. The effect of the the malicious action probability (P) on the Detection Ratio.

Figure 10 shows the change of Dratio against the Er and the number of jobs t, where b = 20 and P =

0.2. Dratio increases along with the increase of Er and t. If t = 25 and Er = 30%, then Dratio is close to 90%.

Figure 10. The effect of the number of jobs (t) on the Detection Ratio.

On the basis of the theoretical derivation results, we can draw the following conclusions:

1. The detection ratio Dratio increased with the increase in the execution ratio Er, the number of

jobs t, and the malicious action probability P.

2. The number of blocks b had a minimal impact on Dratio.

3. As long as the number of jobs t was equal or greater than 25, we could set Er at a low level (≤30%)

to achieve a desired Dratio (≥85%) when P ≥ 0.2. Moreover, the more P was, the better Dratio

was.

4. Furthermore, if we combined map speculative tasks and reduce speculative tasks together, then

we could reasonably believe Dratio would be more than 90%.

In conclusion, theoretical derivation indicates that SHIYF is effective for finding malicious

behaviors.

4. SHIYF Experiments

Figure 9. The effect of the the malicious action probability (P) on the Detection Ratio.

Figure 10 shows the change of Dratio against the Er and the number of jobs t, where b = 20 and
P = 0.2. Dratio increases along with the increase of Er and t. If t = 25 and Er = 30%, then Dratio is close
to 90%.

Electronics 2019, 8, 548 11 of 28

Figure 9. The effect of the the malicious action probability (P) on the Detection Ratio.

Figure 10 shows the change of Dratio against the Er and the number of jobs t, where b = 20 and P =

0.2. Dratio increases along with the increase of Er and t. If t = 25 and Er = 30%, then Dratio is close to 90%.

Figure 10. The effect of the number of jobs (t) on the Detection Ratio.

On the basis of the theoretical derivation results, we can draw the following conclusions:

1. The detection ratio Dratio increased with the increase in the execution ratio Er, the number of

jobs t, and the malicious action probability P.

2. The number of blocks b had a minimal impact on Dratio.

3. As long as the number of jobs t was equal or greater than 25, we could set Er at a low level (≤30%)

to achieve a desired Dratio (≥85%) when P ≥ 0.2. Moreover, the more P was, the better Dratio

was.

4. Furthermore, if we combined map speculative tasks and reduce speculative tasks together, then

we could reasonably believe Dratio would be more than 90%.

In conclusion, theoretical derivation indicates that SHIYF is effective for finding malicious

behaviors.

4. SHIYF Experiments

Figure 10. The effect of the number of jobs (t) on the Detection Ratio.

On the basis of the theoretical derivation results, we can draw the following conclusions:

1. The detection ratio Dratio increased with the increase in the execution ratio Er, the number of jobs
t, and the malicious action probability P.

2. The number of blocks b had a minimal impact on Dratio.
3. As long as the number of jobs t was equal or greater than 25, we could set Er at a low level (≤30%)

to achieve a desired Dratio (≥85%) when P ≥ 0.2. Moreover, the more P was, the better Dratio was.
4. Furthermore, if we combined map speculative tasks and reduce speculative tasks together, then we

could reasonably believe Dratio would be more than 90%.

In conclusion, theoretical derivation indicates that SHIYF is effective for finding malicious behaviors.

Electronics 2019, 8, 548 12 of 29

4. SHIYF Experiments

In this section, we evaluate the security, integrity, and performance of SHIYF by conducting three
benchmark experiments: WordCount, TestDFSIO, and MRBench.

We deployed the entire SHIYF cluster with an RM node and six NM nodes. The RM machine was
equipped with one quad-core 3.9 GHz Intel Xeon E3-1280 V6 CPU, 16 GB memory, one Intel DC S3710
800 GB SSD, and 1000M NIC. Six NM machines were equipped with one quad-core 3.0 GHz Intel Core
i5-7400 CPU, 8 GB memory, one 500 GB SATA II disk, and 1000M NIC. All machines had the same
software configurations, including Ubuntu Server 16.04 LTS (64-bit), JDK 1.8.0, and Hadoop 2.8.0.

Considering the efficiency of the Hadoop cluster, the local data, and the objective of SHIYF
experiments, we configured and optimized the Hadoop cluster first as follows:

• The file replication number of HDFS (dfs.replication) was set at 2, because the experiments were
executed in a local rack. The minimum size of each file chunk was set at 256 MB to facilitate
the processing of large files. To avoid a large number of data copies from the remote machines,
the size of the split was set to equal the size of the block. A task disposes of a split.

• Given that six NM machines were equipped with one quad-core CPU, the value of
“mapred.tasktracker.tasks.maximum” was set to 4. The number of reductions equaled 1.75
× (the numbers of NMs × mapred.tasktracker.tasks.maximum), namely, 42. Then, the faster
NMs that finished their first round of reduce tasks would launch the second round of reduces
immediately, thereby indicating a much improved load balancing.

In addition, we defined three experiment scenarios as follows:

1. In Hadoop, the speculative execution was open by default.
2. In SHIYF, the 30% Map and Reduce tasks were selected randomly to check the validity of results;

thus, they will execute the speculative tasks and MD5 hash computations.
3. In SHIYF, two NMs will execute the malicious behaviors and return the wrong MD5 hashes at

20% probability, which is equivalent to the 7%–33.3% malicious nodes in the Hadoop cluster.

4.1. WordCount Benchmark

4.1.1. Execution Results of SHIYF

In the WordCount benchmark, we chose various test files and compared the time cost in three
different scenarios. To calculate big data, all the test files were greater than 256 MB and met the
minimum file block setting. The results were the average values of 25 WordCount experiments based
on Section 3. The corresponding histogram is shown in Figure 11.

Electronics 2019, 8, 548 12 of 28

In this section, we evaluate the security, integrity, and performance of SHIYF by conducting

three benchmark experiments: WordCount, TestDFSIO, and MRBench.

We deployed the entire SHIYF cluster with an RM node and six NM nodes. The RM machine

was equipped with one quad-core 3.9 GHz Intel Xeon E3-1280 V6 CPU, 16 GB memory, one Intel DC

S3710 800 GB SSD, and 1000M NIC. Six NM machines were equipped with one quad-core 3.0 GHz

Intel Core i5-7400 CPU, 8 GB memory, one 500 GB SATA II disk, and 1000M NIC. All machines had

the same software configurations, including Ubuntu Server 16.04 LTS (64-bit), JDK 1.8.0, and Hadoop

2.8.0.

Considering the efficiency of the Hadoop cluster, the local data, and the objective of SHIYF

experiments, we configured and optimized the Hadoop cluster first as follows:

• The file replication number of HDFS (dfs.replication) was set at 2, because the experiments were

executed in a local rack. The minimum size of each file chunk was set at 256 MB to facilitate the

processing of large files. To avoid a large number of data copies from the remote machines, the

size of the split was set to equal the size of the block. A task disposes of a split.

• Given that six NM machines were equipped with one quad-core CPU, the value of

“mapred.tasktracker.tasks.maximum” was set to 4. The number of reductions equaled 1.75 ×

(the numbers of NMs × mapred.tasktracker.tasks.maximum), namely, 42. Then, the faster NMs

that finished their first round of reduce tasks would launch the second round of reduces

immediately, thereby indicating a much improved load balancing.

In addition, we defined three experiment scenarios as follows:

1. In Hadoop, the speculative execution was open by default.

2. In SHIYF, the 30% Map and Reduce tasks were selected randomly to check the validity of results;

thus, they will execute the speculative tasks and MD5 hash computations.

3. In SHIYF, two NMs will execute the malicious behaviors and return the wrong MD5 hashes at

20% probability, which is equivalent to the 7%–33.3% malicious nodes in the Hadoop cluster.

4.1. WordCount Benchmark

4.1.1. Execution Results of SHIYF

In the WordCount benchmark, we chose various test files and compared the time cost in three

different scenarios. To calculate big data, all the test files were greater than 256 MB and met the

minimum file block setting. The results were the average values of 25 WordCount experiments based

on Section 3. The corresponding histogram is shown in Figure 11.

Figure 11. The execution time of WordCount.

We supposed that Si was the size of one file and a was its numbers. We let Nb denote the number

of blocks, then

Figure 11. The execution time of WordCount.

Electronics 2019, 8, 548 13 of 29

We supposed that Si was the size of one file and a was its numbers. We let Nb denote the number
of blocks, then

Nb =
The total sizes o f f iles
mapred.min.split.size

=

n∑
i=1

aSi

256M
, a = 1, 2, . . . , n. (11)

Therefore, we could obtain three conclusions:

1. In the original YARN framework, although the input paths of “60 × 1 G” are 60 times that of
“60 G,” the time cost increases slightly along with the increase of the total input paths when the
numbers of blocks are equal to 240 according to Formula (11).

2. Without the malicious nodes, the time cost of WordCount increases by approximately 9% only in
the SHIYF. A new speculative TaskAttempt is not equal to a new same task; therefore, the Job
time does not increase by 30%. The extra time costs mainly come from the communication of the
speculative TaskAttempts. By contrast, MD5 hash computing and comparing have little influence
on SHIYF.

3. When two malicious NMs are given in SHIYF, the probability of Map/Reduce tasks assigned
to them is close to 33.3% because of the load balancing of the Hadoop cluster. Furthermore,
the probability of malicious behaviors is 20%. Therefore, the increasing time is mainly due to
Task waiting for the returned values of extra speculative TaskAttempts. The increasing time cost
of SHIYF is between 16% and 20% compared with that of the original condition.

4.1.2. Malicious Node Detection Ratio of SHIYF

In this section, we verify the malicious node detection ratio of SHIYF. In SHIYF, MRAppMaster
will record time, Job_ID, the malicious node’s hostname, and right and wrong MD5 hashes in Job logs
on HDFS.

All the test files were divided into 240 blocks, with the addition of 30% speculative executions;
thus, every NM disposed 52 blocks in Map. Then, “hadoop2” and “hadoop5” were set to execute the
malicious behaviors in Map and Reduce, in 20% probability amount, to approximately 22–30 times
malicious actions. In 25 WordCount experiments, 20–30 malicious behavior records were found in the
logs. The experiment results and the malicious node detection ratio computation are shown in Table 1.

Table 1. The detection ratio of SHIYF.

Reference Value YARN
(Original)

SHIYF
(30% Duplicate)

SHIYF
(33% Malicious)

Map (block numbers) 240 312 334–342
Reduce (block numbers) 240 314 337–345

Malicious behavior (times) 0 0 22–30
Malicious behavior records (times) 0 0 20–28
The malicious nodes (hostnames) none none hadoop2, hadoop5

The potential malicious nodes (hostnames) none none hadoop1, hadoop3
Detection ratio (%) 0 0 87%–93.3%

A failed task occurs because the three MD5 hashes returned by different TaskAttempts are
inconsistent, and comparisons conducted twice are unsuccessful. Thus, Job launched the same Task
again. Furthermore, all the hostnames, comparisons, and MD5 hashes in SHIYF are recorded, and we
can obtain three conclusions as follows:

1. “Hadoop2” and “hadoop5” are the malicious nodes; “hadoop1” and “hadoop3” are the potential
malicious ones.

2. The malicious node detection ratio of SHIYF is between 87% and 93.3%. This ratio is in line with the
expected theoretical derivation shown in Figure 9 in Section 3. Therefore, “hadoop2”/“hadoop5”

Electronics 2019, 8, 548 14 of 29

are not the malicious NMs; they executed the malicious behaviors in their container tasks only
once, and this instance was not chosen as among the verified malicious behaviors.

3. On the basis of the conclusions of theoretical derivations in Section 3, the detection ratio increases
with the increase of the execution ratio Er, the number of jobs t, and the malicious action probability
P. Consequently, we believe that SHIYF will have the better malicious node detection ratio when
it runs on a larger cluster and test data set.

4.1.3. Resource Utilization of SHIYF

In this section, we monitor the resource consumption of every machine on SHIYF, such as CPU
utilization, memory utilization, disk throughput, and network throughput. With “10 × 6 G” taken
as the example, Figures 12–14 reveal the resource consumptions of SHIYF on RM and NMs in three
situations, respectively. NMs are divided into two types: one includes MRAppMaster and Containers,
and the other includes Containers only.

Electronics 2019, 8, 548 14 of 28

3. On the basis of the conclusions of theoretical derivations in Section 3, the detection ratio

increases with the increase of the execution ratio Er, the number of jobs t, and the malicious

action probability P. Consequently, we believe that SHIYF will have the better malicious node

detection ratio when it runs on a larger cluster and test data set.

4.1.3. Resource Utilization of SHIYF

In this section, we monitor the resource consumption of every machine on SHIYF, such as CPU

utilization, memory utilization, disk throughput, and network throughput. With “10 × 6G” taken as

the example, Figures 12–14 reveal the resource consumptions of SHIYF on RM and NMs in three

situations, respectively. NMs are divided into two types: one includes MRAppMaster and

Containers, and the other includes Containers only.

ResourceManager

In RM, ApplicationManager launches one MRAppMaster to control the Job and Scheduler that

is responsible for the communication with the NMs.

(a) (b)

 (c) (d)

Figure 12. Resource utilization of ResourceManager: (a) Central Processing Unit (CPU) utilization; (b)

memory utilization; (c) disk throughput; and (d) network throughput.

We can obtain the following conclusions from the analysis of Figure 12.

1. The addition of 30% extra speculative executions and executing MD5 hash computations and

comparisons have a weak influence on RM. Figure 12a shows that the CPU utilization of RM in

the WordCount experiment is relatively low except for the initial stage.

2. Adding 30% speculative tasks and 33.3% malicious tasks merely increases a few status monitors

to NMs and information communications between RM and NMs; memory utilization remains

lower than 36%. Moreover, the memory utilization of RM is markedly smooth, as shown in

Figure 12b.

3. Several reference variables are recorded to show the disk influence of SHIYF on RM, including

the number of transfers per second “tps,” sectors read/written per second “rd_sec/wr_sec,” the

Figure 12. Resource utilization of ResourceManager: (a) Central Processing Unit (CPU) utilization;
(b) memory utilization; (c) disk throughput; and (d) network throughput.

ResourceManager

In RM, ApplicationManager launches one MRAppMaster to control the Job and Scheduler that is
responsible for the communication with the NMs.

We can obtain the following conclusions from the analysis of Figure 12.

1. The addition of 30% extra speculative executions and executing MD5 hash computations and
comparisons have a weak influence on RM. Figure 12a shows that the CPU utilization of RM in
the WordCount experiment is relatively low except for the initial stage.

2. Adding 30% speculative tasks and 33.3% malicious tasks merely increases a few status monitors
to NMs and information communications between RM and NMs; memory utilization remains

Electronics 2019, 8, 548 15 of 29

lower than 36%. Moreover, the memory utilization of RM is markedly smooth, as shown in
Figure 12b.

3. Several reference variables are recorded to show the disk influence of SHIYF on RM, including
the number of transfers per second “tps,” sectors read/written per second “rd_sec/wr_sec,”
the average size (in sectors) of the requests that were issued to the device “avgrq-sz,” the average
queue length of the requests that were issued to the device “avgqu-sz,” and so on. We take the
most representative parameter “wr_sec/s” as an example. Figure 12c shows that adding 30%
speculative tasks and MD5 comparisons has a weak influence on the disk throughput of RM.
The primary influences are found in the initial and final phases because more statuses of NMs are
transmitted to RM; thus, SHIYF evidently increases the hard disk writing of RM.

4. Total number of packets received per second “rxpck/s,” total number of packets sent per second
“txpck/s,” and data size received per second “rxkB/s,” among others, are recorded for monitoring
the network throughput. Taking “rxpck/s” as an example, Figure 12d shows that adding 30%
speculative tasks and 33.3% malicious nodes has a minimal influence on the network throughput
of RM. Only repeated computing and comparison of MD5 hashes in SHIYF increase some resource
applications and NM status reports.

Electronics 2019, 8, 548 15 of 28

average size (in sectors) of the requests that were issued to the device “avgrq-sz,” the average

queue length of the requests that were issued to the device “avgqu-sz,” and so on. We take the

most representative parameter “wr_sec/s” as an example. Figure 12c shows that adding 30%

speculative tasks and MD5 comparisons has a weak influence on the disk throughput of RM.

The primary influences are found in the initial and final phases because more statuses of NMs

are transmitted to RM; thus, SHIYF evidently increases the hard disk writing of RM.

4. Total number of packets received per second “rxpck/s,” total number of packets sent per second

“txpck/s,” and data size received per second “rxkB/s,” among others, are recorded for

monitoring the network throughput. Taking “rxpck/s” as an example, Figure 12d shows that

adding 30% speculative tasks and 33.3% malicious nodes has a minimal influence on the network

throughput of RM. Only repeated computing and comparison of MD5 hashes in SHIYF increase

some resource applications and NM status reports.

NodeManager: NM(MRAppMaster)

NMs are divided into two categories; the first includes MRAppMaster and Containers,

moreover, the second includes only Containers. Figure 13 reveals the resource utilization of NM

(MRAppMaster).

 (a) (b)

 (c) (d)

Figure 13. Resource utilization of NodeManager (MRAppMaster): (a) CPU utilization; (b) memory

utilization; (c) disk throughput; and (d) network throughput

We can obtain some conclusions as follows from the analysis of Figure 13.

1. The CPU utilization of NM (MRAppMaster) is shown in Figure 13a. In SHIYF, the lowest CPU

occupancy is more than 80%; moreover, the time consumption of Job is longer than that in the

original YARN. However, their increases are under 20%, and a lower CPU utilization will occur

if SHIYF is built on more powerful clusters.

2. In three conditions the memory utilization of NM (MRAppMaster) is only slightly different, as

shown in Figure 13b.

Figure 13. Resource utilization of NodeManager (MRAppMaster): (a) CPU utilization; (b) memory
utilization; (c) disk throughput; and (d) network throughput.

NodeManager: NM(MRAppMaster)

NMs are divided into two categories; the first includes MRAppMaster and Containers, moreover,
the second includes only Containers. Figure 13 reveals the resource utilization of NM (MRAppMaster).

We can obtain some conclusions as follows from the analysis of Figure 13.

1. The CPU utilization of NM (MRAppMaster) is shown in Figure 13a. In SHIYF, the lowest CPU
occupancy is more than 80%; moreover, the time consumption of Job is longer than that in the

Electronics 2019, 8, 548 16 of 29

original YARN. However, their increases are under 20%, and a lower CPU utilization will occur if
SHIYF is built on more powerful clusters.

2. In three conditions the memory utilization of NM (MRAppMaster) is only slightly different,
as shown in Figure 13b.

3. Some reference parameters are recorded, such as “tps (The number of I/O per second from the
physical disk),” “rd_sec/wr_sec (The number of sectors read/write from the device per second),”
“avgqu-sz (Average IO request queue length waiting to be processed),” “util% (what percentage
of a second is devoted to I/O operations)” etc.for manifesting the influence of SHIYF on the disk
of NM (MRAppMaster). The number of sectors read from the device per second (rd_sec/s) is
the most representative one. Nevertheless, the average disk reading speeds are close in three
conditions, as shown in Figure 13c. The slight increase occurred because NM (MRAppMaster)
launched the extra speculative tasks to compute and compare MD5 hashes.

4. The total number of packets transmitted per second (txpck/s) indicates the influence of SHIYF
on the network throughput of NM (MRAppMaster), as shown in Figure 13d. SHIYF increases
some network communications of NM (MRAppMaster) with RM and other NMs, while adding
30% speculative tasks and 33.3% malicious nodes, because NM (MRAppMaster) must report
more node statuses to RM and communicate with more containers. However, the extra overhead
is affordable.

Electronics 2019, 8, 548 16 of 28

3. Some reference parameters are recorded, such as “tps (The number of I/O per second from the

physical disk),” “rd_sec/wr_sec (The number of sectors read/write from the device per second),”

“avgqu-sz (Average IO request queue length waiting to be processed),” “util% (what percentage

of a second is devoted to I/O operations)” etc.for manifesting the influence of SHIYF on the disk

of NM (MRAppMaster). The number of sectors read from the device per second (rd_sec/s) is the

most representative one. Nevertheless, the average disk reading speeds are close in three

conditions, as shown in Figure 13c. The slight increase occurred because NM (MRAppMaster)

launched the extra speculative tasks to compute and compare MD5 hashes.

4. The total number of packets transmitted per second (txpck/s) indicates the influence of SHIYF

on the network throughput of NM (MRAppMaster), as shown in Figure 13d. SHIYF increases

some network communications of NM (MRAppMaster) with RM and other NMs, while adding

30% speculative tasks and 33.3% malicious nodes, because NM (MRAppMaster) must report

more node statuses to RM and communicate with more containers. However, the extra overhead

is affordable.

NodeManager: NM (Containers)

(a) (b)

(c) (d)

Figure 14. Resource utilization of NodeManager (Containers): (a) CPU utilization; (b) memory

utilization; (c) disk throughput; and (d) network throughput.

We can obtain the following conclusions from the analysis of Figure 14:

1. The CPU utilization of NM (Containers) is shown in Figure 14a. Compared with the CPU

utilization shown in Figure 13a, it is lower than that of NM (MRAppMaster) in three conditions

because NM (MRAppMaster) needs to manage NM, MRAppMaster, and all other containers in

the job.

2. The memory utilization of NM (Containers) is also lower than that of NM (MRAppMaster), as

shown in Figure 14). Both Figure 13b and Figure 14b show that SHIYF has little effect on the

memory utilization of NMs.

Figure 14. Resource utilization of NodeManager (Containers): (a) CPU utilization; (b) memory
utilization; (c) disk throughput; and (d) network throughput.

NodeManager: NM (Containers)

Figure 14 shows the resource use of another class of NMs in SHIYF.
We can obtain the following conclusions from the analysis of Figure 14:

Electronics 2019, 8, 548 17 of 29

1. The CPU utilization of NM (Containers) is shown in Figure 14a. Compared with the CPU
utilization shown in Figure 13a, it is lower than that of NM (MRAppMaster) in three conditions
because NM (MRAppMaster) needs to manage NM, MRAppMaster, and all other containers in
the job.

2. The memory utilization of NM (Containers) is also lower than that of NM (MRAppMaster),
as shown in Figure 14). Both Figures 13b and 14b show that SHIYF has little effect on the memory
utilization of NMs.

3. Figure 14c shows the number of sectors read from the device per second (rd_sec/s) in NM
(Containers). Compared with Figure 13c, the disk throughput of NM (Containers) peaks earlier
than that of NM (MRAppMaster), and the average throughput is higher. This situation shows
that the machine on which MRAppMaster is run allocated fewer containers for dynamic load
balancing in the Hadoop cluster. However, the effect of SHIYF is weak in three conditions.

4. A comparison of Figures 13d and 14d shows that NM (Containers) also needs to report more
node statuses to RM and communicate more with NM (MRAppMaster) in SHIYF. By contrast,
the resource consumption of NM (Containers) is lower than that of NM (MRAppMaster).
Moreover, their overhead is affordable.

Finally, we can draw three conclusions from the WordCount benchmark.

1. SHIYF can locate the malicious nodes and the potential malicious ones. The malicious node
detection ratio is between 87% and 93.3%. It is in line with the expected theoretical derivation.

2. The increasing time cost of SHIYF is between 16% and 20%. Moreover, it has little effect on
increasing the resource overhead.

3. The limited computing ability of the experiment hardware may increase the time cost and resource
consumption. We trust that SHIYF will perform better as it executes a much larger range of jobs
in a more powerful Hadoop cluster. If so, SHIYF can use a lower speculative execution ratio to
achieve high malicious node detection ratios.

4.2. TestDFSIO Benchmark

4.2.1. Execution Results of SHIYF

In this section, we use TestDFSIO to test the read-and-write file system performance of SHIYF.
The intermediate results of TestDFSIO, including “tasks,” “size,” “time,” “rate,” and “sqrate,” will result
in inconformity of MD5 hashes. Considering this particularity, we should configure SHIYF based on
three different scenarios.

• In the original condition, we test the performance of the read-and-write file system of YARN
without any modification.

• In the SHIYF (30% duplicate) condition, we abolish the MD5 comparison of SHIYF temporarily
because MD5 is a simple and efficient digital digest algorithm, and no malicious nodes occur in
this condition. Moreover, SHIYF has little impact on the total job execution time, as verified in
Section 4.1.

• In the SHIYF (33.3% malicious) condition, every task chosen for checking needs to compute
and compare the MD5 hashes of the intermediate or final results. Moreover, every result of
TaskAttempt is different. Thus, we keep only the “tasks” and “size” as the Map/Reduce results to
ensure that the MD5 hashes of the same TaskAttempts that ran in the secure NMs are equal.

In addition, TestDFSIO launches a MapReduce job to read or write files. The same amount of data
is written into or read from HDFS, and four statistics are collected: throughput (mb/sec), average I/O
rate (mb/sec), I/O rate std deviation, and test exec time (sec). We executed TestDFSIO 25 times in three
conditions. The average values of the experiments are shown in Table 2.

Electronics 2019, 8, 548 18 of 29

Table 2. The results of TestDFSIO.

TestDFSIO Statistic 1×60 G 10×6 G 20×3 G 60×1 G

WRITE
(ORIGINAL)

Throughput
(mb/sec) 3.6532858730067091 4.1495804701173095 4.5426758165430426 5.0352236239847136

Average I/O * rate(mb/sec) 3.8734657834132454 4.3471371178521935 4.7294176523151477 5.1312346348895038
I/O rate std deviation 0.430984357634622 0.951427385613907 0.615915048946195 0.445020674520458

Test exec time(sec) 2198.111 1561.544 1673.816 1890.473
READ

(ORIGINAL)
Throughput

(mb/sec) 12.970596932628902 18.046781056091405 17.784562337941026 15.858087512060852

Average I/O rate(mb/sec) 13.012415248157041 18.178287573625446 17.792148534176382 15.885178120960451
I/O rate std deviation 1.498127648219716 1.246210558435681 0.485214225977834 0.781471278556941

Test exec time (sec) 660.835 474.956 481.959 540.508
WRITE(30%

SPECULATIVE)
Throughput

(mb/sec) 4.1869146712609413 4.8050487636647159 5.1450188934706481 5.5417910116501725

Average I/O rate(mb/sec) 4.6151871263970814 4.7173163452271386 5.3504192374693026 5.9544018520531907
I/O rate std deviation 1.657201551021365 1.711504547126103 0.935136452047035 0.753113208091526

Test exec time (sec) 2371.649 1662.184 1764.051 1970.018
READ(30%

SPECULATIVE)
Throughput

(mb/sec) 12.457052964837827 17.893025372274712 17.039617160846092 14.901470746125078

Average I/O rate(mb/sec) 12.568542145289061 17.932455253601074 17.809027862581273 15.076180259014069
I/O rate std deviation 1.0519670225048039 0.5843634163160046 1.6418415710048093 0.8952104835410775

Test exec time(sec) 688.078 479.037 506.295 578.209
WRITE(33.3%
MALICIOUS)

Throughput
(mb/sec) 5.272581215418207 5.6601450830043722 6.0414721722833548 6.4590725064507841

Average I/O rate(mb/sec) 5.3641939105048191 5.9178047153028364 6.4681551987331872 7.0720323180910965
I/O rate std deviation 0.505720201569015 1.450121028363904 1.256178142824583 2.045873016820649

Test exec time (sec) 2549.196 1768.511 1836.149 2104.951
READ(33.3%
MALICIOUS)

Throughput
(mb/sec) 11.990184970451683 17.0845710814059107 16.193211574396384 14.006810615806931

Average I/O rate(mb/sec) 12.005265249203364 17.83786672858012 16.350187485045837 14.75482619974933
I/O rate std deviation 0.872031602505907 2.010804105194108 0.949113918481016 2.06249176210582

Test exec time (sec) 716.870 503.706 530.322 610.947

*I/O: Input/Output.

Electronics 2019, 8, 548 19 of 29

We can draw three conclusions.

1. In the three conditions, the read speed is much faster than the write speed. In the beginning,
with the increase in file size, the running time decreased, thereby indicating that HDFS was
highly suitable for processing large-scale reading and writing data. However, a corresponding
increase in average running time occurred along with the increase in file sizes because of the
inevitable increase in the number of cluster nodes, the complicated hardware configurations,
and other reasons.

2. Increasing speculative executions by 30% corresponds to an increased 30% TaskAttempts.
However, the speculative executions are launched with the original TaskAttempts simultaneously;
thus, the time consumption increase is under 8%, as shown in Table 3. This finding is mainly
because of the inconsistency of the TaskAttempt completion times, regardless of the “WRITE”
test or in the “READ” test.

3. In theory, adding 33.3% malicious nodes executed malicious behaviors at 20% probability is
equivalent to an increase of approximately 6.66% extra speculative executions. The time increase
occurred primarily because of the waiting time for the second speculative execution. Moreover,
the increase in the total time cost does not exceed by 16%, unlike with the original YARN.

Table 3. Temporal growth rate (test exec time).

Scenarios Temporal Growth Rate (Read) Temporal Growth Rate (Write)

YARN (original) 0 0
SHIYF (30% duplicate) 6.981% 7.895%
SHIYF (33% malicious) 13.031% 15.094%

4.2.2. Influence of SHIYF to Network Throughput

Considering location optimization in HDFS, most data are read from the local disk rather than the
network with limited bandwidth. Therefore, the read speed is faster than the write speed. The influence
of SHIYF on network throughput was computed based on the write throughput (mb/sec) in TestDFSIO
as follows:

Step 1. We assume Nt is the total node number in the SHIYF cluster. Df is the total sizes of the test
files (M). We let Ts and Thr represent the test execution time (sec) and throughput (mb/sec), respectively.
We derive Thr as

Thr =
D f

Ts ×Nt
(12)

Step 2. We suppose Nf is the number of files. Moreover, each concurrent process conducts one file
in MRv2. We let the number of concurrent processes be Np, then

Np = N f (13)

Step 3. We let Nr denote the “dfs.replication,” then Nr = 2. Thus, (Nr − 1) = 1 network transmissions
occur as one file is writing on HDFS. We assume that Nwpm is the total number of write processes in
every NM. It is computed as

Nwpm =
Np

Nr − 1
(14)

Electronics 2019, 8, 548 20 of 29

Step 4. We can obtain the formula of network throughput NThr

NThr= Thr × (Nr − 1) ×Nwpm

=
D f

Ts ×Nt
× (Nr − 1) ×

Np

Nt − 1

= 1×
D f

Ts ×Nt
×

Np

Nt − 1

(15)

Combined with Table 3, we can calculate the network throughput in three conditions, as shown in
Table 4.

Table 4. Influence of SHIYF to network throughput.

Network Throughput (mb/sec) 1 × 60 G 10 × 6 G 20 × 3 G 60 × 1 G

YARN (original) 0.609 6.916 30.285 50.352
SHIYF (30% duplicate) 0.698 8.008 34.300 55.417
SHIYF (33% malicious) 0.879 9.434 40.276 64.591

Two conclusions can be drawn as follows:

1. More files written on HDFS correspond to more copied files transmitted on the network. Therefore,
the network throughput is higher.

2. The highest network throughput is 64.591 M/s, thereby indicating that the highest growth rate
of network throughput is 28.28%. However, this value is far below the bandwidth of a gigabit
network (128 M/s). Thus, no significant bandwidth load occurs. Instead, the process improves
network bandwidth utilization.

4.2.3. Influence of SHIYF to HDFS

To examine the influence of SHIYF on HDFS, we chose “1 × 60 G” as the example due to its
execution time being the longest in TestDFSIO benchmark. The number of sectors read from/written to
NM (Containers) per second (rd_sec/s, wr_sec/s) can intuitively demonstrate the influence of SHIYF on
HDFS, as shown in Figure 15.

Electronics 2019, 8, 548 20 of 28

SHIYF (30% duplicate) 0.698 8.008 34.300 55.417

SHIYF (33% malicious) 0.879 9.434 40.276 64.591

Two conclusions can be drawn as follows:

1. More files written on HDFS correspond to more copied files transmitted on the network.

Therefore, the network throughput is higher.

2. The highest network throughput is 64.591 M/s, thereby indicating that the highest growth rate

of network throughput is 28.28%. However, this value is far below the bandwidth of a gigabit

network (128 M/s). Thus, no significant bandwidth load occurs. Instead, the process improves

network bandwidth utilization.

4.2.3. Influence of SHIYF to HDFS

 (a) (b)

Figure 15. Influence of SHIYF to Hadoop Distributed File System (HDFS): (a) The number of sectors

read from the device per second (rd_sec/s); (b) The number of sectors write from the device per second

(wr_sec/s).

We can obtain three conclusions as follows.

1. More speculative executions correspond to more data read from or written to HDFS. However,

the changes in the curves in the three conditions were minimal; moreover, they interlaced and

partially overlapped.

2. Although SHIYF improves the use and efficiency of the disk, it does not increase the hard disk

load. The minimal change follows the ideal states in three conditions.

3. SHIYF impacts the time of TestDFSIO. However, it has no effect on the read and write

performance of HDFS.

In this section, we test SHIYF in the TestDFSIO benchmark and show the influence of SHIYF on

network throughput and HDFS. Although SHIYF strengthens the security and integrity of YARN

using the speculative executions and MD5 algorithm, it can also maintain the Input/Output (I/O)

performance of HDFS. The slight growth of network throughput and time mainly results from the

increasing speculative executions and the extra waiting time. Moreover, the overhead is affordable.

4.3. MRBench Benchmark

4.3.1. Execution Results of SHIYF

MRBench repeats a minor job many times, as specified by the user, to check whether the minor

job running on a Hadoop cluster is repeatable and efficient. MRBench is used to test the performance

to handle many minor jobs, and it has the security protection ability of SHIYF. Therefore, the times

of job repetition t are set as 10, 15, 20, 25, 30, and 40, based on Section 3. Several parameters should

be set as follows:

• inputLines = 1000. The number of every generated file is 1000 lines.

• maps = 200. 200 maps are used for each run.

Figure 15. Influence of SHIYF to Hadoop Distributed File System (HDFS): (a) The number of sectors
read from the device per second (rd_sec/s); (b) The number of sectors write from the device per second
(wr_sec/s).

We can obtain three conclusions as follows.

Electronics 2019, 8, 548 21 of 29

1. More speculative executions correspond to more data read from or written to HDFS. However,
the changes in the curves in the three conditions were minimal; moreover, they interlaced and
partially overlapped.

2. Although SHIYF improves the use and efficiency of the disk, it does not increase the hard disk
load. The minimal change follows the ideal states in three conditions.

3. SHIYF impacts the time of TestDFSIO. However, it has no effect on the read and write performance
of HDFS.

In this section, we test SHIYF in the TestDFSIO benchmark and show the influence of SHIYF on
network throughput and HDFS. Although SHIYF strengthens the security and integrity of YARN
using the speculative executions and MD5 algorithm, it can also maintain the Input/Output (I/O)
performance of HDFS. The slight growth of network throughput and time mainly results from the
increasing speculative executions and the extra waiting time. Moreover, the overhead is affordable.

4.3. MRBench Benchmark

4.3.1. Execution Results of SHIYF

MRBench repeats a minor job many times, as specified by the user, to check whether the minor
job running on a Hadoop cluster is repeatable and efficient. MRBench is used to test the performance
to handle many minor jobs, and it has the security protection ability of SHIYF. Therefore, the times of
job repetition t are set as 10, 15, 20, 25, 30, and 40, based on Section 3. Several parameters should be set
as follows:

• inputLines = 1000. The number of every generated file is 1000 lines.
• maps = 200. 200 maps are used for each run.
• reduces = 100. The number of reduces for each run is 100.
• numRuns = 10, 15, 20, 25, 30, and 40.

The experiment results in three scenarios are shown in Figure 16. We obtain three conclusions.

1. In these three conditions, every experiment with the same configuration is executed with different
repetition times. The execution time in Figure 16 is an average value of SHIYF that conducted
the same job several times. More repetition times correspond to increased accuracy of the
execution time.

2. Adding 30% speculative executions makes the MRBench time increase by approximately 9%,
mainly due to the inconsistent completion time of TaskAttempts. Moreover, this process increases
MD5 hash computations and comparisons.

3. In the 33.3% malicious nodes condition, execution time increases by approximately 16% because
of the extra speculative TaskAttempts and the inconformity of two comparative MD5 hashes.

4.3.2. Malicious Node Location of SHIYF

MRBench is also used to test the security protection ability of SHIYF in locating malicious nodes.
We chose the experiment “t = 25” as the example following Section 4.3.1. The parameters “maps =

200” and “reduces = 100” decide that 200 + 100 = 300 tasks are used in every MRBench benchmark.
Hadoop2 and hadoop5 are two malicious nodes in the Hadoop cluster, and their probability of
exhibiting malicious behaviors is 20%. Therefore, the upper limit of malicious tasks executed by
hadoop2/hadoop5 is approximately 300/6× 20% = 10 times in MRBench. When MRBench is executed
successfully and has achieved the goal of locating the malicious nodes, the upper limit of CA that
withdraws all resource applications of the malicious nodes must be altered to 15(>10) rather than 5 in
Section 2.2.1.

Electronics 2019, 8, 548 22 of 29

Electronics 2019, 8, 548 21 of 28

• reduces = 100. The number of reduces for each run is 100.

• numRuns = 10, 15, 20, 25, 30, and 40.

The experiment results in three scenarios are shown in Figure 16. We obtain three conclusions.

1. In these three conditions, every experiment with the same configuration is executed with

different repetition times. The execution time in Figure 16 is an average value of SHIYF that

conducted the same job several times. More repetition times correspond to increased accuracy

of the execution time.

2. Adding 30% speculative executions makes the MRBench time increase by approximately 9%,

mainly due to the inconsistent completion time of TaskAttempts. Moreover, this process

increases MD5 hash computations and comparisons.

3. In the 33.3% malicious nodes condition, execution time increases by approximately 16% because

of the extra speculative TaskAttempts and the inconformity of two comparative MD5 hashes.

Figure 16. The results of MRbench Test.

4.3.2. Malicious Node Location of SHIYF

MRBench is also used to test the security protection ability of SHIYF in locating malicious nodes.

We chose the experiment “t = 25” as the example following Section 4.3.1. The parameters “maps =

200” and “reduces = 100” decide that + 200 100= 300 tasks are used in every MRBench benchmark.

Hadoop2 and hadoop5 are two malicious nodes in the Hadoop cluster, and their probability of

exhibiting malicious behaviors is 20%. Therefore, the upper limit of malicious tasks executed by

hadoop2/hadoop5 is approximately 300 / 6 20% = 10 times in MRBench. When MRBench is

executed successfully and has achieved the goal of locating the malicious nodes, the upper limit of

CA that withdraws all resource applications of the malicious nodes must be altered to 15(>10) rather

than 5 in Section 2.2.1.

After 25 MRBench experiments were performed, we check the logs of Job and compute the

average values, as shown in Table 5. We obtain four conclusions.

1. Any malicious action record about hadoop1 is found in Job logs. Thus, it is a secure NM.

2. The average value of hadoop3/hadoop6 records is between 0 and 1, mainly because two

continuous failed MD5 hash verification records would be recorded in 25 experiments.

Therefore, they might be the potential malicious NMs. Although they were the secure NMs, they

were considered the potential malicious ones if they validated the result as the malicious NMs

at the same time and the results were inconsistent.

3. The average value of hadoop2/hadoop5 malicious behaviors is 9. We can judge them as the

malicious NMs in the Hadoop cluster. Therefore, the malicious node detection ratio of SHIYF is

at least 90% in the MRBench benchmark.

4. Not only can SHIYF achieve a high malicious node detection ratio, but it can also locate the

malicious nodes and the potential ones accurately.

Table 5. The log records in MRbench.

Figure 16. The results of MRbench Test.

After 25 MRBench experiments were performed, we check the logs of Job and compute the average
values, as shown in Table 5. We obtain four conclusions.

1. Any malicious action record about hadoop1 is found in Job logs. Thus, it is a secure NM.
2. The average value of hadoop3/hadoop6 records is between 0 and 1, mainly because two continuous

failed MD5 hash verification records would be recorded in 25 experiments. Therefore, they might
be the potential malicious NMs. Although they were the secure NMs, they were considered the
potential malicious ones if they validated the result as the malicious NMs at the same time and
the results were inconsistent.

3. The average value of hadoop2/hadoop5 malicious behaviors is 9. We can judge them as the
malicious NMs in the Hadoop cluster. Therefore, the malicious node detection ratio of SHIYF is
at least 90% in the MRBench benchmark.

4. Not only can SHIYF achieve a high malicious node detection ratio, but it can also locate the
malicious nodes and the potential ones accurately.

Table 5. The log records in MRbench.

Reference Value hadoop2 hadoop5 hadoop1 hadoop3 hadoop6

Malicious action times ≤10 ≤10 0 0 0
Record times 9 9 0 0–1 0–1

Malicious node or
Potential Malicious node Malicious node Malicious node None Potential

Malicious node
Potential

Malicious node

5. Conclusions and Future Work

SHIYF is proposed in this paper. Through theoretical derivation, we set the relevant parameters
of SHIYF accurately and implemented the prototype framework SHIYF based on Hadoop 2.8.0.
The framework advantage of speculative execution and MD5 hash verification is that they ensure the
integrity and validity of MapReduce 2.0 results. Moreover, SHIYF is able to locate the malicious and
potentially malicious nodes in the Hadoop cluster.

Electronics 2019, 8, 548 23 of 29

Three experiments on SHIYF adequately demonstrate its malicious node detection Dratio,
and resource consumption can achieve the expected goals. In particular, Dratio is at least 87%, while the
overhead is increased only slightly. Therefore, the proposed SHIYF will use the lower speculative
execution ratio and consumes less resources to achieve a desirable Dratio as long as it runs on a more
powerful machine cluster and disposes of more jobs.

However, adding 30% speculative tasks in SHIYF is still a few wasted resources. We will work
hard to reduce the ratio of speculative tasks and improve Dratio. Using 15% speculative execution
ratio to achieve more than 95% Dratio is a much better tradeoff between resource usage and security.
Meanwhile the efficiency of SHIYF will also be promoted. In addition, non-collusive malicious nodes
are found in the experiment environment. If several collusive attackers are found in the Hadoop cluster,
then they might return the same wrong MD5 hashes when they are incorrectly considered the secure
nodes. Therefore, our future research will focus on improving the tradeoff between performance and
security in SHIYF, moreover, preventing collusive malicious nodes.

Author Contributions: Conceptualization, J.D. and J.W.; methodology, J.D.; software, J.D.; validation, Y.L. and J.W.;
formal analysis, J.D.; investigation, J.D. and S.L.; resources, Y.L.; data curation, J.D. and J.W.; writing—original draft
preparation, J.D.; writing—review and editing, J.D. and S.L.; supervision, Y.L. and J.W.; project administration, Y.L.

Funding: This research was funded by the National Nature Science Foundation [61872158, 61572229, U1564211,
6171101066 and 61872158]; Jilin Provincial Science and Technology Development Foundation [20170204074GX,
20180201068GX]; Jilin Provincial International Cooperation Foundation [20180414015GH] and z under Grant
[NGII20170413].

Acknowledgments: The authors would like to thank the editors and the reviewers for their valuable comments
that helped to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The following abbreviations are used in this paper:

YARN Yet Another Resource Negotiator
MRv2 MapReduce 2.0
HDFS Hadoop Distributed File System
SHIYF secure and high-integrity YARN framework
CC cloud computing
RM ResourceManager
NM NodeManager
FSM finite-state machine
CA ContainerAllocator
CPU Central Processing Unit
I/O Input/Output

Electronics 2019, 8, 548 24 of 29

Electronics 2019, 8, 548 23 of 28

SHIYF secure and high-integrity YARN framework

CC cloud computing

RM ResourceManager

NM NodeManager

FSM finite-state machine

CA ContainerAllocator

CPU Central Processing Unit

I/O Input/Output

TA_SCHEDULE ||
TA_RESCHEDULE

/RequestContainerTransition

TA_ASSIGNED
/ContainerAssignedTransition

NEW

TA_DIAGNOSTICS_UPDATE
/DiagnosticinformationUpdater

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

UNASSIGNED

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

ASSIGNED

TA_CONTAINER_LAUNCHED
/LaunchedContainerTransition

TA_UPDATE
/StatusUpdater

RUNNING

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_UPDATE
/StatusUpdater

COMMIT_PENDING

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_COMMIT_PENDING
/CommitPendingTransition

Χ

KILLED
TA_DIAGNOSTICS_UPDATE

/DiagnosticInformationUpdater

TA_KILL

TA_ASSIGNED

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_CLEANED

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_COMMIT_PENDING

TA_DONE

TA_FAILMSG

TA_KILL
/KilledTransition

TA_KILL
/DeallocateContainerTransition

Χ

FAILED
TA_DIAGNOSTICS_UPDATE

/DiagnosticInformationUpdater

TA_KILL

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_CLEANED

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_COMMIT_PENDING

TA_DONE

TA_FAILMSG

TA_TOO_MANY_FETCH_FAILURE

TA_ASSIGNED

TA_FAILMSG
/DeallocateContainerTransition

TA_CONTAINER_LAUNCH_FAILED
/DeallocateContainerTransition

TA_FAILMSG
/FailedTransition [FAILE]

TA_RECOVER
/RecoverTransition

TA_FAILMSG

SUCCEEDED

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_CONTAINER_CLEANED

TA_CONTAINER_COMPLETED

TA_TOO_MANY_FETCH_FAILURE
/TooManyFetchFailureTransition

TA_KILL

SUCCESS_CONTAINER_CLEANUP

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_FAILMSG

TA_TIMED_OUT

TA_CONTAINER_CLEANED
/SucceededTransition

TA_CONTAINER_COMPLETED

TA_KILL

FAIL_CONTAINER_CLEANUP

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_COMMIT_PENDING

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_DONE

TA_FAILMSG

TA_TIMED_OUT

TA_DONE
/CleanupContainerTransition

TA_FAILMSG ||
TA_TIMED_OUT ||

TA_CONTAINER_COMPLETED
/CleanupContainerTransition

TA_KILL

KILL_CONTAINER_CLEANUP

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_COMMIT_PENDING

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_DONE

TA_FAILMSG

TA_TIMED_OUT

TA_KILL
/CleanupContainerTransition

TA_KILL

FAIL_TASK_CLEANUP

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_COMMIT_PENDING

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_DONE

TA_FAILMSG

TA_CONTAINER_CLEANED
/TaskCleanupTransition

TA_KILL

KILL_TASK_CLEANUP

TA_DIAGNOSTICS_UPDATE
/DiagnosticInformationUpdater

TA_COMMIT_PENDING

TA_CONTAINER_COMPLETED

TA_UPDATE

TA_CONTAINER_LAUNCHED

TA_CONTAINER_LAUNCH_FAILED

TA_DONE

TA_FAILMSG

TA_CONTAINER_CLEANED
/TaskCleanupTransition

TA_CONTAINER_CLEANED

TA_CLEANUP_DONE
/KilledTransition

TA_CLEANUP_DONE
/FailedTransition

[KILL]

TA_CONTAINER_CLEANED
/KilledTransition

TA_MD5_COMPUTE

Figure A1. The finite-state machine of SHIYF TaskAttempt.
Figure A1. The finite-state machine of SHIYF TaskAttempt.

Electronics 2019, 8, 548 25 of 29Electronics 2019, 8, 548 24 of 28

NEW

SCHEDULED
T_ATTEMPT_KILLED

/AttemptKilledTransition

T_SCHEDULED
/InitialSchedulerTransition FAILED

T_KILLED

T_ADD_SPEC_ATTEMPT

T_ADD_COMMIT_PENDING

T_ATTEND_FAILED

T_ATTEND_KILLED

T_ATTEND_LAUNCHED

T_ATTEND_SUCCEEDED

T_ATTEMPT_FAILED
/AttemptFailedTransition

FAIL

RUNNING

T_ATTEMPT_LAUNCHED

T_ATTEMPT_COMMIT_PENDING
/AttemptCommitPendingTransition

T_ADD_SPEC_ATTEMPT
/RedundantScheduleTransition

T_ATTEND_KILLED
/AttemptKilledTransition

T_ATTEMPT_FAILED
/AttemptFailedTransition

SUCCEEDED
T_ATTEMPT_SUCCEEDED

/AttemptSucceededAtSucceededTransition

T_ADD_SPEC_ATTEMPT

T_ATTEMPT_COMMIT_PENDING

T_ATTEND_LAUNCHED

T_ATTEMPT_FAILED
/RetroactiveFailureTransition

T_ATTEMPT_LAUNCHED
/LaunchTransition

FAIL

T_KILL

T_ATTEMPT_KILLED
/RetroactiveKilledTransition

[Need Reschedule]
Go to SCHEDULED

FAIL

FAIL

T_RECOVER
/RecoverTransition

KILLED
T_KILL

T_ADD_SPEC_ATTEMPT

T_KILL
/KillNewTransition

Kill

FAIL

Χ T_KILL
/KillTransition

KILL_WAIT
T_KILL

T_ATTEMPT_LAUNCHED

T_ATTEMPT_COMMIT_PENDING

T_ADD_SPEC_ATTEMPT

T_ATTEMPT_FAILED
/KillWaitAttemptFailedTransition

Running

T_ATTEMPT_KILLED
/KillWaitAttemptKilledTransition

T_ATTEMPT_SUCCEEDED
/KillWaitAttemptSucceededTransition

T_ATTEMPT_SUCCEEDED
/AttemptSucceededTransition

Χ

Χ

[Need Reschedule]
Go to SCHEDULED

T_ATTEMPT_MD5_COMPARE
/AttemptMD5CompareTransition

Figure A2. The finite-state machine of SHIYF Task.
Figure A2. The finite-state machine of SHIYF Task.

Electronics 2019, 8, 548 26 of 29
Electronics 2019, 8, 548 25 of 28

JOB_INIT
/InitTrasition

RUNNING
JOB_TASK_ATTEMPT_COMPLETED

/TaskAttemptCompletedEventTransition
JOB_UPDATED_NODES

/UpdatedNodesTransition

JOB_MAP_TASK_RESCHEDULED
/MapTaskRescheduledTransition

JOB_DIAGNOSTIC_UPDATE
/DiagnosticsUpdateTransition

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_START
/StartTransition

NEW
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_UPDATE_NODES

INITED
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_UPDATE_NODES

[ELSE]

FAILED
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition

JOB_KILL

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_UPDATED_NODES

JOB_TASK_COMPLETED

JOB_TASK_ATTEMPT_COMPLETED

JOB_MAP_TASK_RESCHEDULED

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_SETUP_COMPLETED

JOB_SETUP_FAILED

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_ABORT_COMPLETED

JOB_AM_REBOOT

SETUP
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_UPDATE_NODES

JOB_SETUP_COMPLETED
/SetupCompletedTransition

JOB_TASK_ATTEMPT_FETCH_FAILURE
/TaskAttemptFetchFailureTransition

Χ
INTERNAL_ERROR

/InternalErrorTransition

go to ERROR

KILL_WAIT
JOB_TASK_ATTEMPT_COMPLETED

/TaskAttemptCompletedEventTransition
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_KILL

JOB_UPDATED_NODES

JOB_AM_REBOOT

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_MAP_TASK_RESCHEDULED

JOB_TASK_COMPLETED
/KillWaitTaskCompletedTransition

[All Task Completed]

go to KILL_ABORT

[ELSE]

INTERNAL_ERROR
/InternalErrorTransition

go to ERROR

Χ

Χ

JOB_COMPLETED
/JobNoTasksCompletedTransition

[NO MORE TASKS]

[ELSE]

COMMITTING

JOB_UPDATED_NODES

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_DIAGNOSTIC_UPDATE
/DiagnosticsUpdateTransition

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_COMMIT_COMPLETED
/CommitSucceededTransition

SUCCEEDED
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_KILL

JOB_UPDATED_NODES

JOB_AM_REBOOT

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_TASK_COMPLETED
/TasksCompletedTransition

[ELSE]

[FAILED]

FAIL_ABORT
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_TASK_COMPLETED

JOB_UPDATED_NODES

JOB_MAP_TASK_RESCHEDULED

JOB_TASK_ATTEMPT_COMPLETED

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_AM_REBOOT

Χ

JOB_ABORT_COMPLETED
/JobAbortCompletedTransition

go to FAILED

Χ

JOB_SETUP_FAILED
/SetupFailedTransition

[FAILED]

Χ

Χ

JOB_KILL
/KillTasksTransition

INTERNAL_ERROR
/InternalErrorTransition

go to ERROR

Χ

Χ JOB_KILL
/KilledDuringAbortTransition

go to KILL

KILLED
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition
JOB_COUNTER_UPDATE

/CounterUpdateTransition

JOB_KILL

JOB_ABORT_COMPLETED

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_AM_REBOOT

JOB_UPDATED_NODES

JOB_START

JOB_SETUP_COMPLETED

JOB_SETUP_FAILED

JOB_KILL
/KillNewJobTransition

REBOOT

INTERNAL_ERROR

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_KILL

JOB_ABORT_COMPLETED

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_AM_REBOOT

JOB_UPDATED_NODES

JOB_TASK_COMPLETED

JOB_SETUP_COMPLETED

JOB_SETUP_FAILED

JOB_INIT

JOB_TASK_ATTEMPT_COMPLETED

JOB_MAP_TASK_RESCHEDULED

JOB_DIAGNOSTIC_UPDATE

JOB_AM_REBOOT
/InternalRebootTransition

INTERNAL_ERROR
/InternalErrorTransition

Error

INTERNAL_ERROR

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_KILL

JOB_ABORT_COMPLETED

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_AM_REBOOT

JOB_UPDATED_NODES

JOB_TASK_COMPLETED

JOB_SETUP_COMPLETED

JOB_SETUP_FAILED

JOB_INIT

JOB_TASK_ATTEMPT_COMPLETED

JOB_MAP_TASK_RESCHEDULED

JOB_DIAGNOSTIC_UPDATE

INTERNAL_ERROR
/InternalErrorTransition

KILL_ABORT
JOB_DIAGNOSTIC_UPDATE

/DiagnosticsUpdateTransition

JOB_UPDATED_NODES

JOB_TASK_ATTEMPT_FETCH_FAILURE

JOB_COMMIT_COMPLETED

JOB_COMMIT_FAILED

JOB_AM_REBOOT

JOB_TASK_COMPLETED

JOB_COUNTER_UPDATE
/CounterUpdateTransition

JOB_TASK_ATTEMPT_COMPLETED

JOB_MAP_TASK_RESCHEDULED

INTERNAL_ERROR
/InternalErrorTransition

JOB_KILL
/KilledDuringSetupTransition

JOB_KILL
/KilledDuringAbortTransition

JOB_ABORT_COMPLETED
/JobAbortCompletedTransition

Figure A3. The finite-state machine of SHIYF Job. Figure A3. The finite-state machine of SHIYF Job.

Electronics 2019, 8, 548 27 of 29

Electronics 2019, 8, 548 26 of 28

Figure A4. SHIYF NodeManager implementation.
Figure A4. SHIYF NodeManager implementation.

Electronics 2019, 8, 548 28 of 29
Electronics 2019, 8, 548 27 of 28

Figure A5. SHIYF ResourceManager implementation.

References

1. Hayes, B. Cloud computing. Commun. ACM 2008, 51, 9–11.

2. Dempsey, D.; Kelliher, F. Cloud Computing. 2018. Available online:

https://link.springer.com/chapter/10.1007/978-3-319-63994-9_2 (accessed on).

3. Hashizume, K.; Rosado, D.G.; Fernández-Medina, E.; Eduardo B Fernandez. An analysis of security issues

for cloud computing. J. Internet Serv. Appl. 2013, 4, 5.

4. Duncan, A.; Creese, S.; Goldsmith, M. An overview of insider attacks in cloud computing. Concurr. Comput.

Pract. Exp. 2015, 27, 2964–2981.

5. Waqar, A.; Raza, A.; Abbas, H.; Khan, M.K. A framework for preservation of cloud users’ data privacy

using dynamic reconstruction of metadata. J. Netw. Comput. Appl. 2013, 36, 235–248.

6. Lombardi, F.; Pietro, R.D. Secure virtualization for cloud computing. J. Netw. Comput. Appl. 2011, 34, 1113–

1122.

7. Brodkin, J. Gartner: Seven cloud-computing security risks. In Proceedings of the Infoworld, Framingham,

MA, USA; 2 July 2008.

8. Grobauer, B.; Walloschek, T.; Stocker, E. Understanding cloud computing vulnerabilities. IEEE Secur. Priv.

2011, 9, 50–57.

9. Jansen, W.; Grance, T. Guidelines on Security and Privacy in Public Cloud Computing; NIST Special Publication,

U.S. Department of Commerce: Washington, DC, USA; 2011; Volume 800, p. 144.

Figure A5. SHIYF ResourceManager implementation.

References

1. Hayes, B. Cloud computing. Commun. ACM 2008, 51, 9–11. [CrossRef]
2. Dempsey, D.; Kelliher, F. Cloud Computing. 2018. Available online: https://link.springer.com/chapter/10.

1007/978-3-319-63994-9_2 (accessed on 17 April 2019).
3. Hashizume, K.; Rosado, D.G.; Fernández-Medina, E.; Fernandez, E.B. An analysis of security issues for cloud

computing. J. Internet Serv. Appl. 2013, 4, 5. [CrossRef]
4. Duncan, A.; Creese, S.; Goldsmith, M. An overview of insider attacks in cloud computing. Concurr. Comput.

Pract. Exp. 2015, 27, 2964–2981. [CrossRef]
5. Waqar, A.; Raza, A.; Abbas, H.; Khan, M.K. A framework for preservation of cloud users’ data privacy using

dynamic reconstruction of metadata. J. Netw. Comput. Appl. 2013, 36, 235–248. [CrossRef]
6. Lombardi, F.; Pietro, R.D. Secure virtualization for cloud computing. J. Netw. Comput. Appl. 2011, 34,

1113–1122. [CrossRef]
7. Brodkin, J. Gartner: Seven cloud-computing security risks. In Proceedings of the Infoworld, Framingham,

MA, USA, 2 July 2008.
8. Grobauer, B.; Walloschek, T.; Stocker, E. Understanding cloud computing vulnerabilities. IEEE Secur. Priv.

2011, 9, 50–57. [CrossRef]

http://dx.doi.org/10.1145/1364782.1364786
https://link.springer.com/chapter/10.1007/978-3-319-63994-9_2
https://link.springer.com/chapter/10.1007/978-3-319-63994-9_2
http://dx.doi.org/10.1186/1869-0238-4-5
http://dx.doi.org/10.1002/cpe.3243
http://dx.doi.org/10.1016/j.jnca.2012.09.001
http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://dx.doi.org/10.1109/MSP.2010.115

Electronics 2019, 8, 548 29 of 29

9. Jansen, W.; Grance, T. Guidelines on Security and Privacy in Public Cloud Computing; NIST Special Publication;
U.S. Department of Commerce: Washington, DC, USA, 2011; Volume 800, p. 144.

10. Alliance, C.S. Security Guidance for Critical Areas of Cloud Computing Version 3.0. Available online:
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf (accessed on 17 April 2019).

11. White, T. Hadoop: The Definitive Guide[M], 3rd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011.
12. Lam, C. Hadoop in Action; Manning Publications Co.: Newton, MA, USA, 2011.
13. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of

the Sixth Symposium on Operating System Design and Implementation (OSD2004), USENIX Association,
San Francisco, CA, USA, 6–8 December 2004.

14. Jiang, D.; Ooi, B.C.; Shi, L.; Wu, S. The performance of mapreduce: An indepth study. Proc. Vldb Endow.
2010, 3, 472–483. [CrossRef]

15. Chen, Y.; Ganapathi, A.; Griffith, R.; Katz, R.H. The Case for Evaluating MapReduce Performance Using
Workload Suites. Mascots 2011, 390–399. [CrossRef]

16. Vernica, R.; Carey, M.J.; Li, C. Efficient parallel set-similarity joins using MapReduce. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010.

17. Roy, I.; Setty ST, V.; Kilzer, A.; Shmatikov, V.; Witchel, E. Airavat: Security and Privacy for MapReduce.
In Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, San Jose,
CA, USA, 28–30 April 2010.

18. Dang Vo-Huu, T.; Erik-Oliver, B.; Guevara, N. EPiC: Efficient privacy-preserving counting for MapReduce.
Computing 2018. [CrossRef]

19. O’Malley, O.; Zhang, K.; Radia, S.; Marti, R.; Harrell, C. Hadoop Security Design, 2009. Available online:
http://carfield.com.hk:8080/document/distributed/hadoop-security-design.pdf (accessed on 17 April 2019).

20. Foundation, T.A.S. Service Level Authorization Guide. 2013. Available online: https://hadoop.apache.org/

docs/r1.2.1/service_level_auth.html (accessed on 9 July 2018).
21. Das, D.; Malley, O.; Radia, S.; Zhang, K. Adding Security to Apache Hadoop; Hortonworks Technical Report.
22. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.;

Seth, S.; et al. Apache Hadoop YARN: Yet another resource negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, Santa Clara, CA, USA, 1–3 October 2013.

23. Li, P.; Ju, L.; Jia, Z.; Sun, Z. SLA-Aware Energy-Efficient Scheduling Scheme for Hadoop YARN. In Proceedings
of the IEEE International Conference on High Performance Computing & Communications, New York, NY,
USA, 24–26 August 2015.

24. Gencer, A.E.; Bindel, D.; Sirer Emin, G.; Renesse, R.V. Configuring Distributed Computations Using Response
Surfaces. In Proceedings of the Middleware Conference, Vancouver, BC, Canada, 7–11 December 2015.

25. Shao, Y.; Li, C.; Gu, J.; Zhang, J.; Luo, Y. Efficient Jobs Scheduling Approach for Big Data Applications.
Comput. Ind. Eng. 2018, 117, 249–261. [CrossRef]

26. Memishi, B.; Perez Maria, S.; Antoniu, G. Diarchy: An Optimized Management Approach for MapReduce
Masters. Procedia Comput. Sci. 2015, 51, 9–18. [CrossRef]

27. Dong, C.; Shen, Q.; Cheng, L.; Yang, Y.; Wu, Z. SECapacity: A Secure Capacity Scheduler in YARN.
In Proceedings of the International Conference on Information and Communications Security (ICICS),
Singapore, 29 November–2 December 2016; Lecture Notes in Computer Science. Volume 9977.

28. Lu, W.; Chen, L.; Wang, L.; Yuan, H.; Xing, W.; Yang, Y. NPIY: A Novel Partitioner for Improving MapReduce
Performance. J. Vis. Lang. Comput. 2018, 46, 1–11. [CrossRef]

29. Lin, J.; Lee, M. Performance evaluation of job schedulers on Hadoop YARN. Concurr. Comput. Pract. Exp.
2016, 28, 2711–2728. [CrossRef]

30. Wei, W.; Du, J.; Yu, T.; Gu, X. SecureMR: A Service Integrity Assurance Framework for MapReduce.
In Proceedings of the Annual Computer Security Applications Conference, Honolulu, HI, USA, 7–11
December 2009; pp. 73–82.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
http://dx.doi.org/10.14778/1920841.1920903
http://dx.doi.org/10.1109/MASCOTS.2011.12
http://dx.doi.org/10.1007/s00607-018-0634-5
http://carfield.com.hk:8080/document/distributed/hadoop-security-design.pdf
https://hadoop.apache.org/docs/r1.2.1/service_level_auth.html
https://hadoop.apache.org/docs/r1.2.1/service_level_auth.html
http://dx.doi.org/10.1016/j.cie.2018.02.006
http://dx.doi.org/10.1016/j.procs.2015.05.179
http://dx.doi.org/10.1016/j.jvlc.2018.04.001
http://dx.doi.org/10.1002/cpe.3736
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SHIYF Design and Implementation
	SHIYF Design
	SHIYF Implementation
	SHIYF ContainerAllocator
	SHIYF Speculator
	SHIYF Security Control
	SHIYF State Management

	Theoretical Derivation
	Theoretical Arithmetic
	Theoretical Results

	SHIYF Experiments
	WordCount Benchmark
	Execution Results of SHIYF
	Malicious Node Detection Ratio of SHIYF
	Resource Utilization of SHIYF

	TestDFSIO Benchmark
	Execution Results of SHIYF
	Influence of SHIYF to Network Throughput
	Influence of SHIYF to HDFS

	MRBench Benchmark
	Execution Results of SHIYF
	Malicious Node Location of SHIYF

	Conclusions and Future Work
	
	References

