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Abstract: Cloud computing is becoming a powerful parallel data processing method, and it can
be adopted by many network service providers to build a service framework. Although cloud
computing is able to efficiently process a large amount of data, it can be attacked easily due to its
massively distributed cluster nodes. In this paper, we propose a secure and high-integrity YARN
framework (SHIYF), which establishes a close relationship between speculative execution and the
security of Yet Another Resource Negotiator (YARN, MapReduce 2.0). SHIYF computes and compares
the MD5 hashes of the intermediate and final results in the MapReduce process by launching the
speculative executions in a certain ratio, which is able to find actual and potentially malicious nodes
in the Hadoop cluster. The prototype of SHIYF is implemented based on Hadoop 2.8.0. In this paper,
theoretical derivations and experiments show that SHIYF not only guarantees the security and high
integrity of the MapReduce process but also successfully locates the malicious nodes and the potential
malicious ones in Hadoop, while increasing overhead slightly. Furthermore, the malicious node
detection ratio is more than 87%.
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1. Introduction

With the rapid development of hardware, software, and high-speed networks, many cloud
service providers (e.g., Google and Amazon) are establishing increasing cloud computing (CC) [1,2]
realities around the world, as shown in Figure 1. However, many organizations and customers remain
reluctant to accept CC because of security issues [3,4]. Therefore, solving relevant security problems
has considerable significance for the long-term development of CC [5].

Some safety precautions are already eliciting attention [6]. For instance, Gartner et al. identified
seven security issues of CC that must be solved [7]. Grobauer et al. discussed the security vulnerabilities
of the cloud platform [8]. Jansen et al. proposed guidelines on privacy in public CC [9]. Furthermore,
the security guidance of CC is published by the Cloud Security Alliance and IEEE [10].

Hadoop [11] is considered the most widely used CC platform [12], and it represents the
state-of-the-art efficient framework for processing vast amounts of distributed data [13]. However,
most researchers are still focusing on the performance and application of MapReduce rather than its
security. For example, Dawei Jiang et al. identified five design factors that affect the performance
of Hadoop [14]. Yanpei Chen et al. built the case for going beyond benchmarks for MapReduce
performance evaluations [15]. Rares Vernica et al. studied how set similarity joins can be efficiently
performed in parallel using the popular MapReduce framework [16]. A few studies have been
conducted on the security of MapReduce, such as one study that focused on Airavat, which is
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a MapReduce-based system that provides strong security and privacy guarantees for distributed
computations on sensitive data [17]. Reference [18] introduces a new privacy-preserving encoding
with “somewhat homomorphic” properties for MapReduce. In addition, some whitepapers about
security designs of Hadoop and MapReduce have been published [19–21].
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Figure 1. The deployment model of the cloud computing. 
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However, there are still several security breaches in Hadoop 2.0 as follows.

• Service identity forging. Since there is not the service certification, any malicious node can
masquerade as a security node and join Hadoop cluster to get/calculate data as long as it knows
the ResourceManager (RM) address.

• User identity forging. Because there is not the user authentication, any malicious client can fake
the user identity to get Hadoop Distributed File System (HDFS) data or do job management.

• Lack of authorization mechanism. A client can do anything, such as a job submitted by user A
can be killed by user B at will.

• Data communications are not encrypted. They are vulnerable to eavesdropping.

Yet Another Resource Negotiator (YARN, also known as MapReduce 2.0/MRv2) is one of the key
features in the second-generation Hadoop and provides resource management and scheduling for
large-scale MapReduce environments [22]. Research on the performance or security of YARN remains
in its infancy. For example, Li Ping et al. proposed an energy-efficient service level agreement-aware
scheduling scheme that allocates an appropriate amount of resources to MapReduce applications with
YARN architecture [23]. Reference [24] presented a new methodology for determining desired hardware
and software configuration parameters for MapReduce 2.0 applications; thus, the representative
applications achieved up to 5×performance improvement. An energy-aware fair scheduling framework
based on YARN (denoted as EFS) is proposed by Shao Yanling et al., which can effectively reduce energy
consumption whilst meeting the required service level agreements (SLAs) [25]. Diarchy increases the
reliability of YARN based on the sharing and backup of responsibilities between two masters working
as peers [26]. A SECapacity scheduler was proposed for the requirement of isolating the user’s job
and data security [27]. Reference [28] proposed a novel partitioner for improving YARN performance
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(NPIY) based on Hadoop 2.6.0, which adopts an innovative parallel sampling method to distribute
intermediate data.

In Hadoop, speculative execution is equal to replication (also known as double-check),
which sacrifices space for time. Replication-based techniques mainly rely on redundant computation
resources to execute duplicated individual tasks for verifying the consistency of results [29]. W. Wei et al.
proposed a service integrity assurance framework for MapReduce (SecureMR) based on Hadoop
1.0 [30]. SecureMR provides a decentralized replication-based integrity verification scheme for ensuring
the integrity of MapReduce in open systems. Although MapReduce is a programming model for data
processing on YARN, executing duplicated tasks (using speculative execution in Hadoop 2.0) is still an
effective way to prevent service identity forging for identifying the malicious nodes in Hadoop cluster.

In this paper, we focus on improving the security of YARN. A secure and high-integrity YARN
framework (SHIYF) is proposed by extending Hadoop 2.8.0. Sacrificing space for security is the
key idea of SHIYF. Extensive theoretical derivations and experiments are performed to prove the
framework’s validity, security, and malicious node detection efficiency. The main contributions are
summarized as follows.

1. Speculative execution is used for Hadoop YARN security.
2. Some significant security improvements are made to Hadoop 2.0 in SHIYF, such as ensuring

the correctness of MRv2 results and locating the malicious nodes and the potential ones in the
Hadoop cluster.

3. A prototype of SHIYF is implemented based on Hadoop 2.8.0.
4. Results of theoretical derivations show that SHIYF adds 30% speculative tasks in the MRv2 job

and achieves a malicious node detection ratio of more than 90%.
5. Experiment results show that SHIYF can ensure the security of MRv2 services while increasing

overhead slightly. Moreover, the malicious node detection ratio is between 87% and 93.3%.
6. This finding is in line with the expectation of theoretical derivation.

The remainder of the paper is organized as follows. In the next section, we introduce the SHIYF
design and implementation in detail. Section 3 provides the theoretical derivations. Section 4 reports
the experimental results of SHIYF and compares them with the theoretical results. Section 5 contains
the conclusions and prospects for future work.

2. SHIYF Design and Implementation

2.1. SHIYF Design

Given that SHIYF verified the validity of the intermediate and final results generated by Map and
Reduce in a programming model, more TaskAttempts launched the speculative executions in a certain
ratio, in contrast with YARN. These additional TaskAttempts executed the same tasks and computed
the MD5 Message-Digest Algorithm (MD5) hashes of results. The programming model of SHIYF is
shown in Figure 2.

Electronics 2019, 8, 548 3 of 28 

 

In Hadoop, speculative execution is equal to replication (also known as double-check), which 

sacrifices space for time. Replication-based techniques mainly rely on redundant computation 

resources to execute duplicated individual tasks for verifying the consistency of results [29]. W. Wei 

et al. proposed a service integrity assurance framework for MapReduce (SecureMR) based on Hadoop 

1.0 [30]. SecureMR provides a decentralized replication-based integrity verification scheme for 

ensuring the integrity of MapReduce in open systems. Although MapReduce is a programming model 

for data processing on YARN, executing duplicated tasks (using speculative execution in Hadoop 2.0) 

is still an effective way to prevent service identity forging for identifying the malicious nodes in Hadoop 

cluster. 

In this paper, we focus on improving the security of YARN. A secure and high-integrity YARN 

framework (SHIYF) is proposed by extending Hadoop 2.8.0. Sacrificing space for security is the key 

idea of SHIYF. Extensive theoretical derivations and experiments are performed to prove the 

framework’s validity, security, and malicious node detection efficiency. The main contributions are 

summarized as follows. 

1. Speculative execution is used for Hadoop YARN security. 

2. Some significant security improvements are made to Hadoop 2.0 in SHIYF, such as 

ensuring the correctness of MRv2 results and locating the malicious nodes and the 

potential ones in the Hadoop cluster. 

3. A prototype of SHIYF is implemented based on Hadoop 2.8.0. 

4. Results of theoretical derivations show that SHIYF adds 30% speculative tasks in the 

MRv2 job and achieves a malicious node detection ratio of more than 90%. 

5. Experiment results show that SHIYF can ensure the security of MRv2 services while 

increasing overhead slightly. Moreover, the malicious node detection ratio is 

between 87% and 93.3%.  

6. This finding is in line with the expectation of theoretical derivation. 

The remainder of the paper is organized as follows. In the next section, we introduce the SHIYF 

design and implementation in detail. Section 3 provides the theoretical derivations. Section 4 reports 

the experimental results of SHIYF and compares them with the theoretical results. Section 5 contains 

the conclusions and prospects for future work. 

2. SHIYF Design and Implementation 

2.1. SHIYF Design 

Given that SHIYF verified the validity of the intermediate and final results generated by Map 

and Reduce in a programming model, more TaskAttempts launched the speculative executions in a 

certain ratio, in contrast with YARN. These additional TaskAttempts executed the same tasks and 

computed the MD5 Message-Digest Algorithm (MD5) hashes of results. The programming model of 

SHIYF is shown in Figure 2. 

Job

Task Task Task

TaskAttempt TaskAttempt
TaskAttempt

（MD5）
TaskAttempt

TaskAttempt

（MD5）

TaskAttempt

（MD5）

······ 

······ 
TaskAttempt

（MD5）
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MRAppMaster is the ApplicationMaster implementation of MapReduce, which allows MapReduce
to be run directly on YARN. Its main function is to manage the life cycle of the job, including:

• Job creation, initialization, startup, and so on.
• Apply to RM for resources and reallocate resources.
• Container startup and release.
• Monitoring the operation status of the job.
• Job recovery.

In the runtime environment of SHIYF, MRAppMaster provided a set of security mechanisms,
including the secured task duplication and assignment, intermediate result check, and final results
verification. MRAppMaster could be applied to two containers to execute the same TaskAttempt
for a task by the speculative execution. When MRAppMaster received two MD5 hashes from
different containers, it would compare whether they were consistent or not. If they were the same,
then MRAppMaster considered that the task had been completed and the result was correct. Otherwise,
it applied for the third container to execute the same TaskAttempt again to verify the result. Finally,
MRAppMaster considerd two results with the same MD5 hashes as the right result. If not, then it would
judge that this task failed. Therefore, SHIYF is shown in Figure 3. Simply and clearly, an MRAppMaster
controls only one task so that three different jobs are used.
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2.2. SHIYF Implementation

In YARN, RMApp is a data structure that preserves an application life cycle in RM. Its realization
class is RMAppImpl. This class maintains an application state machine that records several application
states and state-driven events. The finite-state machine (FSM) of RMAppImpl is shown in Figure 4.
When MRAppMaster is launched, the application will enter into the core state “RUNNING.”
Every application may run several times. The transitions of states are determined by the return
values of MRAppMaster. RMApp judges that an application has failed when all RMAppAttempts
failed. Therefore, MRAppMaster is the most important module in SHIYF.
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In addition, because YARN uses the asynchronous programming model based on an event-driven
mechanism, every component is an event handler. MRAppMaster establishes the relations with other
components by the events and assigns all types of events to the corresponding schedulers. Figure 5
shows the components and the services of MRAppMaster. ContainerAllocator (CA), Speculator, Job,
Task, and TaskAttempt must be redesigned to implement SHIYF.

Electronics 2019, 8, 548 5 of 28 

 

NEW

ACCEPPTED

SUBMITTED

FINISHING

RUNNING
(MRAppMaster)

FINISHED

FAILEDKILLED

START

APP_
ACCEPTED

ATTEMPT
_FAILED

ATTEMPT_
REGISTERED

ATTEMPT_FAILED

ATTEMPT_FINISHEDATTEMPT_FINISHING

ATTEMPT_FINISHED

KILL
ATTEMPT_FINISHING

KILL
NODE_UPDATE

APP_REJECTEDAPP_REJECTED

KILL

KILL

KILL

KILL

APP_ACCEPTED
APP_REJECTED

KILL

ATTEMPT_FINISHED

ATTEMPT_FAILED

ATTEMPT_KILLED KILL
ATTEMPT_FINISHED

 

Figure 4. The finite-state machine of RMAppImpl. 

In addition, because YARN uses the asynchronous programming model based on an event-

driven mechanism, every component is an event handler. MRAppMaster establishes the relations 

with other components by the events and assigns all types of events to the corresponding schedulers. 

Figure 5 shows the components and the services of MRAppMaster. ContainerAllocator (CA), 

Speculator, Job, Task, and TaskAttempt must be redesigned to implement SHIYF. 

 

Figure 5. The components and services of MRAppMaster. 

2.2.1. SHIYF ContainerAllocator 

CA is a resource scheduler. It divides the application resource tasks into three categories, such 

as Failed Map, Reduce, and Map, from high to low priority. The workflow of SHIYF CA is as follows: 

Step 1. To add the speculative tasks in a certain ratio, the chosen Maps/Reduces and their double 

resource applications would be sent to RM at the same time. 

Step 2. If the scheduling conditions of Reduces were met, then CA would give priority to them. 

Step 3. CA would be allowed double resource occupation simultaneously in SHIYF. 

Step 4. CA would apply resources for a task again once it failed before. 

Step 5. If a task ran too slowly, the CA would apply extra resources to start its speculative task. 

Figure 5. The components and services of MRAppMaster.

2.2.1. SHIYF ContainerAllocator

CA is a resource scheduler. It divides the application resource tasks into three categories, such as
Failed Map, Reduce, and Map, from high to low priority. The workflow of SHIYF CA is as follows:

Step 1. To add the speculative tasks in a certain ratio, the chosen Maps/Reduces and their double
resource applications would be sent to RM at the same time.

Step 2. If the scheduling conditions of Reduces were met, then CA would give priority to them.
Step 3. CA would be allowed double resource occupation simultaneously in SHIYF.
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Step 4. CA would apply resources for a task again once it failed before.
Step 5. If a task ran too slowly, the CA would apply extra resources to start its speculative task.
Step 6. CA would withdraw all resource distributions to this node when it failed too many times.

In SHIYF, if a node failed more than five times, then CA would withdraw all its resource applications
and judged it as the malicious node.

The CA in SHIYF is shown in Figure 6.
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2.2.2. SHIYF Speculator

In Hadoop, the speculative execution sacrifices space for time. However, sacrificing space for
security is the key idea of SHIYF. We designed it to conduct speculative execution repeatedly for
MD5 computation and hash comparison. The corresponding event handler of speculative execution is
referred to as a speculator.

Prior to launching a new speculator in SHIYF, the redesigned MRAppMaster must check whether
the current task conforms to the following three conditions:

1. Whether the current task had already a backup task. Every task could had two speculative tasks
and a maximum of three.

2. The ratio of completed tasks was not less than MINIMUM_COMPLETE_PROPORTION_TO
_SPECULATE (5%). Only then could the Speculator had sufficient historical task information to
estimate estimatedReplacementEndTime.

3. DefaultSpeculator could launch speculative execution in a certain probability without calculating
the speculationValue.

Because when the Speculative Execution Ratio reached 30%, SHIYF could achieve a desired
malicious node detection ratio according to Section 3. We redesigned three parameters in SHIYF
as follows.

• MINIMUM_ALLOWED_SPECULATIVE_TASKS = 10. It represents the minimum number of
total speculative tasks that are allowed for a job.

• PROPORTION_TOTAL_TASKS_SPECULATABLE = 0.35. It denotes the highest percentage of
speculative tasks to the total tasks is 35%.

• PROPORTION_RUNNING_TASKS_SPECULATABLE = 0.3. It indicates the highest percentage of
speculative tasks to all running tasks is 30%.

Therefore, the number of speculative tasks that are allowed to perform in a job
(numberAllowedSpeculativeTasks) is the maximum of the following three values.

• MINIMUM_ALLOWED_SPECULATIVE_TASKS
• PROPORTION_TOTAL_TASKS_SPECULATABLE * totalTaskNumber
• PROPORTION_RUNNING_TASKS_SPECULATABLE * numberRunningTasks
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Meeting the requirements of SHIYF and limiting the number of speculative tasks in a job, which
can effectively prevent the waste of resources caused by a large number of tasks launching speculative
tasks at the same time.

2.2.3. SHIYF Security Control

To ensure the security of YARN, SHIYF should compute and compare the MD5 hashes of
intermediate and final results. This process involves three services, namely, Job, Task, and TaskAttempt.
Their communication processes in SHIYF are shown in Figure 7. Two types of tasks are used; one is the
normal task, and the other is chosen to check the MD5 hashes of results.
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To ensure the validity of results and locate the malicious nodes, Job, Task, and TaskAttempt have
the following additional functions:

• In Job, the hostnames of nodes that failed to execute tasks were recorded and written to HDFS
logs. If failure occurred more than five times, then SHIYF would consider these nodes the
malicious nodes.

• If two TaskAttempts disposed of the same data but returned the different hashes, then Task
launched the other speculative TaskAttempt to verify the result again. The node returned the
wrong hash once, it would be recorded as the potential malicious node. If the hash comparison
failed twice, then Task returned “JOB_TASK_UNCOMPLETED” to Job and restarted. Moreover,
the three nodes in this task would all be considered the potential malicious nodes.

• TaskAttempt with speculative execution should compute the MD5 hash of the result and transmit
it to Task; however, the normal one does not do that. They are highlighted in red in Figure 7.

We could find the malicious nodes and the potential ones by reviewing the logs on HDFS.
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2.2.4. SHIYF State Management

Many components and services were used in SHIYF. The FSMs of TaskAttempt, Task, and Job
should be changed accordingly to achieve SHIYF security control.

First, the FSM of SHIYF TaskAttempt is shown in Figure 8. “TA_MD5_COMPUTE” was added to the
state “RUNNING” to compute the MD5 hashes of the intermediate and final results. However, only tasks
selected to check the result validity executed the speculative tasks and MD5 hash computations.
The verification process of TaskAttempt in SHIYF is as follows:
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Step 1. TaskAttempt judged whether the task was checked based on the signature added by Job.
Step 2. TaskAttempt saved the related messages of container runtime such as LaunchTime,

trackerName, httpPort, and MD5 hash of the result.
Step 3. TaskAttempt then renewed the counter messages and informs the history server and

speculator service.
Step 4. TaskAttempt computed and transmitted the MD5 hashes to Task and informed it that this

attempt was successful.
In addition, three relevant services, “TA_UPDATE,” “TA_UPDATE/StatusUpdater,”

and “TA_CONTAINER_COMPLETED,” need to be changed accordingly to control and trigger
the state transition, as emphasized in Figure A1.

Second, the FSM of SHIYF Task is shown in Figure A2. Three important improvements are
as follows:

1. To check some task results, SHIYF need TaskAttempts and their speculative executions to run
in parallel until they completed and returned MD5 hashes. Therefore, Task in SHIYF should be
allowed two or three speculative Attempts retained at the same time, namely, Task will not kill
other corresponding Attempts when it receives “T_ATTEMPT_COMMIT_PENDING” recording
the Attempt running.

2. When Task received “T_ADD_SPEC_ATTEMPT,” it created a new speculative Attempt to run the
same task. All the tasks were chosen for checking, and their speculative executions were added the
sign “Extra_SETask” as the determined criteria of launching MD5 computation in TaskAttempt.

3. When a TaskAttempt runs successfully, Task in YARN will receive “T_ATTEMPT_SUCCEEDED”
and kill other Attempts. However, SHIYF needed to compare the MD5 hashes of the two same
TaskAttempts to ensure the validity of the results. Therefore, even if an Attempt has been
completed and the MD5 hash has been returned, Task still should wait for the other speculative
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TaskAttempts until the end. Thus, the other several relevant improvements had been occurred
as follows.

• An event “T_ATTEMPT_MD5_COMPARE” was added in “RUNNING.” This event triggered
MD5 hash comparison.

• If the first comparison failed, but the second or the third comparisons succeeded, Task would
add a “SUCCEED_FALSE” to mark the Attempt being executed successfully but returning a
wrong MD5 hash once. At the same time, Task recorded the hostnames of these TaskAttempt
machines as evidences of the potential malicious nodes.

• “TA_ATTEMPT_SUCCEEDED,” “T_ADD_SPEC_ATTEMPT,” and “T_ATTEMPT_COMMIT
_PENDING” in “SUCCEEDED” must be changed accordingly to control and trigger the
state transition.

Finally, the FSM of the SHIYF Job is shown in Figure A3. When the job entered a “RUNNING”
state, the entire event would turned into task until it returned the trigger events (e.g., JOB_TASK
_ATTEMPT_COMPLETED, JOB_MAP_TASK_RESCHEDULED, JOB_TASK_ATTEMPT_FETCH
_FAILURE, JOB_TASK_COMPLETED, and JOB_COMPLETED). The trigger events and the
corresponding states marked with red in Figure A3 must be redesigned. For instance, when SHIYF Job
received the “JOB_TASK_COMPLETED” trigger event, it not only calculated the numbers of completed
tasks, failed tasks, and killed tasks, but also recorded the hostnames of the malicious nodes and the
potential ones.

Therefore, the corresponding SHIYF ResourceManager and NodeManager implementations are
shown in Figures A4 and A5.

3. Theoretical Derivation

3.1. Theoretical Arithmetic

Although the Map speculative task and the Reduce speculative task are slightly different,
their principles are the same. Thus, we use the Map task replication as an example to show the
theoretical arithmetic.

To easily compare differences and similarities without losing generality, we set every MRv2 job
to dispose of the same size of data. Thus, the total blocks were fixed in every experiment; moreover,
the data of every block were different. Every Map task that processed only one block implied that
the number of the copied blocks was equal to the number of the replicated Map tasks. We assumed
the number of blocks (Map tasks) was b. A container was the abstraction conception of a resource set
in YARN. It would be allocated by RM and supervised by NodeManager (NM). Every task must be
executed in a container; thus, the number of containers was also b.

Despite the security in SHIYF, replicating all the MRv2 tasks by speculative executions is not
practical, because doing so consumes considerable resources and time. We introduced Execution Ratio
(Er) to indicate that b× Er blocks would be duplicated. We let N be the number of the Map speculative
tasks, then

N = b× Er (1)

If an MRv2 job involves one MRAppMaster and n containers, then m containers might be malicious
and m < n. The aims of SHIYF are to ensure the integrity of MRv2 results and find the malicious
nodes. Theoretical arithmetic will show the relationship between Detection Ratio (Dratio) and the
above parameters as follows:

Step 1. Pam denotes the probability that a malicious Map task is present in b Map tasks. It is
computed as

Pam = 1/b (2)
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Pnm is the probability that any Map task is not malicious, and it is obtained as

Pnm = 1− 1/b = 1− Pam (3)

Step 2. If N duplicated blocks are in an MRv2 job, PNs denotes the probability that all N Map tasks
are secure, then

PNs = Pnm
N = (1− Pam)

N (4)

Step 3. In case a Map task is not executed in a secure container, PNam denotes the probability that
a malicious Map speculative task occurs in N at least, then

PNam = 1− PNs = 1− (1− Pam)
N (5)

Step 4. We suppose that malicious nodes execute the vicious actions in P probability. We let Pmea

be the probability of the malicious containers (nodes) executing the vicious actions, and it is obtained as

Pmea = PNam × P = (1− PNs) × P (6)

Step 5. We can obtain the probability that the malicious nodes do not conduct the baleful behaviors.
Pmna is computed as

Pmna = 1− Pmea = 1− PNam × P (7)

Step 6. The variable t represents the number of jobs executed by MRv2. If the malicious nodes
perform the tasks correctly in t MRv2 jobs, then we can obtain this probability Pmct as

Pmct = Pmna
t = (1− Pmea)

t (8)

Step 7. In case of the malicious nodes exposing themselves in t MRv2 jobs, the probability Pmat

can be obtained by
Pmat = 1− Pmct = 1− Pmna

t (9)

Step 8. The aim of SHIYF is to find all the malicious nodes in YARN. Therefore, detection ratio
Dratio is obtained by the above derivations, then

Dratio= Pmat = 1− Pmct = 1− Pmna
t

= 1− (1− PNam × P)t

= 1−
{
1− [1− (1− Pam)

N] × P
}t

= 1−
{
1− [1− (1− 1/b)b×Er ] × P

}t
(10)

3.2. Theoretical Results

We experimented on the effects of b, P, t, and Er to the detection ratio Dratio based on the theoretical
arithmetic presented in Section 3.1.

Figure 8 shows the change of Dratio against the execution ratio Er and the number of the blocks b,
where t = 40 and P = 0.2. Dratio increases along with the increase of Er and decreases slightly with the
increase of b.

The change of Dratio against the Er and the malicious behavior probability P, where b = 20 and
t = 10, are shown in Figure 9. Evidently, Dratio increases along with the increase of P. Given a certain Er,
the presence of more malicious behaviors corresponded to the increased effectiveness of the operation
of SHIYF.
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Figure 10 shows the change of Dratio against the Er and the number of jobs t, where b = 20 and
P = 0.2. Dratio increases along with the increase of Er and t. If t = 25 and Er = 30%, then Dratio is close
to 90%.
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On the basis of the theoretical derivation results, we can draw the following conclusions:

1. The detection ratio Dratio increased with the increase in the execution ratio Er, the number of jobs
t, and the malicious action probability P.

2. The number of blocks b had a minimal impact on Dratio.
3. As long as the number of jobs t was equal or greater than 25, we could set Er at a low level (≤30%)

to achieve a desired Dratio (≥85%) when P ≥ 0.2. Moreover, the more P was, the better Dratio was.
4. Furthermore, if we combined map speculative tasks and reduce speculative tasks together, then we

could reasonably believe Dratio would be more than 90%.

In conclusion, theoretical derivation indicates that SHIYF is effective for finding malicious behaviors.
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4. SHIYF Experiments

In this section, we evaluate the security, integrity, and performance of SHIYF by conducting three
benchmark experiments: WordCount, TestDFSIO, and MRBench.

We deployed the entire SHIYF cluster with an RM node and six NM nodes. The RM machine was
equipped with one quad-core 3.9 GHz Intel Xeon E3-1280 V6 CPU, 16 GB memory, one Intel DC S3710
800 GB SSD, and 1000M NIC. Six NM machines were equipped with one quad-core 3.0 GHz Intel Core
i5-7400 CPU, 8 GB memory, one 500 GB SATA II disk, and 1000M NIC. All machines had the same
software configurations, including Ubuntu Server 16.04 LTS (64-bit), JDK 1.8.0, and Hadoop 2.8.0.

Considering the efficiency of the Hadoop cluster, the local data, and the objective of SHIYF
experiments, we configured and optimized the Hadoop cluster first as follows:

• The file replication number of HDFS (dfs.replication) was set at 2, because the experiments were
executed in a local rack. The minimum size of each file chunk was set at 256 MB to facilitate
the processing of large files. To avoid a large number of data copies from the remote machines,
the size of the split was set to equal the size of the block. A task disposes of a split.

• Given that six NM machines were equipped with one quad-core CPU, the value of
“mapred.tasktracker.tasks.maximum” was set to 4. The number of reductions equaled 1.75
× (the numbers of NMs × mapred.tasktracker.tasks.maximum), namely, 42. Then, the faster
NMs that finished their first round of reduce tasks would launch the second round of reduces
immediately, thereby indicating a much improved load balancing.

In addition, we defined three experiment scenarios as follows:

1. In Hadoop, the speculative execution was open by default.
2. In SHIYF, the 30% Map and Reduce tasks were selected randomly to check the validity of results;

thus, they will execute the speculative tasks and MD5 hash computations.
3. In SHIYF, two NMs will execute the malicious behaviors and return the wrong MD5 hashes at

20% probability, which is equivalent to the 7%–33.3% malicious nodes in the Hadoop cluster.

4.1. WordCount Benchmark

4.1.1. Execution Results of SHIYF

In the WordCount benchmark, we chose various test files and compared the time cost in three
different scenarios. To calculate big data, all the test files were greater than 256 MB and met the
minimum file block setting. The results were the average values of 25 WordCount experiments based
on Section 3. The corresponding histogram is shown in Figure 11.
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We supposed that Si was the size of one file and a was its numbers. We let Nb denote the number
of blocks, then

Nb =
The total sizes o f f iles
mapred.min.split.size

=

n∑
i=1

aSi

256M
, a = 1, 2, . . . , n. (11)

Therefore, we could obtain three conclusions:

1. In the original YARN framework, although the input paths of “60 × 1 G” are 60 times that of
“60 G,” the time cost increases slightly along with the increase of the total input paths when the
numbers of blocks are equal to 240 according to Formula (11).

2. Without the malicious nodes, the time cost of WordCount increases by approximately 9% only in
the SHIYF. A new speculative TaskAttempt is not equal to a new same task; therefore, the Job
time does not increase by 30%. The extra time costs mainly come from the communication of the
speculative TaskAttempts. By contrast, MD5 hash computing and comparing have little influence
on SHIYF.

3. When two malicious NMs are given in SHIYF, the probability of Map/Reduce tasks assigned
to them is close to 33.3% because of the load balancing of the Hadoop cluster. Furthermore,
the probability of malicious behaviors is 20%. Therefore, the increasing time is mainly due to
Task waiting for the returned values of extra speculative TaskAttempts. The increasing time cost
of SHIYF is between 16% and 20% compared with that of the original condition.

4.1.2. Malicious Node Detection Ratio of SHIYF

In this section, we verify the malicious node detection ratio of SHIYF. In SHIYF, MRAppMaster
will record time, Job_ID, the malicious node’s hostname, and right and wrong MD5 hashes in Job logs
on HDFS.

All the test files were divided into 240 blocks, with the addition of 30% speculative executions;
thus, every NM disposed 52 blocks in Map. Then, “hadoop2” and “hadoop5” were set to execute the
malicious behaviors in Map and Reduce, in 20% probability amount, to approximately 22–30 times
malicious actions. In 25 WordCount experiments, 20–30 malicious behavior records were found in the
logs. The experiment results and the malicious node detection ratio computation are shown in Table 1.

Table 1. The detection ratio of SHIYF.

Reference Value YARN
(Original)

SHIYF
(30% Duplicate)

SHIYF
(33% Malicious)

Map (block numbers) 240 312 334–342
Reduce (block numbers) 240 314 337–345

Malicious behavior (times) 0 0 22–30
Malicious behavior records (times) 0 0 20–28
The malicious nodes (hostnames) none none hadoop2, hadoop5

The potential malicious nodes (hostnames) none none hadoop1, hadoop3
Detection ratio (%) 0 0 87%–93.3%

A failed task occurs because the three MD5 hashes returned by different TaskAttempts are
inconsistent, and comparisons conducted twice are unsuccessful. Thus, Job launched the same Task
again. Furthermore, all the hostnames, comparisons, and MD5 hashes in SHIYF are recorded, and we
can obtain three conclusions as follows:

1. “Hadoop2” and “hadoop5” are the malicious nodes; “hadoop1” and “hadoop3” are the potential
malicious ones.

2. The malicious node detection ratio of SHIYF is between 87% and 93.3%. This ratio is in line with the
expected theoretical derivation shown in Figure 9 in Section 3. Therefore, “hadoop2”/“hadoop5”
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are not the malicious NMs; they executed the malicious behaviors in their container tasks only
once, and this instance was not chosen as among the verified malicious behaviors.

3. On the basis of the conclusions of theoretical derivations in Section 3, the detection ratio increases
with the increase of the execution ratio Er, the number of jobs t, and the malicious action probability
P. Consequently, we believe that SHIYF will have the better malicious node detection ratio when
it runs on a larger cluster and test data set.

4.1.3. Resource Utilization of SHIYF

In this section, we monitor the resource consumption of every machine on SHIYF, such as CPU
utilization, memory utilization, disk throughput, and network throughput. With “10 × 6 G” taken
as the example, Figures 12–14 reveal the resource consumptions of SHIYF on RM and NMs in three
situations, respectively. NMs are divided into two types: one includes MRAppMaster and Containers,
and the other includes Containers only.
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ResourceManager

In RM, ApplicationManager launches one MRAppMaster to control the Job and Scheduler that is
responsible for the communication with the NMs.

We can obtain the following conclusions from the analysis of Figure 12.

1. The addition of 30% extra speculative executions and executing MD5 hash computations and
comparisons have a weak influence on RM. Figure 12a shows that the CPU utilization of RM in
the WordCount experiment is relatively low except for the initial stage.

2. Adding 30% speculative tasks and 33.3% malicious tasks merely increases a few status monitors
to NMs and information communications between RM and NMs; memory utilization remains
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lower than 36%. Moreover, the memory utilization of RM is markedly smooth, as shown in
Figure 12b.

3. Several reference variables are recorded to show the disk influence of SHIYF on RM, including
the number of transfers per second “tps,” sectors read/written per second “rd_sec/wr_sec,”
the average size (in sectors) of the requests that were issued to the device “avgrq-sz,” the average
queue length of the requests that were issued to the device “avgqu-sz,” and so on. We take the
most representative parameter “wr_sec/s” as an example. Figure 12c shows that adding 30%
speculative tasks and MD5 comparisons has a weak influence on the disk throughput of RM.
The primary influences are found in the initial and final phases because more statuses of NMs are
transmitted to RM; thus, SHIYF evidently increases the hard disk writing of RM.

4. Total number of packets received per second “rxpck/s,” total number of packets sent per second
“txpck/s,” and data size received per second “rxkB/s,” among others, are recorded for monitoring
the network throughput. Taking “rxpck/s” as an example, Figure 12d shows that adding 30%
speculative tasks and 33.3% malicious nodes has a minimal influence on the network throughput
of RM. Only repeated computing and comparison of MD5 hashes in SHIYF increase some resource
applications and NM status reports.
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NodeManager: NM(MRAppMaster)

NMs are divided into two categories; the first includes MRAppMaster and Containers, moreover,
the second includes only Containers. Figure 13 reveals the resource utilization of NM (MRAppMaster).

We can obtain some conclusions as follows from the analysis of Figure 13.

1. The CPU utilization of NM (MRAppMaster) is shown in Figure 13a. In SHIYF, the lowest CPU
occupancy is more than 80%; moreover, the time consumption of Job is longer than that in the
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original YARN. However, their increases are under 20%, and a lower CPU utilization will occur if
SHIYF is built on more powerful clusters.

2. In three conditions the memory utilization of NM (MRAppMaster) is only slightly different,
as shown in Figure 13b.

3. Some reference parameters are recorded, such as “tps (The number of I/O per second from the
physical disk),” “rd_sec/wr_sec (The number of sectors read/write from the device per second),”
“avgqu-sz (Average IO request queue length waiting to be processed),” “util% (what percentage
of a second is devoted to I/O operations)” etc.for manifesting the influence of SHIYF on the disk
of NM (MRAppMaster). The number of sectors read from the device per second (rd_sec/s) is
the most representative one. Nevertheless, the average disk reading speeds are close in three
conditions, as shown in Figure 13c. The slight increase occurred because NM (MRAppMaster)
launched the extra speculative tasks to compute and compare MD5 hashes.

4. The total number of packets transmitted per second (txpck/s) indicates the influence of SHIYF
on the network throughput of NM (MRAppMaster), as shown in Figure 13d. SHIYF increases
some network communications of NM (MRAppMaster) with RM and other NMs, while adding
30% speculative tasks and 33.3% malicious nodes, because NM (MRAppMaster) must report
more node statuses to RM and communicate with more containers. However, the extra overhead
is affordable.
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NodeManager: NM (Containers)

Figure 14 shows the resource use of another class of NMs in SHIYF.
We can obtain the following conclusions from the analysis of Figure 14:
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1. The CPU utilization of NM (Containers) is shown in Figure 14a. Compared with the CPU
utilization shown in Figure 13a, it is lower than that of NM (MRAppMaster) in three conditions
because NM (MRAppMaster) needs to manage NM, MRAppMaster, and all other containers in
the job.

2. The memory utilization of NM (Containers) is also lower than that of NM (MRAppMaster),
as shown in Figure 14). Both Figures 13b and 14b show that SHIYF has little effect on the memory
utilization of NMs.

3. Figure 14c shows the number of sectors read from the device per second (rd_sec/s) in NM
(Containers). Compared with Figure 13c, the disk throughput of NM (Containers) peaks earlier
than that of NM (MRAppMaster), and the average throughput is higher. This situation shows
that the machine on which MRAppMaster is run allocated fewer containers for dynamic load
balancing in the Hadoop cluster. However, the effect of SHIYF is weak in three conditions.

4. A comparison of Figures 13d and 14d shows that NM (Containers) also needs to report more
node statuses to RM and communicate more with NM (MRAppMaster) in SHIYF. By contrast,
the resource consumption of NM (Containers) is lower than that of NM (MRAppMaster).
Moreover, their overhead is affordable.

Finally, we can draw three conclusions from the WordCount benchmark.

1. SHIYF can locate the malicious nodes and the potential malicious ones. The malicious node
detection ratio is between 87% and 93.3%. It is in line with the expected theoretical derivation.

2. The increasing time cost of SHIYF is between 16% and 20%. Moreover, it has little effect on
increasing the resource overhead.

3. The limited computing ability of the experiment hardware may increase the time cost and resource
consumption. We trust that SHIYF will perform better as it executes a much larger range of jobs
in a more powerful Hadoop cluster. If so, SHIYF can use a lower speculative execution ratio to
achieve high malicious node detection ratios.

4.2. TestDFSIO Benchmark

4.2.1. Execution Results of SHIYF

In this section, we use TestDFSIO to test the read-and-write file system performance of SHIYF.
The intermediate results of TestDFSIO, including “tasks,” “size,” “time,” “rate,” and “sqrate,” will result
in inconformity of MD5 hashes. Considering this particularity, we should configure SHIYF based on
three different scenarios.

• In the original condition, we test the performance of the read-and-write file system of YARN
without any modification.

• In the SHIYF (30% duplicate) condition, we abolish the MD5 comparison of SHIYF temporarily
because MD5 is a simple and efficient digital digest algorithm, and no malicious nodes occur in
this condition. Moreover, SHIYF has little impact on the total job execution time, as verified in
Section 4.1.

• In the SHIYF (33.3% malicious) condition, every task chosen for checking needs to compute
and compare the MD5 hashes of the intermediate or final results. Moreover, every result of
TaskAttempt is different. Thus, we keep only the “tasks” and “size” as the Map/Reduce results to
ensure that the MD5 hashes of the same TaskAttempts that ran in the secure NMs are equal.

In addition, TestDFSIO launches a MapReduce job to read or write files. The same amount of data
is written into or read from HDFS, and four statistics are collected: throughput (mb/sec), average I/O
rate (mb/sec), I/O rate std deviation, and test exec time (sec). We executed TestDFSIO 25 times in three
conditions. The average values of the experiments are shown in Table 2.
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Table 2. The results of TestDFSIO.

TestDFSIO Statistic 1×60 G 10×6 G 20×3 G 60×1 G

WRITE
(ORIGINAL)

Throughput
(mb/sec) 3.6532858730067091 4.1495804701173095 4.5426758165430426 5.0352236239847136

Average I/O * rate(mb/sec) 3.8734657834132454 4.3471371178521935 4.7294176523151477 5.1312346348895038
I/O rate std deviation 0.430984357634622 0.951427385613907 0.615915048946195 0.445020674520458

Test exec time(sec) 2198.111 1561.544 1673.816 1890.473
READ

(ORIGINAL)
Throughput

(mb/sec) 12.970596932628902 18.046781056091405 17.784562337941026 15.858087512060852

Average I/O rate(mb/sec) 13.012415248157041 18.178287573625446 17.792148534176382 15.885178120960451
I/O rate std deviation 1.498127648219716 1.246210558435681 0.485214225977834 0.781471278556941

Test exec time (sec) 660.835 474.956 481.959 540.508
WRITE(30%

SPECULATIVE)
Throughput

(mb/sec) 4.1869146712609413 4.8050487636647159 5.1450188934706481 5.5417910116501725

Average I/O rate(mb/sec) 4.6151871263970814 4.7173163452271386 5.3504192374693026 5.9544018520531907
I/O rate std deviation 1.657201551021365 1.711504547126103 0.935136452047035 0.753113208091526

Test exec time (sec) 2371.649 1662.184 1764.051 1970.018
READ(30%

SPECULATIVE)
Throughput

(mb/sec) 12.457052964837827 17.893025372274712 17.039617160846092 14.901470746125078

Average I/O rate(mb/sec) 12.568542145289061 17.932455253601074 17.809027862581273 15.076180259014069
I/O rate std deviation 1.0519670225048039 0.5843634163160046 1.6418415710048093 0.8952104835410775

Test exec time(sec) 688.078 479.037 506.295 578.209
WRITE(33.3%
MALICIOUS)

Throughput
(mb/sec) 5.272581215418207 5.6601450830043722 6.0414721722833548 6.4590725064507841

Average I/O rate(mb/sec) 5.3641939105048191 5.9178047153028364 6.4681551987331872 7.0720323180910965
I/O rate std deviation 0.505720201569015 1.450121028363904 1.256178142824583 2.045873016820649

Test exec time (sec) 2549.196 1768.511 1836.149 2104.951
READ(33.3%
MALICIOUS)

Throughput
(mb/sec) 11.990184970451683 17.0845710814059107 16.193211574396384 14.006810615806931

Average I/O rate(mb/sec) 12.005265249203364 17.83786672858012 16.350187485045837 14.75482619974933
I/O rate std deviation 0.872031602505907 2.010804105194108 0.949113918481016 2.06249176210582

Test exec time (sec) 716.870 503.706 530.322 610.947

*I/O: Input/Output.



Electronics 2019, 8, 548 19 of 29

We can draw three conclusions.

1. In the three conditions, the read speed is much faster than the write speed. In the beginning,
with the increase in file size, the running time decreased, thereby indicating that HDFS was
highly suitable for processing large-scale reading and writing data. However, a corresponding
increase in average running time occurred along with the increase in file sizes because of the
inevitable increase in the number of cluster nodes, the complicated hardware configurations,
and other reasons.

2. Increasing speculative executions by 30% corresponds to an increased 30% TaskAttempts.
However, the speculative executions are launched with the original TaskAttempts simultaneously;
thus, the time consumption increase is under 8%, as shown in Table 3. This finding is mainly
because of the inconsistency of the TaskAttempt completion times, regardless of the “WRITE”
test or in the “READ” test.

3. In theory, adding 33.3% malicious nodes executed malicious behaviors at 20% probability is
equivalent to an increase of approximately 6.66% extra speculative executions. The time increase
occurred primarily because of the waiting time for the second speculative execution. Moreover,
the increase in the total time cost does not exceed by 16%, unlike with the original YARN.

Table 3. Temporal growth rate (test exec time).

Scenarios Temporal Growth Rate (Read) Temporal Growth Rate (Write)

YARN (original) 0 0
SHIYF (30% duplicate) 6.981% 7.895%
SHIYF (33% malicious) 13.031% 15.094%

4.2.2. Influence of SHIYF to Network Throughput

Considering location optimization in HDFS, most data are read from the local disk rather than the
network with limited bandwidth. Therefore, the read speed is faster than the write speed. The influence
of SHIYF on network throughput was computed based on the write throughput (mb/sec) in TestDFSIO
as follows:

Step 1. We assume Nt is the total node number in the SHIYF cluster. Df is the total sizes of the test
files (M). We let Ts and Thr represent the test execution time (sec) and throughput (mb/sec), respectively.
We derive Thr as

Thr =
D f

Ts ×Nt
(12)

Step 2. We suppose Nf is the number of files. Moreover, each concurrent process conducts one file
in MRv2. We let the number of concurrent processes be Np, then

Np = N f (13)

Step 3. We let Nr denote the “dfs.replication,” then Nr = 2. Thus, (Nr − 1) = 1 network transmissions
occur as one file is writing on HDFS. We assume that Nwpm is the total number of write processes in
every NM. It is computed as

Nwpm =
Np

Nr − 1
(14)



Electronics 2019, 8, 548 20 of 29

Step 4. We can obtain the formula of network throughput NThr

NThr= Thr × (Nr − 1) ×Nwpm

=
D f

Ts ×Nt
× (Nr − 1) ×

Np

Nt − 1

= 1×
D f

Ts ×Nt
×

Np

Nt − 1

(15)

Combined with Table 3, we can calculate the network throughput in three conditions, as shown in
Table 4.

Table 4. Influence of SHIYF to network throughput.

Network Throughput (mb/sec) 1 × 60 G 10 × 6 G 20 × 3 G 60 × 1 G

YARN (original) 0.609 6.916 30.285 50.352
SHIYF (30% duplicate) 0.698 8.008 34.300 55.417
SHIYF (33% malicious) 0.879 9.434 40.276 64.591

Two conclusions can be drawn as follows:

1. More files written on HDFS correspond to more copied files transmitted on the network. Therefore,
the network throughput is higher.

2. The highest network throughput is 64.591 M/s, thereby indicating that the highest growth rate
of network throughput is 28.28%. However, this value is far below the bandwidth of a gigabit
network (128 M/s). Thus, no significant bandwidth load occurs. Instead, the process improves
network bandwidth utilization.

4.2.3. Influence of SHIYF to HDFS

To examine the influence of SHIYF on HDFS, we chose “1 × 60 G” as the example due to its
execution time being the longest in TestDFSIO benchmark. The number of sectors read from/written to
NM (Containers) per second (rd_sec/s, wr_sec/s) can intuitively demonstrate the influence of SHIYF on
HDFS, as shown in Figure 15.
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We can obtain three conclusions as follows.
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1. More speculative executions correspond to more data read from or written to HDFS. However,
the changes in the curves in the three conditions were minimal; moreover, they interlaced and
partially overlapped.

2. Although SHIYF improves the use and efficiency of the disk, it does not increase the hard disk
load. The minimal change follows the ideal states in three conditions.

3. SHIYF impacts the time of TestDFSIO. However, it has no effect on the read and write performance
of HDFS.

In this section, we test SHIYF in the TestDFSIO benchmark and show the influence of SHIYF on
network throughput and HDFS. Although SHIYF strengthens the security and integrity of YARN
using the speculative executions and MD5 algorithm, it can also maintain the Input/Output (I/O)
performance of HDFS. The slight growth of network throughput and time mainly results from the
increasing speculative executions and the extra waiting time. Moreover, the overhead is affordable.

4.3. MRBench Benchmark

4.3.1. Execution Results of SHIYF

MRBench repeats a minor job many times, as specified by the user, to check whether the minor
job running on a Hadoop cluster is repeatable and efficient. MRBench is used to test the performance
to handle many minor jobs, and it has the security protection ability of SHIYF. Therefore, the times of
job repetition t are set as 10, 15, 20, 25, 30, and 40, based on Section 3. Several parameters should be set
as follows:

• inputLines = 1000. The number of every generated file is 1000 lines.
• maps = 200. 200 maps are used for each run.
• reduces = 100. The number of reduces for each run is 100.
• numRuns = 10, 15, 20, 25, 30, and 40.

The experiment results in three scenarios are shown in Figure 16. We obtain three conclusions.

1. In these three conditions, every experiment with the same configuration is executed with different
repetition times. The execution time in Figure 16 is an average value of SHIYF that conducted
the same job several times. More repetition times correspond to increased accuracy of the
execution time.

2. Adding 30% speculative executions makes the MRBench time increase by approximately 9%,
mainly due to the inconsistent completion time of TaskAttempts. Moreover, this process increases
MD5 hash computations and comparisons.

3. In the 33.3% malicious nodes condition, execution time increases by approximately 16% because
of the extra speculative TaskAttempts and the inconformity of two comparative MD5 hashes.

4.3.2. Malicious Node Location of SHIYF

MRBench is also used to test the security protection ability of SHIYF in locating malicious nodes.
We chose the experiment “t = 25” as the example following Section 4.3.1. The parameters “maps =

200” and “reduces = 100” decide that 200 + 100 = 300 tasks are used in every MRBench benchmark.
Hadoop2 and hadoop5 are two malicious nodes in the Hadoop cluster, and their probability of
exhibiting malicious behaviors is 20%. Therefore, the upper limit of malicious tasks executed by
hadoop2/hadoop5 is approximately 300/6× 20% = 10 times in MRBench. When MRBench is executed
successfully and has achieved the goal of locating the malicious nodes, the upper limit of CA that
withdraws all resource applications of the malicious nodes must be altered to 15(>10) rather than 5 in
Section 2.2.1.
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After 25 MRBench experiments were performed, we check the logs of Job and compute the average
values, as shown in Table 5. We obtain four conclusions.

1. Any malicious action record about hadoop1 is found in Job logs. Thus, it is a secure NM.
2. The average value of hadoop3/hadoop6 records is between 0 and 1, mainly because two continuous

failed MD5 hash verification records would be recorded in 25 experiments. Therefore, they might
be the potential malicious NMs. Although they were the secure NMs, they were considered the
potential malicious ones if they validated the result as the malicious NMs at the same time and
the results were inconsistent.

3. The average value of hadoop2/hadoop5 malicious behaviors is 9. We can judge them as the
malicious NMs in the Hadoop cluster. Therefore, the malicious node detection ratio of SHIYF is
at least 90% in the MRBench benchmark.

4. Not only can SHIYF achieve a high malicious node detection ratio, but it can also locate the
malicious nodes and the potential ones accurately.

Table 5. The log records in MRbench.

Reference Value hadoop2 hadoop5 hadoop1 hadoop3 hadoop6

Malicious action times ≤10 ≤10 0 0 0
Record times 9 9 0 0–1 0–1

Malicious node or
Potential Malicious node Malicious node Malicious node None Potential

Malicious node
Potential

Malicious node

5. Conclusions and Future Work

SHIYF is proposed in this paper. Through theoretical derivation, we set the relevant parameters
of SHIYF accurately and implemented the prototype framework SHIYF based on Hadoop 2.8.0.
The framework advantage of speculative execution and MD5 hash verification is that they ensure the
integrity and validity of MapReduce 2.0 results. Moreover, SHIYF is able to locate the malicious and
potentially malicious nodes in the Hadoop cluster.
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Three experiments on SHIYF adequately demonstrate its malicious node detection Dratio,
and resource consumption can achieve the expected goals. In particular, Dratio is at least 87%, while the
overhead is increased only slightly. Therefore, the proposed SHIYF will use the lower speculative
execution ratio and consumes less resources to achieve a desirable Dratio as long as it runs on a more
powerful machine cluster and disposes of more jobs.

However, adding 30% speculative tasks in SHIYF is still a few wasted resources. We will work
hard to reduce the ratio of speculative tasks and improve Dratio. Using 15% speculative execution
ratio to achieve more than 95% Dratio is a much better tradeoff between resource usage and security.
Meanwhile the efficiency of SHIYF will also be promoted. In addition, non-collusive malicious nodes
are found in the experiment environment. If several collusive attackers are found in the Hadoop cluster,
then they might return the same wrong MD5 hashes when they are incorrectly considered the secure
nodes. Therefore, our future research will focus on improving the tradeoff between performance and
security in SHIYF, moreover, preventing collusive malicious nodes.
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Appendix A

The following abbreviations are used in this paper:

YARN Yet Another Resource Negotiator
MRv2 MapReduce 2.0
HDFS Hadoop Distributed File System
SHIYF secure and high-integrity YARN framework
CC cloud computing
RM ResourceManager
NM NodeManager
FSM finite-state machine
CA ContainerAllocator
CPU Central Processing Unit
I/O Input/Output
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