A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs
Abstract
:1. Introduction
2. High-Speed E-TSPC Based Divide-by-3/4 Frequency Divider
2.1. Comparaison of Different Frequency Divider Structures
2.2. Conventional E-TSPC Based Divide-by-3/4 Frequency Dividers
2.3. The Proposed Divide-by-3/4 Frequency Divider
3. Simulation and Measurement Results
3.1. Simulation Results
3.2. Measurement Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, Z.; Liu, X.; Zhao, X.; Liu, Q.; Jin, Z.; Chi, B. A low-power NB-IoT transceiver with digital-polar transmitter in 180-nm CMOS. IEEE Trans. Circuits Syst. I Pap. 2017, 64, 2569–2581. [Google Scholar] [CrossRef]
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the 2016 IEEE wireless communications and networking conference, Doha, Qatar, 3–6 April 2016; pp. 1–5. [Google Scholar]
- Anand, S.; Routray, S.K. Issues and challenges in healthcare narrowband IoT. In Proceedings of the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 10–11 March 2017; pp. 486–489. [Google Scholar]
- Wang, X.; Büsze, B.; Vandecasteele, M.; Liu, Y.H.; Bachmann, C.; Philips, K. The design challenges of IoT: From system technologies to ultra-low power circuits. IEICE Trans. Electron. 2017, 100, 515–522. [Google Scholar] [CrossRef]
- Imani, A.; Hashemi, H. Distributed injection-locked frequency dividers. IEEE J. Solid-State Circuits 2017, 52, 2083–2093. [Google Scholar] [CrossRef]
- Jang, S.L.; Kung, T.C.; Hsue, C.W. Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach. IEEE Microwave Wireless Compon. Lett. 2017, 27, 398–400. [Google Scholar] [CrossRef]
- Chen, Y.T.; Li, M.W.; Kuo, H.C.; Huang, T.H.; Chuang, H.R. Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector. IEEE Trans. Microwave Theory Tech. 2012, 60, 60–67. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, F. 4.2 GHz 0.81 mW triple-modulus prescaler based on true single-phase clock. Electron. Lett. 2016, 52, 1007–1008. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Dai, Y.; Lv, Y. Low power cmos high-speed dual-modulus 15/16 prescaler for wireless communications. In Proceedings of the 2011 Third International Conference on Communications and Mobile Computing, Washington, DC, USA, 18–20 April 2011; pp. 397–400. [Google Scholar]
- Chen, W.H.; Jung, B. High-speed low-power true single-phase clock dual-modulus prescalers. IEEE Trans. Circuits Syst. Express Briefs 2011, 58, 144–148. [Google Scholar] [CrossRef]
- Manthena, V.K.; Do, M.A.; Boon, C.C.; Yeo, K.S. A low-power single-phase clock multiband flexible divider. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2012, 20, 376–380. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, F. A novel high-speed divide-by-3/4 prescalar. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October 2016; pp. 479–482. [Google Scholar]
- Macaitis, V.; Navickas, R. Design of High Frequency, Low Phase Noise LC Digitally Controlled Oscillator for 5G Intelligent Transport Systems. Electronics 2019, 8, 72. [Google Scholar] [CrossRef]
- Gu, Q.J.; Jian, H.Y.; Xu, Z.; Wu, Y.C.; Chang, M.C.F.; Baeyens, Y.; Chen, Y.K. CMOS prescaler (s) with maximum 208-GHz dividing speed and 37-GHz time-interleaved dual-injection locking range. IEEE Trans. Circuits Syst. Express Briefs 2011, 58, 393–397. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, H.; Gao, T.; Liu, F.; Yin, T.; Zhang, D.; Zhang, H. A 5.8-GHz wideband TSPC divide-by-16/17 dual modulus prescaler. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 194–197. [Google Scholar]
- Krishna, M.V.; Do, M.A.; Yeo, K.S.; Boon, C.C.; Lim, W.M. Design and analysis of ultra low power true single phase clock CMOS 2/3 prescaler. IEEE Trans. Circuits Syst. Regul. Pap. 2010, 57, 72–82. [Google Scholar] [CrossRef]
Structure | Maximum Operating Frequency | Power Consumption |
---|---|---|
E-TSPC | High | Small |
TSPC | Low | Small |
CML | High | Large |
ILFD | High | Large |
Work | Maximum Frequency (GHz) | Power (mW) | FoM (GHz/mW) |
---|---|---|---|
Proposed | 7.2 | 0.2248 | 32.03 |
[12] | 6.5 | 0.2384 | 27.27 |
NOR-based | 5.1 | 0.2147 | 23.75 |
MUX-based | 4.5 | 0.2466 | 18.25 |
Work | Divide Ratio | Maximum Frequency (GHz) | Power (mW) | FoM (GHz/mW) |
---|---|---|---|---|
[8] | 6/7/8 | 4.2 | 0.81 | 5.2 |
[10] | 7/8/9 | 5 | 1.6 | 3.13 |
[15] | 16/17 | 5.8 | 2.6 | 2.23 |
[16] | 2/3 | 4.9 | 0.461 | 10.6 |
[email protected] | 3/4 | 9 | 0.303 | 29.6 |
[email protected] | 3/4 | 6.9 | 0.218 | 31.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Liu, J.; Song, C.; Xu, Z. A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs. Electronics 2019, 8, 589. https://doi.org/10.3390/electronics8050589
Shen T, Liu J, Song C, Xu Z. A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs. Electronics. 2019; 8(5):589. https://doi.org/10.3390/electronics8050589
Chicago/Turabian StyleShen, Tianchen, Jiabing Liu, Chunyi Song, and Zhiwei Xu. 2019. "A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs" Electronics 8, no. 5: 589. https://doi.org/10.3390/electronics8050589
APA StyleShen, T., Liu, J., Song, C., & Xu, Z. (2019). A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs. Electronics, 8(5), 589. https://doi.org/10.3390/electronics8050589