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Abstract: This paper summarizes the details of recently proposed binary locally repairable codes
(BLRCs) and their features. The construction of codes over a small alphabet size of symbols is of
particular interest for efficient hardware implementation. Therefore, BLRCs are highly noteworthy
because no multiplication is required during the encoding, decoding, and repair processes. We
explain the various construction approaches of BLRCs such as cyclic code based, bipartite graph
based, anticode based, partial spread based, and generalized Hamming code based techniques. We
also describe code generation methods based on modifications for linear codes such as extending,
shorting, expurgating, and augmenting. Finally, we summarize and compare the parameters of the
discussed constructions.

Keywords: locally repairable codes (LRCs); locality; availability; regeneration codes; distributed
storage system; data center

1. Introduction

Efficient distributed storage systems (DSSs) are considered to be crucial infrastructure for handling
big data. These systems must be able to reliably store data over a long duration by introducing
redundancy and storing data in a distributed manner across several storage nodes, which may be
individually unreliable and could generate failures. Large data centers and peer-to-peer storage
systems such as OceanStore [1] from Berkeley and BigTable from Google [2] are famous examples of
distributed storage systems.

Owing to cost issues, large data centers also use many commercial hardware storage devices such
as hard disk drives/solid state devices (HDDs/SSDs). As a result, device failure occurs regularly,
rather than as an exception. The data are typically stored in a redundant manner to effectively protect
valuable data against potential failures. The traditional storage method for large storage services such
as cloud storage is triplication, i.e., triple replication of each symbol. For example, the Google file
system [3] and Hadoop [4] adopt this approach. However, given that triplication requires thrice the
storage space, a (14, 10) Reed–Solomon code is deployed in their warehouse cluster in the case of
Facebook [5]. Although RS codes are efficient for handling specified numbers of erasures, all of the code
symbols must be communicated and reconstructed to repair erasures. Thus, more efficient storage
methods have been actively researched, including regeneration codes (RCs), fractional repetition
codes (FRCs), and locally repairable codes (LRCs) [6–12]. RC attempts to minimize the number of
transmitted symbols, while the objective of LRC is to optimize the number of disk reads required to
repair a single lost node. In some respects, LRC is essentially a block code with an additional parameter
referred to as locality. There have been excellent reviews on the distributed storage codes (e.g., [13–16]).
Moreover, a review article on this topic has recently been published [17]. However, to the best of the
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authors knowledge, no review paper deals only with the binary LRC (BLRC) constructions, which are
practically useful.

In most of the early suggestions for LRC constructions, the alphabet size of the stored symbols
is very large. However, for efficient and convenient hardware implementation, the construction of
codes over a small alphabet size for the stored symbols is of particular interest. For example, BLRCs
are of special interest because multiplication is not necessary during the encoding, decoding, and
repair processes.

This paper summarizes the recently proposed construction of BLRCs and their features. The code
construction methods discussed in this paper are categorized as in Figure 1. The construction methods
of BLRCs are explained using cyclic code based, bipartite graph based, anticode based, partial spread
based, and generalized Hamming code based approaches. In addition, the construction of BLRCs
using modification methods for linear codes such as extending, shorting, expurgating, augmenting,
and lengthening are discussed. This paper is organized into several sections. In Section 2, the basic
concepts used in the coding techniques for distributed storage systems are introduced. In addition, the
characteristics of RC, LRC, and FRC are explained, including the meaning of locality and availability. In
Section 3, generation methods of LRCs are summarized with respect to individual types and features,
with a focus on BLRC. Finally, the main conclusions are summarized in Section 4.
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 Figure 1. Classification of binary locally repairable codes.

2. Preliminaries

2.1. Classification of Storage Codes for DSS

There are several types of codes for data storage systems such as regeneration codes, locally
repairable codes, and fractional repetition codes. Regeneration codes are a class of codes that enhance
data reliability and facilitate the efficient repair of failed nodes in distributed storage systems [18,19].
The key metric of these codes is the network bandwidth, which is intended to optimize the amount of
data communicated to repair a single failure node. In the case of node failure, it is necessary to recover
the data stored in the failed node or restore them in the replacement node. This is called repair or
regeneration of a node. During the repair process, data are typically downloaded from the remaining
nodes. In this case, downloading the entire message is a waste of network resources. Therefore,
regeneration codes are introduced to reduce the amount of downloaded data during the repair process
while retaining the storage efficiency of traditional maximum distance separable (MDS) codes.

The earliest LRCs were proposed as pyramid codes [20–22]. The formal definition of LRC
with a tradeoff between locality r and the minimum distance d first appears in [23]. LRCs focus
on optimization of the number of nodes accessed for node repair and reconstruction. These codes
are introduced in [24] and developed further in [25,26]. In addition, LRCs were recently utilized in
distributed storage systems, such as Windows Azure storage [27] and Facebook HDFS-RAID [28].
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There are several approaches for the construction of efficient storage codes for distributed storage
systems as follows:

– nonlinear codes [25,29];
– vector codes [30–32];
– codes over bounded alphabets [33];
– codes with short local MDS [24,30]; and
– codes with local regeneration [30,32].

A more detailed review of each method can be found in [17].

2.2. Locality, Recoverability, and Availability for Hot Data

Several criteria are used to evaluate the performance of distributed storage codes. This subsection
introduces the concepts and definitions of the most important ones, including locality, reliability,
and availability.

Let C be an (n, k) q-ary code of length n and dimension k over a finite field Fq. The locality of the
ith coordinate of C is r if the value of the ith symbol of a codeword of C is represented as a function
of r other coordinates, and no such set of coordinates with cardinality less than r exists. This means
that a coordinate in a linear code has locality r if it can be expressed as a linear combination of r
other coordinates. The set of such r coordinates that can repair the ith symbol is called a “repair
set”. An (n, k) code C with locality r is denoted as an (n, k, r) locally repairable code. In addition to
maximizing the distance of codewords, the maximal recoverable LRC (MR-LRC) is defined as a code
that can modify all theoretically correctable erasure patterns under locality constraints.

If the ith symbol ci in a codeword is lost, it can be recovered by reading r other symbols in the
codeword. In this case, the locality can be classified into two cases: “information locality r” if all
information symbols have locality r, and “all-symbol locality r” if all symbols have locality r. In the
case of node failure, the decoding complexity of LRCs can be decoupled from the code length n.

Other construction schemes for LRCs are intended to build codes with maximal recoverability
(MR) called MR-LRCs, or partial MDS codes. Some examples are found in [34–37]. For MR-LRCs, it is
important to not only maximize the global distance but also to correct any erasure patterns within a
theoretical bound. Therefore, they are considered as a stronger class of LRCs than optimal LRCs [37].

Another important performance criterion is availability [38–41]. Availability is a very important
feature when “hot data’ are accessed. Hot data are data that aere frequently accessed simultaneously
by many users in front-end systems. A binary linear code C of length n is called a t-available r-locally
repairable code if every coordinate i for 1 ≤ i ≤ n has at least t parity checks of disjoint r + 1 nonzero
elements. A symbol has availability t if it can be read in parallel by t disjoint groups of symbols. These
t reads have locality r if each read involves up to r symbols. Replication provides high availability for
hot data. For example, considering that replication is performed three times and each symbol can be
read in parallel three times, the availability is then t = 3 and the locality of these reads is r = 1. One
possible solution is LRC with multiple disjoint recovery sets.

There are two types of availabilities, namely information-symbol availability and all-symbol
availability. If an (n, k, r, d) LRC supports availability t for local repair on each of k information
symbols, it is referred to as an (n, k, r, t, d) LRC with information symbol availability. If an (n, k, r, d)
LRC supports availability t for all n symbols, it is referred to as an (n, k, r, t, d) LRC with all-symbol
availability [42].

3. Binary Locally Repairable Codes

When the LRCs are first introduced, there is no restriction on the field size. For the Singleton-like
bound in [31], there is an optimal construction matching for the bound of field size q > n + 1, where
the optimal LRCs are constructed using an algebraic structure. However, the coding complexity can be
significantly reduced using BLRC.
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Compared to q-ary LRCs, BLRCs are known to be advantageous in terms of implementation
in practical systems. In [43], the advantages of (n, k, d, r) = (15, 10, 4, 6) BLRC are discussed and
compared with (16, 10, 4, 5) non-binary LRC, (14,10) RS code, and three-replication with four metrics
including encoding complexity, repair complexity, mean time to data loss, and storage capacity. The
authors of [43] further analyzed the advantages of BLRCs with a high Hamming distance and average
locality [44,45]. In this section, we introduce bounds for BLRCs and various construction methods
of BLRCs.

3.1. Bounds for the Binary Locally Repairable Codes

The bounds and constructions of BLRCs are quite different from those of q-ary LRCs. For
the bound, the maximum code dimension of BLRCs is smaller than that of q-ary LRC and the
corresponding optimal construction of the former should be made by different motivations such
as easy implementation. Initially, we discuss the useful bounds for BLRCs.

Let us start with a general bound on LRC that shows a tradeoff relationship between rate k/n,
minimum distance d, and locality r [23]. For linear LRCs with information locality r, there are tradeoffs
among n, k, d, and r. Let C be an (n, k, r) LRC. Assuming that r|k and (r + 1)|n, the rate is bounded
as follows:

k
n
≤ r

r + 1
.

In addition, the minimum distance is bounded by [31]

d ≤ n− k−
⌊

k
r

⌋
+ 2,

which is called a Singleton-like bound because it is a generalization of the classical Singleton bound for
linear codes and we have the Singleton bound if r = k. It is well-known that a q-ary (n, k, d) MDS code
can achieve a Singleton bound. An optimal (n, k, r) LRC achieves the bound with equality. We can
consider two extreme cases when r = k and r = 1. For r = k, we have d ≤ n− k + 1 and an (n, k) RS
code is an (n, k, r = k) optimal LRC. For r = 1, we have d ≤ n− k− bkc+ 2 = 2( n

2 − k + 1) and the
duplication of an (n/2, k) RS code is an (n, k, r = 1) optimal LRC. Therefore, we are interested in the
case of 1 < r < k.

For the bounds of BLRCs, Cadambe–Mazumdar (C-M) [33], linear programming [46], and L-space
bounds [47,48] are introduced. The first bound, considering the alphabet size, is given as

k ≤ min
t∈Z+

[tr + k(q)opt(n− (r + 1)t, d)], (1)

where k(q)opt(n, d) denotes the largest possible dimension of an (n, k, d) linear code over Fq. The C-M
bound is often used to determine whether the given BLRC with short code length is optimal [32].
However, because the exact value of kq

opt(n, d) can only be obtained in a limited case with relatively
short code length, it is difficult to apply the C-M bound to evaluate the optimality of general BLRCs.

In addition, a linear programming bound was proposed using the Delsarte linear programming
method, which is known to be tighter than the C-M bound for BLRCs for some parameters [49].
However, both bounds are expressed in the implicit forms and, thus, it is difficult to apply these
bounds to BLRCs with long code lengths.

For an (n, k, d) linear LRC C, L-space bound was recently proposed using sphere packing [47,48].
The L-space is defined as the dual of the linear space generated by a minimum set of local parity
checks of C with overall support covering all coordinates. For an (n, k, d, r) BLRC with disjoint repair
groups, where d = 2t + 2 and n = (r + 1)l, the following bound holds for the parity of t + 1 [50].
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(i) If t + 1 is odd, we have

k ≤ rn
r + 1

−

log2

 ∑
0≤i1+...+il≤b d−1

4 c

l

∏
j=1

(
r + 1

2ij

) . (2)

(ii) If t + 1 is even, we have

k ≤ rn
r + 1

−

log2

 ∑
0≤i1+...+il≤b d−1

4 c

l

∏
j=1

(
r + 1

2ij

)
+

∑i1+...+il=
d
4

∏l
j=1 (

r+1
2ij

)

b n
t+1c

 . (3)

These bounds are advantageous in two ways compared to the previous bounds. Firstly, the
L-space bound is known to be tighter than the C-M bound for BLRCs with long code lengths. In
addition, the inequality of the bound is expressed in an explicit form, i.e., the value of the bound
is easily derived for BLRCs with long code lengths. Furthermore, the improved L-space bound is
induced with the refined packing radius for BLRCs with 4|d [50].

A bound in an explicit form for d ≥ 5 is given in [48]. For an (n, k, d) linear BLRC with locality r,
such that d ≥ 5 and 2 ≤ r ≤ n

2 − 2, it follows that

k ≤ nr
r + 1

−min
{

log2

(
1 +

rn
2

)
,

rn
(r + 1)(r + 2)

}
. (4)

In the next subsection, we introduce the construction of BLRCs with various parameters and
motivations, some of which are optimal or near-optimal with respect to the aforementioned bounds.

3.2. Classification of Binary Locally Repairable Codes

For the construction of BLRCs, various methods have been proposed based on the following:

(i) cyclic codes [51–54];
(ii) random vectors [42];
(iii) bipartite graph [44,55,56];
(iv) anticodes [57];
(v) partial spread [50,58];
(vi) generalized Hamming code [47,48]; and
(vii) modification of codes [53,59].

In the following subsections, the various types of constructions of BLRCs are summarized.

3.3. BLRCs from Cyclic Codes

Goparaju and Calderbank proposed several constructions of BLRCs from cyclic codes [51]. Cyclic
codes inherently enjoy efficient structures for encoder and decoder implementation. The q-cyclotomic
coset Mi,n is defined as

Mi,n = {iqj mod n | 1 ≤ j < a},

where a is the smallest positive integer that satisfies iqa ≡ i mod n. The defining set of an (n, k, d)
cyclic code C is defined as

DC = {i | g(αi) = 0, 0 ≤ i ≤ n− 1},

where g(x) has roots in the splitting field Fqs , n|(qs − 1). Using optimal cyclic codes in terms of the
Singleton bound, three BLRC constructions are suggested as follows.
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Construction (CC1) [51]: Let n = 2m − 1, r + 1 be a factor of n and α be a primitive element of F2m . Let C be
a cyclic code with the generator polynomial g(x) with the defining set as

DC = {j mod (r + 1) | 0 ≤ j ≤ n− 1}.

Then, C is an LRC with locality r and dimension k = rn/(r + 1).

Construction (CC2) [51]: Let n = 2m − 1 with even m, and locality r = 2. Let C be a cyclic code in which the
generator polynomial g(x) has the defining set

DC = {j mod 3 | 0 ≤ j ≤ n− 1} ∪M1,n.

Then, C is an LRC of dimension k = 2
3 (2

m − 1)−m and a distance d ≥ 6.
Construction (CC2) is shown to be distance-optimal among the set of linear codes that have

disjoint locality parity checks.

Construction (CC3) [51]: Let n = 2m − 1. Let α be a primitive element of Fq. The generator polynomial with
the defining set

DC = {j mod 3 | 0 ≤ j ≤ n− 1} ∪M1,n ∪M−1,n

can construct a BLRC that satisfies the following inequality k ≤ 2
3 (2

m − 1)− 2m for even k, d = 10, and r = 2.
The BLRC construction from the (7, 4, 3) binary Hamming code is expressed in the following construction.

Construction (CC4) [51]: For 3|m, we have 7|n when n = 2m − 1. Let C be a cyclic code in which the
generator polynomial g(x) has the defining set

DC = {j | j (mod 7) ∈ {0, 3, 5, 6}, 0 ≤ j ≤ n− 1}.

Then, C is a three-available two-local LRC with dimension k = 3n/7 and minimum distance d = 4. The
corresponding parity check polynomial h(x) is then given as

h(x) = 1 + xn/7 + x3n/7.

Extending the results in [51], Zeh and Yaakobi proposed several construction methods for BLRC
in [52]. These constructions generate BLRCs with locality 2. Construction (CC5) was based on binary
reversible codes. Let D[l]

C be the set given as {(i + l)|i ∈ DC}. Let DL be the defining set of (r + 1, r, 2)
single parity check code with one erasure correctional capability in a block of length r + 1. Then, a
BLRC can be obtained as in Construction (CC5).

Construction (CC5) [52]: For odd m, let n = 2m + 1 and 3|n. Let L be a (3, 2, 2) single parity check code
with DL = {0}, where the defining set is given as:

DC = DL ∪ D[3]
L ∪ · · · ∪ D[n−3]

L ∪M1,n = {j mod 3 | 0 ≤ j ≤ n− 1} ∪M1,n.

The corresponding code C is then an (n, k, d, r) BLRC, where k = 2
3 (2

m + 1)− 2m, d ≥ 10, and r = 2.
In addition, Construction (CC4) was extended to obtain codes with a higher Hamming distance

at the cost of a small reduction of the rate as follows:

Construction (CC6) [52]: Let n = 2m − 1 and 7|n (i.e., 3|m). Let DC be the defining set given as

DC = {j | j (mod 7) ∈ {0, 3, 5, 6}, 0 ≤ j ≤ n− 1} ∪M1,n

= {. . . ,−9,−8,−7,−4,−2,−1, 0, 3, 5, 6, 7, 10, 12, 13, . . .} ∪M1,n.
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Then, the corresponding code C is a BLRC with k = 3n/7−m, d ≥ 12, locality r = 2, and availability
t = 2.

This construction was extended to the construction of (2a − 1, a, 2a−1) simplex code L with
available (2a−1 − 1) and locality 2 as follows.

Construction (CC7) [52]: Let n = 2m − 1, which is divisible by 2a − 1 (i.e., a|m). Let L be a (2a − 1, a, 2a−1)

cyclic simplex code with the defining set given as

DL = {0, 3, 5, 6, 2a−1+1, . . . , 2a − 1} ∪M1,n.

The corresponding code C is then a BLRC with d ≥ 2a + 2a−1, r = 2, t = 2a−1 − 1, and dimension
k = a

2a−1 (2
m − 1)−m.

Another example of BLRCs was proposed by Tamo, Barg, Goparaju, and Calderbank in 2016 as in
the following construction.

Construction (CC8) [54]: Let α be an nth root of unity and let z be an integer such that (2z − 1)|n and
z ≥ 1. Then, D is an (n, k) binary cyclic code with the defining set D with the coset αG2z−1 of the group
G2z−1 =< α2z−1 >. Then, the locality of D is bound as r ≤ 2z−1 − 1. Moreover, each symbol of the codewords
in D has at least 2z−1 recovery sets Ai of size 2z−1 − 1.

A BLRC that can satisfy the explicit bound given in Equation (4) is also proposed in [60] as follows:

Construction (CC9) [60]: For (r + 1)|n, let v = n
r+1 and u = r + 1, where gcd(u, v) = 1 and u, v ≥ 2.

Let g(x) be a generator polynomial of the cyclic BLRC and β′ be the uth root of unity. Then, (uv, uv −
deg(g(x)), 4, u− 1) BLRC can be constructed using the generator polynomials given by

(i) For 2|r, g(x) = (xv + 1)g1(x), where g1(x) is the minimum polynomial of β′ over F2.

(ii) For r = 2m − 1, g(x) = (xv + 1)(x + 1)2m−1
, where m is a positive integer.

3.4. BLRCs from Random Vectors

A family of high-rate BLRCs with locality two and uneven availabilities was proposed in [42],
which requires intermediate procedures. The uneven availability is represented as an availability
profile. For its construction, a k-tuple binary column vector zk with a nonzero element at the random
position is required. Let Z(x) be a random function that converts x into a binary vector with the same
length by changing a zero element into a nonzero element. From zk, k × k square matrices Pk,l for
1 ≤ l ≤ k− 1 are constructed individually by increasing l as follows:

Pk,l =
[

Zl(zk)Zl
(1)(zk) · · · Zl

(k−1)(zk)
]

,

where Zl(zk) is generated from Zl−1(zk) by the lexicographical order of construction, and Zl
(i)(zk)

is the i circularly downward-cyclic-shifted vector of Zl(zk). Then, a k × k(k − 2) matrix Pk for the
parity part of the generator matrix in a systematic form is generated by concatenating the matrix
Pk,1, Pk,2, · · · , Pk,k−2 as follows:

Pk = [Pk,1Pk,2 · · · Pk,k−2] =
[

Z1(zk)Z1
(1)(zk) · · · Z1

(k−1)(zk) · · · Zk−2(zk)Zk−2
(1) (zk) · · · Zk−2

(k−1)(zk)
]

.

Construction (RV) [42]: Let G(n,k) denote the generator matrix of the proposed (n, k) BLRC C in a systematic
form. Then, a k× n systematic generator matrix G(n,k) is constructed as

G(n,k) = [IkPk].

It should be noted that the k× k(k− 1) generator matrix G(n,k) has a code rate of R = 1/(k− 1).
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An (n, k) BLRC code C from Construction (RV) has an all-symbol locality equal to r = 2 and the
all-symbol availability profile is given by

t = [k− 1, · · · , k− 1, 2, · · · , 2, 1, · · · , 1],

where the numbers of (k− 1)s, 2s, and 1s are k, k(k− 3), and k, respectively, and each value denotes
the availability for local repair of the ith symbol of a codeword in C.

3.5. BLRCs from Bipartite Graph

In coding theory, a Tanner graph is a bipartite graph with two sets of vertices, a set of n variable
nodes and a set of (n− k) check nodes, for the constraint of error correcting codes. Suppose that n
variable nodes are partitioned into l = n/(r + 1) groups. All variable nodes related to each group are
linked to a unique check node called the local check node and the other nodes are called the global
check nodes. Then, the constructed BLRC can achieve maximum locality r for all symbols.

Construction (BG) [44]: Let HBL = I n
r+1
⊗ 1r+1 ∈ F

n
r+1×n

2 and HBG = 1 n
r+1
⊗H(r)

0 ∈ Fdlog2(r+1)e×n
2 , where

⊗ denotes the Kronecker product, 1r+1 denotes the all-one vector of length r + 1 and H(r)
0 is the parity check

matrix of an (r + 1, r + 1− dlog2(r + 1)e) Hamming code such as H(r)
0 = (0, 1, . . . , r) ∈ Fdlog2(r+1)e×(r+1)

2 .
Then, the parity check matrix of BLRC based on a bipartite graph of parameters (n, rn

r+1 − dlog2(r + 1)e, 4, r) is
given as

H =

(
HBL
HBG

)
∈ F(n−k)×n

2 .

The minimum distance of the parity check matrix H in Construction (BG) is 4. This BLRC is
optimal in some cases. Even when it is not optimal, it is shown that this code has a near-optimal code
rate with a rate gap of O

(
log r

n

)
.

In addition, an expander graph based construction of BLRC exists [55,56]. Suppose we have two
sets V and C that satisfy the following conditions:

– |V| = n, |C| = nt
r+1 ;

– the degree of v ∈ V is t; and
– the degree of c is r + 1.

For 0 < α, γ ≤ 1, the bipartite graph G = (V ∪ C, E) is a (t, r + 1, α, tγ)-expander if for any subset
V′ ⊂ V, |V′| ≤ αn implies the size of the subset of C connected to V′ is greater than tγ|V′|. In addition,
the length of the shortest cycle of the graph G is greater than 4. As such, we can have the following
construction:

Construction (EG) [55,56]: Let HE be an m× n parity check matrix [hi,j] where 1 ≤ i ≤ m and 1 ≤ j ≤ n,
whose columns correspond to the vertices of V and the rows corresponds to the vertices of C. Then, hi,j is equal
to one if the corresponding vertices ci and vj are connected with an edge. For t < r + 1, the code CE constructed
from HE is an (n, k, δ, r, t) CE BLRC.

In Construction (EG), γ is chosen from the range [ 1
1+r , 1− 1

t ) and α is determined as a solution of
the following equation:

(t− 1)h(α)/t− h(αγ(r + 1))/r + 1− δγ(r + 1)h(
1

γ(r + 1)
) = 0,

where h(x) = −x log2 x− (1− x) log2(1− x). The probability that G is a (t, r + 1, α′, tγ) expander is
greater than 1−O(n−t(1−γ)−1) for 0 < α′ < α. In addition, the code rate is bounded by
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R ≥ 1− t
r + 1

− o(1),

where the equality holds for the case whereby HE is a full rank matrix.

3.6. BLRC from Anticode

An anticode A of length n is a code that may contain repeated codewords in Fn
2 and has an upper

bound on the distance between codewords [61]. Contrary to the minimum distance in generic error
correcting codes, the maximum distance δ is defined as the maximum Hamming distance between any
pair of codewords in A. This anticode is a core ingredient of the following BLRC.

The generator matrix GA of the anticode A is a k × n matrix, and all codewords in A can be
expressed by a linear combination of k rows of GA. If the rank of GA is γ, then each codeword in
A occurs 2k−γ times. Let As,2 be an anticode of length n = (s

2) and Hamming weight of 2 and the
columns of its generator matrix GA are all weight-2 vectors of length s.

Construction (AC1) [57]: Let Sm be a binary simplex code of length 2m − 1, dimension m, and minimum
Hamming distance 2m−1. Let Gm be the generator matrix of Sm, and let its columns consist of all possible
nonzero vectors in Fm

2 . We prepend m− s zeros to every column of GA of As,2 to construct an m× (s
2) matrix

G′A. By deleting the columns in G′A from Gm, we can construct a generator matrix G of BLRC, Cm,s,2, with
parameters (2m − (s

2)− 1, m, 2m−1 − b s2

4 c) and locality 2.
For 3 ≤ s ≤ 5, the code Cm,s,2 satisfies the C-M bound in Equation (1). Moreover, three instances

with locality r = 2 of Construction (AC1) are listed in [57]:

– The code Cm,3,2 from the anticode A3,2 is a (2m − 4, m, 2m−1 − 2) LRC.
– The code Cm,4,2 from the anticode A4,2 is a (2m − 7, m, 2m−1 − 4) LRC.
– The code Cm,5,6 from the anticode A5,2 is a (2m − 11, m, 2m−1 − 6) LRC.

Construction (AC2) [57]: Let At;2,3,...,t−1, 3 ≤ t ≤ m, be an anticode such that its generator matrix GA
consists of all columns of weight in {2, 3, . . . , t− 1}. Then, m− t zeros are prepended to every column of GA to
form an m×∑t−1

i=2 (
t
i) matrix whose columns will be deleted from Gm to obtain a generator matrix G for the code

Cm,t, which becomes a (2m − 2t + t + 1, m, 2m−1 − 2t−1 + 2) LRC with locality r = 2.
This code achieves the Griemer bound [62].

Construction (AC3) [57]: Let Am−1 be an anticode with generator matrix given by

GA =


1 0 · · · 0
0
... Gm−1

0

 ,

where Gm−1 is the generator matrix of the simplex code Sm−1. Let C be a code obtained based on the Farrell
construction using the simplex code Sm and the anticode Am−1. Then, C is a (2m−1 − 1, m, 2m−2 − 1) BLRC
with locality r = 3.

It is also shown that this code can satisfy the bound in Equation (1).

3.7. BLRCs from Partial Spread

To introduce BLRCs constructed from partial spread, the definition of partial t-spread is given.

Definition [50]: A partial t-spread of Fm
q is a collection S = {W1, . . . , Wl} of t-dimensional subspaces

of Fm
q such that Wi ∩Wj = {0} for 1 ≤ i < j ≤ l. Moreover, S is maximal if it has the largest possible

size. In particular, if ∪n
i=1Wi = Fm

q , then S is a t-spread. If t|n, a t-spread of Fm
q exists.
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Now, we can define a BLRC C with parity check matrix given by

H =

(
HL
HG

)
. (5)

Then, a BLRC C of parameters (n, k ≥ rn
r+1 − tdlog2 ne, d ≥ 2t + 2, r) can be constructed in the

following way:

Construction (PS1) [50]: Let 1n be the all-one vector of length n. Let HL = I n
r+1
⊗ 1r+1 and HG be

a tdlog2 ne × n matrix that has binary expansions of the vectors {a1, a2, . . . , an} as its columns, where
ai = (βi, β3

i , . . . , β2t−1
i )T and β1, . . . , βn are distinct elements of the finite field F2dlog2 ne . Then, the parity check

matrix of a BLRC C is given as in Equation (5).
For the further extension of Construction (PS1), the parity check matrix can be given as

H =

(
HL
HG

)
=

(
H1

L H2
L · · · Hl

L
H1

G H2
G · · · Hl

G

)
, (6)

where l = n
r+1 . For i ∈ [1, l], Hi

L is an l × (r + 1) matrix, whose ith row is the all-one vector of length
r + 1 and the other rows are all-zero vectors. Moreover, Hi

G is the ith (n− k− l)× (r + 1) submatrix
of HG = (H1

G H2
G . . . Hl

G). It is well-known that if any d− 1 columns of the parity check matrix H are
linearly independent, the minimum distance of a linear code is greater than or equal to d. Furthermore,
for a collection of any ai columns {ci

1, ci
2, . . . , ci

ai
} of Hi

G, if ∑l
i=1 ∑ai

j=1 ci
j 6= 0, then d ≤ 2t + 2, where

a1, a2, . . . , al satisfy the following two conditions:

(i) For 1 ≤ i ≤ l, ai is even, where 0 ≤ ai ≤ min{2t, r + 1}; and

(ii) 2 ≤ ∑l
i=1 ai ≤ 2t.

Then, we can construct two k-optimal (n, k, d, r) BLRCs with disjoint repair groups as in the
following construction.

Construction (PS2) [50]: Let r = 2t and {W1, . . . , Wa} be the maximum partial 2t-spread of Fs
2 . In addition,

let {e(i)1 , e(i)2 , . . . , e(i)2t }be a basis of Wi. For t ≤ 3, there exists a (2t, 2t − 2t,≥ 5) binary linear code with the
parity check matrix Hb. Let supp(x) be the set of indices corresponding to nonzero coordinates of a vector x. For
i ∈ [1, a], let T(i) be the set {0} ∪ { fi | 1 ≤ i ≤ n}, where fi = ∑j∈supp(hi)

e(i)j and hi is the ith column of Hb.

When t = 1, 2, T(i) = {0, e(i)1 , e(i)2 , . . . , e(i)2t }. Let Hi
G be an s× (2t + 1) matrix whose columns consist of the

vectors in T(i). Then, we can define a BLRC with a parity check matrix H as in Equation (6), where s
r < l ≤ a.

A set T ⊆ F is τ-wise weakly independent over F2 ⊆ F if no set T′ ⊆ T, where 2 ≤ |T′| ≤ τ, has
the sum of its elements equal to zero. Then, we have d ≥ 6, if the columns of HG satisfy the following
conditions:

(i) ci
1 + ci

2 6= 0 for 1 ≤ i ≤ l;
(ii) ci

1 + ci
2 + ci

3 + ci
4 6= 0 for 1 ≤ i ≤ l; and

(iii) ci
1 + ci

2 + cj
1 + cj

2 6= 0 for 1 ≤ i 6= j ∈ l.

Construction (PS3) [50]: Let r = 2t + 2b(t+1)/2c − 1, and {W1, W2, · · · , Wa} be a maximum partial (2t +
1)-spread of Fs

2 and the basis of Wi is {e(i)1 , e(i)2 , · · · , e(i)2t+1}. When t ≥ 3, there is a (2t + 2b(t+1)/2c − 1, 2t +

2b(t+1)/2c − 2t− 2, 5) binary linear code. Let T(i) be the same set in Construction (PS2) for 1 ≤ i ≤ a. For
t = 1, 2, T(i) is defined as {0, e(i)1 , e(i)2 , · · · , e(i)2t+1}. Let Hi

G be an s× (2t + 1) matrix whose columns consist
of the vectors in T(i). Then, a BLRC C can be constructed using a parity check matrix H in Equation (6) for
s
r < l ≤ a.

Let Aq(m, k, d) be the maximal cardinality of subspace codes over Fm
q with minimum distance d

and dimension k. Then, we can construct a BLRC as follows:
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Construction (PS4) [50]: Let n = 3l such that l 6= 22m+1−2
3 for m ≥ 2. Then, there exists an (n, k, 6, 2) BLRC

C with dimension given as

k =

{
2l − 2m, if l ∈ [A2(2m− 1, 2, 4) + 2, A2(2m, 2, 4)]

2l − 2m− 1, if l ∈ [A2(2m, 2, 4) + 1, A2(2m + 1, 2, 4)],

where it is optimal with respect to the bound in Equation (2). The following construction is nearly optimal with
respect to the bound in Equation (2).

Construction (PS5) [50]: Let {W1, W2, . . . , Wa} be a maximum partial two-spread of Fs
2 . The basis of Wi is

given as {e(i)1 , e(i)2 }. Then, a (4l,≥ 3l − s− 1,≥ 6, 3) BLRC C with parity check matrix H of the form in
Equation (6) for s+1

3 < l ≤ a can be constructed using the submatrices Hi
G for 0 ≤ i ≤ l, which is given as

Hi
G =

(
0 e(i)1 e(i)2 e(i)1 + e(i)2
1 0 0 0

)
.

Another construction based on the partial t-spread is also proposed in [58]. Let q be a prime
power and Vm(q) be the vector space of dimension m over Fq.

Construction (PS6) [50]: Given an integer r ≥ 2, determine the smallest integer t such that r + 1 ≤ t + b t
2c.

An integer m such that m+1
r ≤ l can be chosen, and there exists a partial t-spread with a size of at least l of

Vm(2). Let Bi = {bi,0, bi,1, . . . , bi,t−1} be a basis of Wi ∈ S and Ci = {ci,0, ci,1, . . . , ci,b t
2 c−1} be a set whose

elements are defined as ci,j = bi,2j + bi,2j+1 for i = 0, 1, . . . , l − 1 and j = 0, 1, . . . , b t
2c − 1. Finally, let

Ui = Bi ∪ Ci for i = 0, 1, . . . , l − 1. Let s be an integer such that m+1
r ≤ s ≤ l, and we use any r + 1 vectors

in Ui to fill each submatrix Hi
G as its r + 1 columns for i = 0, 1, . . . , s− 1. Then, the BLRC Cs,m,r has length

n = (r + 1)s, dimension k = rs−m, minimum distance d ≥ 6, and locality r.
Then, the BLRCs C4,4,2 and C5,4,2 obtained from Construction (PS6) are optimal. In addition, for

s = 4, 5, · · · , 9, the BLRCs Cs,5,2 from Construction (PS6) are almost optimal in terms of the C-M bound
and for s = 3, 4, . . . , 9, the BLRCs Cs,6,3 from Construction (PS6) are almost optimal with respect to the
C-M bound.

3.8. BLRCs from Generalized Hamming Code

Suppose that s and t are two positive integers such that 2t|s and s
2t ≥ 2. Let A be a 2t× 2t binary

parity check matrix such that any four columns of this matrix are linearly independent. For t ≤ 2, A
can be chosen as the identity matrix. For t ≥ 3, A is the parity check matrix of a (2t, 2t − 2t, 5) binary
linear code that can be built from non-primitive cyclic codes with length 2t + 1. Let β be the primitive
root of x2t+1 − 1, and let M(x) denote the minimum polynomial of β. The degree of M(x) is 2t. A′

is a parity check matrix defining the binary cyclic code with parameters (2t + 1, 2t − 2t,≥ 6) that is
generated by (x − 1)M(x). Then, the set {βt | i = −2,−1, 0, 1, 2, . . .} forms a subset of the roots of
(x − 1)M(x). By deleting one coordinate of A′, we can construct the parity check matrix A of the
punctured code with parameters (2t, 2t − 2t,≥ 5). In addition, B is defined as a matrix such that
the columns are all nonzero s

2t -tuples from F22t , with the first nonzero element equal to 1. Then, B is
an s

2t ×
2s−1
22t−1 parity check matrix of a 22t-ary Hamming code. Using the matrices A and B, a BLRC

construction is provided as follows.

Construction (GH1) [47,48]: Suppose that a1, . . . , a2t ∈ F22t are the 2t elements corresponding to the columns
of A, and the ith column of B is denoted by a vector βi for 1 ≤ i ≤ 2s−1

22t−1 . Let C be a binary linear code with the
parity check matrix given as
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H =

(
L1 L2 . . . Ll
H1 H2 . . . Hl

)
,

where l = 2s−1
22t−1 and for 1 ≤ i ≤ l, Li is an l × (2t + 1) matrix whose ith row is an all-one vector, the other

rows are all-zero vectors, and Hi is an s× (2t + 1) matrix over F2 whose columns are binary expansions of the
vectors {0, a1βi, a2βi, . . . , a2t βi}.

It is shown that this construction can satisfy the bound given in Equation (4).
The shortening for LRCs can also give us another LRC. Let C be an (n, k, d) BLRC with locality

r such that n ≥ 2(r + 1) and k ≥ 2r. Then, an (n′, k′, d′) BLRC C ′ with locality r can be obtained by
shortening C, where the parameters of C′ satisfy n′ = n− (r + 1), k′ ≥ k− r, and d′ ≥ d.

Construction (GH2) [48]: By applying the shortening of the (r + 1) times to C, we have an (n− (r + 1),≥
k− r,≥ d) BLRC.

This kind of code modification approach can be extended to the well-known code modification
methods such as extending, shorting, expurgating, augmenting, and lengthening [53], as in the
following subsection.

3.9. BLRCs from Code Modification

It is well-known that there are various code modification methods for linear codes. For BLRC,
we can also use these modification methods to generate codes with new parameters [53]. Let C be an
(n, k, d) binary code with locality r and let d⊥ be the minimum distance of its dual code, C⊥. By adding
a parity bit to each codewords in a C with parameters (n, k, d), the extended code Cext with parameters
(n + 1, k, dext) can be obtained. This can be formally presented as

Cext =

{
(c1, . . . , cn, cn + 1) | (c1, . . . , cn) ∈ C, cn+1 =

n

∑
i=1

ci

}
,

where dext = d + 1 for odd d and dext = d for even d [53]. For BLRCs, we are interested in the locality
of the derived codes for a give C with locality r. Let C⊥ext be the dual code of Cext. If the maximum
Hamming weight among codewords in the code C⊥ is n− r, then the locality of the extended code Cext

is rext = r. If the maximum Hamming weight among codewords in C⊥ is n + 1− d⊥, then the locality
of the extended code Cext is rext = d⊥ − 1. Finally, if C is an (n, k, d) cyclic code with an odd minimum
distance d, then the locality of the dual code C⊥ext in the extended code of C is r⊥ext = d [53].

The shortening can also be applied to the derivation of new BLRC. By deleting codewords in C
with nonzero values in the last coordinates and removing the last coordinates from the remaining
codewords, we can find the shortened code Cs of C. This can be formally represented as

Cs = {(c1, . . . , cn−1) | (c1, . . . , cn, 0) ∈ C}.

For an original (n, k, d) binary linear code, it is known that the parameters of the shortened code are
given as (n− 1, k− 1, ds ≥ d). Moreover, if the original code is BLRC with locality r ≥ 2, then the locality
of the shortened code Cs is r or r− 1. Let C⊥s be the dual of Cs and let d⊥ ≥ 3 be the minimum distance of
the dual code C⊥. Then, for an (n, k, d) cyclic code C, the locality of code Cs is either d⊥ − 2 or d⊥ − 1 [53].

Next, the expurgation also can be used to generate new BLRC for an (n, k, d) BLRC C with odd
weight codewords. As such, the expurgated code Cexp of C can be generated as a subcode of C by
selecting only even weight codewords such that

Cexp = {c | c ∈ C, the Hamming weight w(c) is even}.
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The corresponding parameters of Cexp are given as (n, k− 1, we), where we is the minimum Hamming
weight of the nonzero codewords in C. Let C⊥exp be the dual code of Cexp. Then, we have C⊥exp = C⊥∪C⊥ [53].

As an inverse method of the expurgation as previously described, the augmented code Ca of an
(n, k, d) code C without the all-one codeword 1 is defined as the code C ∪ {C+ all-one codeword1}whose
parameters are given as (n, k + 1, min{d, n−wmax}), where wmax is the maximum Hamming weight of
codewords in C. If the code C is cyclic, then the expurgated and augmented codes of C are also cyclic [53].

Another example of BLRC from the code modification methods is presented in [60] using the
shortened expurgated Hamming code.

Construction (SE-Hamming) [60]: Let β be a primitive element of F2m and n be a positive integer ≥ 9 and
divisible by 3 such that 2n

3 ≤ 2m − 1. Let CE is a (2m − 1, 2m −m− 2, 4) expurgated Hamming code with
the generator polynomial g(x) = (x + 1)g1(x), where g1(x) is the minimal polynomial of β over F2. Then,
a ( 2n

3 , 2n
3 − m − 1,≥ 4) shortened expurgated Hamming code CS can be generated by shortening the first

(2m − 2n
3 − 1) information bits of CE. The concatenation of CS and an (n, 2n

3 ) cyclic code with parity check
polynomial x

2n
3 + x

n
3 + 1 as an inner code then yields an (n, 2n

3 − dlog2(
2n
3 + 1)e − 1, d ≥ 6, 2) LRC CC.

3.10. Summary of BLRC Constructions

We summarize the discussed BLRC construction methods in Table 1. Generally, in Table 1, X
denotes the case that the equality of the bound is not achieved for all parameters. For the case of C-M
bound, kopt is assumed to satisfy the Singleton bound for given n and d.

Table 1. Summary of parameters of various BLRC constructions.

Codes n k d r t S C-M

CC1 2m − 1 rn/(r + 1) 2 r 1 O X

CC2 2m − 1 2
3 (2

m − 1)−m ≥ 6 2 1 X X

CC3 2m − 1 ≤ 2
3 (2

m − 1)− 2m 10 2 1 X X

CC4 2m − 1 3n/7 4 2 3 X X

CC5 2m + 1 2
3 (2

m + 1)− 2m ≥ 10 2 1 X X

CC6 2m − 1 3n/7−m ≥ 12 2 3 X X

CC7 2a − 1 a
2a−1 (2

m − 1)−m ≥ 2a−1 + 2a 2 2a−1 − 1 X X

CC8 n k 2z−1 ≤ 2z−1 − 1 1 X X

CC9 n n− deg(g(x)) 4 u− 1 1 X X

RV k2 − k k 2k− 2 2 ≥ 2 * O X

BG n rn
r+1 − dlog2(r + 1)e 4 r 1 O X

EG n k d r t O X

AC1 2m − (s
2)− 1 m 2m−1 − b s2

4 c 2 1 X O

AC2 2m − 2t + t + 1 m 2m−1 − 2t−1 + 2 2 1 X X

AC3 2m−1 − 1 m 2m−2 − 1 3 1 X O

PS1 n ≥ rn
r+1 − tdlog2 ne ≥ 2t + 2 r 1 O X

PS2 n k d 2t t O O

PS3 n k d 2t + 2b
t+1

2 c − 1 t O O

PS4 3l 2l − 3m or 2l − 2m− 1 6 2 t O O

PS5 4l ≥ 3l − s− 1 ≥ 6 3 1 O X

PS6 (r + 1)s rs−m ≥ 6 r t O X

GH1 2t + 1 2t − l − s− 1 d r t O X

GH2 n− r− 1 ≥ k− r ≥ d r t O X

SE n 2n
3 − dlog2(

2n
3 + 1)e − 1 ≥ 6 2 1 O X

* This scheme has an uneven availability represented as an availability profile.
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4. Conclusions

This paper summarizes the recently proposed constructions for BLRCs and their features.
To achieve efficient hardware implementation, the codes are constructed over the binary field because
the need for multiplications is obviated during the encoding, decoding, and repair processes. We
explain the various construction methods of BLRCs using cyclic code based, random vector based,
bipartite or expander graph based, anticode based, partial spread based, and generalized Hamming
code based approaches. In addition, construction methods of the BLRCs using code modification
methods for linear codes such as extending, shorting, expurgating, and augmenting are introduced.

We selectively review important achievements on BLRCs from the authors’ perspectives and thus
obviously the authors’ bias are reflected. Therefore, not being reviewed here does not mean it is not an
important result. Especially, we also apologize in advance for the lack of proper citation or lack of new
research results because this area is actively researched and many papers have been introduced in a
relatively short period of time.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Anticode
BG Bipartite graph
BLRC Binary locally repairable code
CC Cyclic code
C-M Cadambe–Mazumdar
DSS Distributed storage system
EG Expander graph
FRC Fractional repetition code
GH Generalized Hamming code
LRC Locally repairable code
MDS Maximum distance separable
MR Maximal recoverability
MR-LRC Maximal recoverable-LRC
PS Partial spread
RC Regeneration code
RV Random vector

References

1. Rhea, S.; Wells, C.; Eaton, P.; Geels, D.; Zhao, B.; Weatherspoon, H.; Kubiatowicz, J. Maintenance-free global
data storage. IEEE Internet Comput. 2001, 5, 40–49. [CrossRef]

2. Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.; Gruber,
R.E. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 2008, 26.
[CrossRef]

3. Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google file system. In Proceedings of the 19th ACM Symp.
Operating Systems Principles, Bolton Landing, NY, USA, 19–22 October 2003; pp. 20–43.

4. Borthakur, D. The Hadoop Distributed File System: Architecture and Design. 2007. Available online:
https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.16.0/docs/hdfs_design.pdf (accessed
on 9 April 2019).

http://dx.doi.org/10.1109/4236.957894
http://dx.doi.org/10.1145/1365815.1365816
https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.16.0/docs/hdfs_design.pdf


Electronics 2019, 8, 596 15 of 17

5. Rashmi, K.V.; Shah, N.B.; Gu, D.; Kuang, H.; Borthakur, D.; Ramchandran, K. A solution to the network
challenges of data recovery in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster. In Proceedings of the 5th USENIX Workshop on Hot Topics in Storage and File Systems,
San Jose, CA, USA, 6–9 October 2013.

6. Dimakis, A.G.; Prabhakaran, V.; Ramchandran, K. Decentralized erasure codes for distributed networked
storage. IEEE Trans. Inf. Theory 2006, 52, 2809–2816. [CrossRef]

7. Wu, Y.; Dimakis, A.G.; Ramchandran, K. Deterministic regenerating codes for distributed storage.
In Proceedings of the Annual Allerton Conference on Communication, Control, and Computing,
Urbana-Champaign, IL, USA, 18 September 2007; pp. 1–5.

8. Rashmi, K.; Shah, N.; Kumar, P.V.; Ramchandran, K. Explicit construction of optimal exact regenerating
codes for distributed storage. In Proceedings of the 47th Annual Allerton Conference on Communication,
Control, and Computing, Urbana-Champaign, IL, USA, 18 September 2009; pp. 1243–1249.

9. Kim, Y.-S.; Park, H.; No, J.-S. Construction of new fractional repetition codes from relative difference sets
with λ = 1. Entropy 2017, 19, 5637. [CrossRef]

10. Park, H.; Kim, Y.-S. Construction of fractional repetition codes with variable parameters for distributed
storage systems. Entropy 2016, 18, 441. [CrossRef]

11. Tamo, I.; Barg, A. A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 2014, 60, 4661–4676.
[CrossRef]

12. Rouayheb, S.E.; Ramchandran, K. Fractional repetition codes for repair in distributed storage systems.
In Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing,
Monticello, IL, USA, 29 September–1 October 2010; pp. 1510–1517.

13. Dimakis, A.G.; Ramchandran, K.; Wu, Y.; Suh, C. A survey on network codes for distributed storage. Proc.
IEEE 2011, 99, 476–489. [CrossRef]

14. Datta, A.; Oggier, F.E. An overview of codes tailor-made for better repairability in networked distributed
storage systems. SIGACT News 2013, 44, 89–105. [CrossRef]

15. Li, J.; Li, B. Erasure coding for cloud storage systems: A survey. Tsinghua Sci. Technol. 2013, 18, 259–272.
[CrossRef]

16. Liu, S.; Oggier, F. An overview of coding for distributed storage systems. In Network Coding and Subspace
Designs; Springer: Berlin, Germany, 2018; pp. 363–383.

17. Balaji, S.B.; Krishnan, M.N.; Vajha, M.; Ramkumar, V.; Sasidharan, B.; Kumar, P.V. Erasure coding for
distributed storage: An overview. Sci. China Inf. Sci. 2018, 61, 100301. [CrossRef]

18. Rashmi, K.V.; Shah, N.B.; Ramchandran, K.; Kumar, P.V. Regenerating codes for errors and erasures in
distributed storage. In Proceedings of the 2012 IEEE International Symposium on Information Theory
Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1202–1206.

19. Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. Network coding for distributed
storage systems. IEEE Trans. Inf. Theory 2010, 56, 4539–4551. [CrossRef]

20. Huang, C.; Chen, M.; Li, J. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable
data storage systems. In Proceedings of the IEEE International Symposium on Network Computing and
Applications (NCA 2007), Cambridge, MA, USA, 12–14 July 2007; pp. 79–86.

21. Huang, C.; Chen, M.; Li, J. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable
data storage systems. ACM Trans. Storage (TOS) 2013, 9, 3:1–3:28. [CrossRef]

22. Oggier, F.; Datta, A. Self-repairing homomorphic codes for distributed storage systems. In Proceedings of
the IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1215–1223.

23. Gopalan, P.; Huang, C.; Simitci, H.; Yekhanin, S. On the locality of codeword symbols. IEEE Trans. Inf. Theory
2012, 58, 6925–6934. [CrossRef]

24. Prakash, N.; Kamath, G.M.; Lalitha, V.; Kumar, P.V. Optimal linear codes with a local-error-correction
property. In Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT
2012), Cambridge, MA, USA, 1–6 July 2012; pp. 2776–2780.

25. Forbes, M.; Yekhanin, S. On the locality of codeword symbols in non-linear codes. Discret. Math. 2014, 324,
78–84. [CrossRef]

26. Tamo, I.; Papailiopoulos, D.S.; Dimakis, A.G. Optimal locally repairable codes and connections to matroid
theory. IEEE Trans. Inf. Theory 2016, 62, 6661–6671. [CrossRef]

http://dx.doi.org/10.1109/TIT.2006.874535
http://dx.doi.org/10.3390/e19100563
http://dx.doi.org/10.3390/e18120441
http://dx.doi.org/10.1109/TIT.2014.2321280
http://dx.doi.org/10.1109/JPROC.2010.2096170
http://dx.doi.org/10.1145/2447712.2447735
http://dx.doi.org/10.1109/TST.2013.6522585
http://dx.doi.org/10.1007/s11432-018-9482-6
http://dx.doi.org/10.1109/TIT.2010.2054295
http://dx.doi.org/10.1145/2435204.2435207
http://dx.doi.org/10.1109/TIT.2012.2208937
http://dx.doi.org/10.1016/j.disc.2014.01.016
http://dx.doi.org/10.1109/TIT.2016.2555813


Electronics 2019, 8, 596 16 of 17

27. Calder, B.; Wang, J.; Ogus, A.; Nilakantan, N.; Skjolsvold, A.; McKelvie, S.; Xu, Y.; Srivastav, S.; Wu, J.; Simitci,
H.; et al. Windows Azure storage: A highly available cloud storage service with strong consistency. In
Proceedings of the 23th ACM Symposium Operating Systems Principles (SOSP’11), Cascais, Portugal, 23–26
October 2011; pp. 143–157.

28. Mehrabi, M.; Ardakani, M.; Khabbazian, M. Minimizing the update complexity of Facebook HDFS-RAID
locally repairable code. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall),
Toronto, ON, Canada, 24–27 September 2017; pp. 1–5.

29. Papailiopoulos, D.; Dimakis, A.G. Distributed storage codes through Hadamard designs. In Proceedings of
the IEEE International Symposium on Information Theory Proceedings (ISIT 2011), St. Petersburg, Russia,
31 July–5 August 2011; pp. 1230–1234.

30. Silberstein, N.; Rawat, A.S.; Koyluoglu, O.O.; Vishwanath, S. Optimal locally repairable codes via rank-metric
codes. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey,
7–12 July 2013; pp. 1819–1823.

31. Papailiopoulos, D.S.; Dimakis, A.G. Locally repairable codes. IEEE Trans. Inf. Theory 2014, 60, 5843–5855.
[CrossRef]

32. Kamath, G.M.; Prakash, N.; Lalitha, V.; Kumar, P.V. Codes with local regeneration and erasure correction.
IEEE Trans. Inf. Theory 2014, 60, 4637–4660. [CrossRef]

33. Cadambe, V.R.; Mazumdar, A. Bounds on the size of locally recoverable codes. IEEE Trans. Inf. Theory 2015,
61, 5787–5794. [CrossRef]

34. Chen, M.; Huang, C.; Li, J. On the maximally recoverable property for multi-protection group codes. In
Proceedings of the IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp.
486–490.

35. Blaum, M.; Hafner, J.L.; Hetzler, S.; Partial-MDS codes and their application to RAID type of architectures.
IEEE Trans. Inf. Theory 2013, 59, 4510–4519. [CrossRef]

36. Gopalan, P.; Huang, C.; Jenkins, B.; Yekhanin, S. Explicit maximally recoverable codes with locality. IEEE
Trans. Inf. Theory 2014, 60, 5245–5256. [CrossRef]

37. Martinez-Penas, U.; Kschischangm, F.R. Universal and dynamic locally repairable codes with maximal
recoverability via sum-rank codes. In Proceedings of the 2018 56th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, 2–5 October 2018; pp. 792–799.

38. Shah, N.B.; Lee, K.; Ramchandran, K. When do redundant requests reduce latency? In Proceedings of the
51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 2–4
October 2013; pp. 731–738.

39. Joshi, G.; Liu, Y.; Soljanin, E. On the delay-storage trade-off in content download from coded distributed
storage systems. IEEE J. Sel. Areas Commun. 2014, 32, 989–997. [CrossRef]

40. Liang, G.; Kozat, U. Tofec: Achieving optimal throughput-delay trade-off of cloud storage using erasure
codes. In Proceedings of the IEEE Conference Computer Communication (IEEE INFOCOM), Toronto, ON,
Canada, 27 April–2 May 2014; pp. 826–834.

41. ARawat, S.; Papailiopoulos, D.S.; Dimakis, A.G.; Vishwanath, S. Locality and availability in distributed
storage. IEEE Trans. Inf. Theory 2016, 62, 4481–4493.

42. Lee, K.-S.; Park, H.; No, J.-S. New binary locally repairable codes with locality 2 and uneven availabilities for
hot data. Entropy 2018, 20, 636. [CrossRef]

43. Shahabinejad, M.; Khabbazian, M.; Ardakani, M. An efficient binary locally repairable codes for Hadoop
distributed file system. IEEE Commun. Lett. 2014, 18, 1287–1290. [CrossRef]

44. Shahabinejad, M.; Khabbazian, M.; Ardakani, M. A class of binary locally repairable codes. IEEE Trans.
Commun. 2016, 64, 3182–3193. [CrossRef]

45. Shahabinejad, M.; Khabbazian, M.; Ardakani, M. On the average locality of locally repairable codes. IEEE
Trans. Commun. 2018, 66, 2773–2783. [CrossRef]

46. Hu, S.; Tamo, I.; Barg, A. Combinatorial and LP bounds for LRC codes. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT 2016), Barcelona, Spain, 10–15 July 2016; pp.
1008–1012.

47. Wang, A.; Zhang, Z.; Lin, D. Bounds and constructions for linear locally repairable codes over binary fields.
In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30
June 2017; pp. 2033–2037.

http://dx.doi.org/10.1109/TIT.2014.2325570
http://dx.doi.org/10.1109/TIT.2014.2329872
http://dx.doi.org/10.1109/TIT.2015.2477406
http://dx.doi.org/10.1109/TIT.2013.2252395
http://dx.doi.org/10.1109/TIT.2014.2332338
http://dx.doi.org/10.1109/JSAC.2014.140518
http://dx.doi.org/10.3390/e20090636
http://dx.doi.org/10.1109/LCOMM.2014.2332491
http://dx.doi.org/10.1109/TCOMM.2016.2581163
http://dx.doi.org/10.1109/TCOMM.2017.2712186


Electronics 2019, 8, 596 17 of 17

48. Wang, A.; Zhang, Z.; Lin, D. Bounds for binary linear locally repairable codes via a sphere-packing approach.
IEEE Trans. Inf. 2019. [CrossRef]

49. Agarwal, A.; Barg, A.; Hu, S.; Mazumda, A.; Tamo, I. Combinatorial alphabet-dependent bounds for locally
recoverable codes. IEEE Trans. Inf. 2018, 64, 3481–34928. [CrossRef]

50. Ma, J.; Ge, G. Optimal binary linear locally repairable codes with disjoint repair groups. arxiv 2017,
arxiv:1711.07138v1.

51. Goparaju, S.; Calderbank, R. Binary cyclic codes that are locally repairable. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014, pp. 676–680.

52. Zeh, A.; Yaakobi, E. Optimal linear and cyclic locally repairable codes over small fields. In Proceedings of
the IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

53. Huang, P.; Yaakobi, E.; Uchikawa, H.; Seigel, P.H. Binary linear locally repairable codes. IEEE Trans. Inf.
2016, 62, 6268–6283. [CrossRef]

54. Tamo, I.; Barg, A.; Goparaju, S.; Calderbank, R. Cyclic LRC codes, binary LRC codes, and upper bounds on
the distance of cyclic codes. Int. J. Inf. Coding Theory 2016, 3, 345–364. [CrossRef]

55. Tamo, I.; Barg, A.; Frolov, A. Bounds on the parameters of locally recoverable codes. IEEE Trans. Inf. Theory
2016, 62, 3070–3083. [CrossRef]

56. Kruglik, S.; Nazirkhanova, K.; Frolov, A. New bounds and generalizations of locally recoverable codes with
availability. IEEE Trans. Inf. Theory 2019. [CrossRef]

57. Silberstein, N.; Zeh, A. Optimal binary locally repairable codes via anticodes. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 1247–1251.

58. Nam, M.Y.; Song, H.Y. Binary locally repairable codes with minimum distance at least 6 based on partial
t-spreads. IEEE Commun. Lett. 2017, 21. 1683–1686. [CrossRef]

59. Kim, C.; No, J.-S. New constructions of binary LRCs with disjoint repair groups and locality 3 using existing
LRCs. IEEE Commun. Lett. 2019, 23, 406–409. [CrossRef]

60. Kim, C.; No, J.-S. New constructions of binary and ternary locally repairable codes using cyclic codes. IEEE
Commun. Lett. 2018, 22, 228–231. [CrossRef]

61. Farrell, P. Linear binary anticodes. Electron. Lett. 1970, 6, 419–421. [CrossRef]
62. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North Holland: Amsterdam,

The Netherlands, 1988; p. 547.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIT.2019.2895315
http://dx.doi.org/10.1109/TIT.2018.2800042
http://dx.doi.org/10.1109/TIT.2016.2605119
http://dx.doi.org/10.1504/IJICOT.2016.079496
http://dx.doi.org/10.1109/TIT.2016.2518663
http://dx.doi.org/10.1109/TIT.2019.2897705
http://dx.doi.org/10.1109/LCOMM.2017.2697424
http://dx.doi.org/10.1109/LCOMM.2019.2892950
http://dx.doi.org/10.1109/LCOMM.2017.2776141
http://dx.doi.org/10.1049/el:19700293
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries 
	Classification of Storage Codes for DSS
	Locality, Recoverability, and Availability for Hot Data

	Binary Locally Repairable Codes
	Bounds for the Binary Locally Repairable Codes
	Classification of Binary Locally Repairable Codes
	BLRCs from Cyclic Codes
	BLRCs from Random Vectors
	BLRCs from Bipartite Graph
	BLRC from Anticode
	BLRCs from Partial Spread
	BLRCs from Generalized Hamming Code
	BLRCs from Code Modification
	Summary of BLRC Constructions

	Conclusions
	References

