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Abstract

:

The residue number system (RNS) is a non-positional number system that allows one to perform addition and multiplication operations fast and in parallel. However, because the RNS is a non-positional number system, magnitude comparison of numbers in RNS form is impossible, so a division operation and an operation of reverse conversion into a positional form containing magnitude comparison operations are impossible too. Therefore, RNS has disadvantages in that some operations in RNS, such as reverse conversion into positional form, magnitude comparison, and division of numbers are problematic. One of the approaches to solve this problem is using the diagonal function (DF). In this paper, we propose a method of RNS construction with a convenient form of DF, which leads to the calculations modulo 2n, 2n−1 or 2n+1 and allows us to design efficient hardware implementations. We constructed a hardware simulation of magnitude comparison and reverse conversion into a positional form using RNS with different moduli sets constructed by our proposed method, and used different approaches to perform magnitude comparison and reverse conversion: DF, Chinese remainder theorem (CRT) and CRT with fractional values (CRTf). Hardware modeling was performed on Xilinx Artix 7 xc7a200tfbg484-2 in Vivado 2016.3 and the strategy of synthesis was highly area optimized. The hardware simulation of magnitude comparison shows that, for three moduli, the proposed method allows us to reduce hardware resources by 5.98–49.72% in comparison with known methods. For the four moduli, the proposed method reduces delay by 4.92–21.95% and hardware costs by twice as much by comparison to known methods. A comparison of simulation results from the proposed moduli sets and balanced moduli sets shows that the use of these proposed moduli sets allows up to twice the reduction in circuit delay, although, in several cases, it requires more hardware resources than balanced moduli sets.
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1. Introduction


The residue number system (RNS) is a non-positional number system that allows large length numbers to be presented as numbers in independent bits of a small length, which enables computations and the organizing of their parallelisms to be sped up. RNS has several advantages, such as the possibility of faster addition and multiplication compared to all other number systems. Moreover, the use of short numbers in RNS computations can significantly reduce the power consumption of digital devices [1]. It is useful in the synthesis of RNS computational devices with parallel structure, such as field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC). All these attractive features increase interest to RNS in the areas where large amounts of computation are needed. The applications of RNS are digital signal processing [2,3,4], cryptography [5,6,7], digital image processing [8], cloud computing [9], Internet of Things [10] and others. In [11], the authors propose a technique to estimate real-valued numbers by means of the Chinese remainder theorem (CRT), employing for this goal a Kroenecker based M-Estimation, to improve robustness. A new method based on the Chinese remainder theorem (CRT) is proposed for absolute position computation in [12]. This has advantages in terms of hardware and flexibility because it does not use memory. The authors of [13] offer to use RNS to improve the performance of the convolutional neural network developed for pattern recognition tasks. Reference [14] describes the method of construction for finite impulse response filers using RNS.



However, the limitations of RNS include some operations such as reverse conversion into positional form, magnitude comparison and division of numbers in RNS [15,16]. These limitations exist because RNS is a non-positional number system, and magnitude comparison of numbers in RNS form is impossible, so the division operation consists of a magnitude comparison operation that is also a problematic operation. Improving the efficiency of the comparison operation in RNS is something that can be used in the development of new approaches to the implementation of other problematic operations in RNS, such as subtraction-based division and the detection of dynamic range overflow. Dynamic range overflow detectors in RNS are widely applied in the design of fault-tolerant systems and secure communication channels [17].



The state-of-the-art in the described problem is as follows. The most common approaches to performing non-modular RNS operations are based on mixed radix conversion (MRC) and the Chinese remainder theorem (CRT) [1,18]. Another class of approaches to perform magnitude comparison in RNS, which is based on the core functions defined from the RNS to the integer [19], was first proposed Akushskii et al. [20]. Recently new alternatives have been developed for the implementation of the non-modular RNS operations problem. These approaches are the use of CRT with fractional values (CRTf) [21] and diagonal function (DF) [22,23]. References [24] and [25] demonstrate that the use of DF has a significant drawback in the necessity to perform modulo sum of quotients (SQ) operations. The authors of these papers show that DF usually does not provide advantages in comparison with MRC and CRT. Therefore, in this paper, we will discuss the issue of constructing RNS with a convenient form of DF, which leads to the calculations modulo 2n, 2n−1 or 2n+1 since the numbers of this form have very effective methods of hardware implementation, as designed in [26,27,28]. How balanced the moduli set is plays an important role in this method. Table 1 shows samples of known moduli sets.



The proposed approach to the construction of RNS can be effective in those applications in which the comparison operation is a significant part of the calculations. One of the examples of such an application is the motion estimation on video, estimated by using high-efficiency video coding (HEVC/H.265) [38]. Another example of a such application is customized signal processing units. For example, the sorting network uses a large number of comparators and is one of the key elements in electronic finance data management systems, digital computers and communication systems [39]. Due to the excessive number of magnitude comparisons required in sorting a large pool of data, the speed of the magnitude comparator determines the overall delay of the sorting process [35].



The rest of the paper is organized as follows. Section 2 discusses RNS issues, represented numbers, and arithmetic operations in RNS. The Section 3 presents the construction of RNS with a convenient form of DF and the results of the hardware simulation of magnitude comparison and reverse conversion into the positional form using CRT, CRTf, and DF. Section 4 discusses the methods of RNS construction presented in this paper and hardware simulation results. The conclusion of the paper is reported in Section 5.




2. Materials and Methods


2.1. Background on RNS


Numbers in RNS are represented in the form of relatively prime numbers which are called moduli β={m1,…,mk}, GCD(mi,mj)=1, for i≠j. Any integer number 0≤X<M=∏i=1kmi can be uniquely represented in RNS as a tuple {x1,x2,…,xk}, where xi=|X|mi=X mod mi. Operations of addition, subtraction, and multiplication in RNS are defined by the formulas showing the carry-free parallel nature of RNS:


A±B=(|a1±b1|m1,…,|an±bn|mn), A×B=(|a1×b1|m1,…,|an×bn|mn)



(1)







The reverse conversion of a number X from residues {x1,x2,…,xk} is based on CRT


X=|∑i=0n||Mi−1|mixi|miMi|M,



(2)




where Mi=M/mi, γi=|Mi−1|mi and |Mi−1|mi means a multiplicative inverse of Mi modulo mi.



The DF is defined as


D(X)=|∑i=1nkixi|SQ,



(3)




where SQ=∑i=1nMi is called the “diagonal modulus” of the RNS and ki=|−mi−1|SQ. The principles of applying the DF for reverse conversion and numbers comparison are thoroughly shown in [24] and [25]. Reverse conversion using DF can be implemented by the formula


X=M⋅D(X)+∑i=1nxiMiSQ,



(4)




In [25], magnitude comparison is presented using DF. The work uses the magnitude comparison Algorithm 1 of X and Y, presented in [22], which relies on the following properties of the DF.





	Algorithm 1. Magnitude comparison using DF [22].



	Input:X={x1,x2,…,xn}, Y={y1,y2,…,yn}, k={k1,…,kn}, SQ;

Variable:Dx, Dy;

Calculations:

Dx=0; Dy=0;

fori=0,n−1¯ do

Dx=|Dx+kixi|SQ;

Dy=|Dy+kiyi|SQ;

end for;

if Dx<Dy then

return ("X<Y");

else

if Dx>Dy then

return ("X>Y");

else

if x1<y1 then

return ("X<Y");

else

if x1>y1 then

return ("X>Y");

else

return ("X=Y");

end if;

end if;

end if;

end if;






It is obvious that the main obstacle to the development of very-large-scale integration (VLSI) architectures based on the DF is the necessity to perform modulo SQ operations. Below, we show how to construct RNS with a convenient form of DF that leads to modulo 2n, 2n−1 or 2n+1 computations.




2.2. Construction Methods of RNS with Hardware Efficient DF


The choice of the optimal moduli set is a very important question in RNS theory since it has an impact on performance and the quality of operations. In [26,27,28], authors perform high-speed architectures of modulo 2n±1 adders. The use of moduli 2n, 2n−1 or 2n+1 allows for there to be an increase in computation performance. In addition, the choice of enough RNS dynamic range is a very important question too. In [40], authors considered the influence of the RNS dynamic range on the quality of image filtering. Therefore, it is necessary to choose optimal moduli sets, so we propose the method of RNS construction with a convenient form of DF.



Let us consider two possible cases.




	
Among the RNS moduli m1, m2, …, mn there is an even one, and the others are odd. Then among M1, M2, …, Mn there is an odd one, and the others are even and therefore SQ is odd.



	
All RNS moduli m1, m2, …, mn are odd. Then all M1, M2, …, Mn are odd and parity of SQ is the same as the parity of the number of moduli n.








2.2.1. RNS with Even Module


One can suppose that m1, m2, …, mn−1 are odd and mn=2ρ(2ln+1) is even. We will choose m1, m2, …, mn in such a way to satisfy SQ=2k−1 or SQ=2k+1. We denote M0=m1m2…mn−1 and S0=M0m1+M0m2+…+M0mn−1, thus SQ=S0mn+M0. If n is odd then S0 is even and therefore S0=2ω or S0=2ω(2l0+1). If n is even then S0 is odd and S0=2l0+1.



If SQ=2k−1 then three cases are possible


2k−1=M0+2ω2ρ(2ln+1) or



(5)






2k−1=M0+2ω(2l0+1)2ρ(2ln+1) or



(6)






2k−1=M0+(2l0+1)2ρ(2ln+1).



(7)




Hence


2k=M0+1+2ω2ρ(2ln+1) or 



(8)






2k=M0+1+2ω(2l0+1)2ρ(2ln+1) or



(9)






2k=M0+1+(2l0+1)2ρ(2ln+1).



(10)







We choose M0 in a way that M0=m1m2…mn−1=2t−1 is a composite number and GCD(mi,mj)=1 for i≠j. Since among the 2t−1 numbers, there are composite numbers much more than prime numbers, then the choice of M0 is obviously possible. Therefore


2k=2t+2ω2ρ(2ln+1) or



(11)






2k=2t+2ω(2l0+1)2ρ(2ln+1) or



(12)






2k=2t+(2l0+1)2ρ(2ln+1).



(13)




Hence, since t<k and t≤ω+ρ we have


2k−t=1+2ω+ρ−t(2ln+1) or



(14)






2k−t=1+2ω+ρ−t(2l0+1)(2ln+1) or



(15)






2k−t=1+2ρ−t(2l0+1)(2ln+1).



(16)




Suppose that ω+ρ−t=0 or ρ−t=0. We have


2k−t=1+(2ln+1) or



(17)






2k−t=1+(2ln+1) or



(18)






2k−t=1+(2l0+1)(2ln+1).



(19)




Hence


2ln+1=2j−1, where j=1,2,3,…



(20)






or 2k−t≡1(mod(2l0+1))



(21)







Congruence (21) is solvable due to the fact that GCD(2,2l0+1)=1. If r is an order of 2 modulo 2l0+1, then k−t=rj, where j=1,2,…,n. Hence 2ln+1=2rj−12l0+1. From this, if it is necessary to find M=m1m2…mn, where mn is even and SQ=2k−1 then proceed as follows.




	
Choose a composite M0=m1m2…mn−1=2t−1.



	
Compute S0.



	
Consider the possible cases.




	
If S0=2ω then ρ=t−ω, 2ln+1=2j−1, were GCD(2j−1,mi)=1 for i=1,2,…,n−1. mn=2t−ω(2j−1), where j=1,2,3,…, GCD(2j−1,mi)=1, i=1,2,…,n−1.



	
If S0=2ω(2l0+1) then ρ=t−ω, 2ln+1=2rj−12l0+1, where GCD(2ln+1,mi)=1, i=1,2,…,n−1, and r is order of 2 modulo 2l0+1.



	
If S0=2l0+1 then ρ=t, 2ln+1=2rj−12l0+1, where GCD(2ln+1,mi)=1, i=1,2,…,n−1, and r is order of 2 modulo 2l0+1.













Example 1.

Suppose that M0=m1m2=3⋅5=24−1, t=4. Then S0=3+5=23, ω=3. m3=2ρ(2l3+1), ρ=4−3=1. 2l3+1=2j−1, j=1,2,3,…, GCD(2j−1,3)=1, GCD(2εj−1,5)=1. Examining a power of two, we have




	
21−1=1, 2l3+1=1, m3=2.



	
22−1=3, GCD(3,3)≠1.



	
23−1=7, 2l3+1=7, m3=14.



	
24−1=15, GCD(15,3)≠1.



	
25−1=31, 2l3+1=31, m3=62 etc.










Thus, we obtained the following RNS: {3,5,2}, SQ=31=25−1, {3,5,14}, SQ=127=28−1, {3,5,62}, SQ=511=29−1.



Note. For the case SQ=2k+1 one needs to take M0=2t+1. The conclusions obtained are the same as for SQ=2k−1.



Example 2.

Suppose that M0=m1m2=3⋅11=25+1, t=5. Then




	
S0=3+11=14=21⋅7, ω=1, 2l0+1=7.



	
m3=2ρ(2l3+1), ρ=5−1=4, 2r≡1(mod7), r=3j.



	
23−17=1, 2l3+1=1, m3=24⋅1=16.



	
26−17=637=9, GCD(9,3)≠1.



	
29−17=5117=73, 2l3+1=73, m3=16⋅73=1168 etc.










Thus we obtained the following RNS:{3,11,16}, S=257=28+1, {3,11,1168}, S=16385=214+1.




2.2.2. RNS with Odd Moduli


We only consider the most important practical cases, for example, when RNS contains three, four or five moduli [41].



Case 1. RNS with three moduli. In analogy with the above notations M0=m1m2, S0=m1+m2, and SQ=M0+S0m3. One can verify that S≡3(mod4). Let us see whether it is possible for the odd m1 and m2 to choose such an odd m3, such that SQ=2k−1. If S=2k−1 then 2k=S+1=M0+1+S0m3. It is clear that GCD(M0+1,S0)=2ω(2l+1). If 2l+1≠1, then the right part of equality


2k=M0+1+S0m3 or



(22)




divisible by 2l+1, and left part of Equality (22) is not divisible by 2l+1. This means that for the satisfy Equality (22) it is necessary that


GCD(M0+1,S0)=2ω.



(23)




Under Condition (23) we have


2k−ω=M0+12ω+S02ωm3,



(24)




where GCD(M0+12ω,S02ω)=1. If one of the numbers M0+12ω or S02ω is even, then (24) is impossible. Thus, for the validity of (24), it is necessary that both numbers M0+12ω and S02ω are odd.



Suppose that both conditions are performed.




	
GCD(M0+1,S0)=2ω.



	
M0+12ω and S02ω are odd.








Let us write (24) as a congruence


2k−ω≡M0+12ω(mod S02ω).



(25)







If S02ω is prime and 2 is a primitive root modulo S02ω then Congruence (25) will have solutions concerning k−ω by mod(S02ω−1). Suppose that ρ is the smallest non-negative solution of Congruence (25). Then


k−ω=ρ+(S02ω−1)t, t=0,1,2,…



(26)







And therefore 2ρ+(S02ω−1)t=M0+12ω+S02ωm3. Hence S02ωm3=2ρ+(S02ω−1)t−M0+12ω. This means that


m3=2ρ+(S02ω−1)t−M0+12ω(S02ω), t=0,1,2,…



(27)




According to the RNS definition, the number m3 must be relatively prime with m1 and m2.



If the number S02ω is prime and 2 is not a primitive root modulo S02ω then Congruence (25) may have no solutions. In addition, Congruence (25) may have no solutions if S02ω is a composite number. Thus, to construct RNS with three odd moduli and SQ=2k−1, four conditions must be fulfilled.




	
GCD(m1m2+1,m1+m2)=2ω.



	
m1m2+12ω is odd.



	
m1+m22ω is prime and not equal to 2.



	
2 is a primitive root modulo modm1+m22ω.








Note that these conditions are not sufficient, since the numbers m3 found by Formula (27) may not be relatively prime with m1 or m2.



Example 3.

Suppose that m1=3, m2=7. Then GCD(3⋅7+1,3+7)=GCD(12,10)=2, 3⋅7+12=11 is odd, 3+72=5 is prime, 2 is a primitive root modulo 5.





From the equality 2k−1=11+5m3, we obtain a congruence 2k−1≡11(mod5) which implies k−1=4t, t=1,2,… or 24t=11+5m3, m3=24t−115.



Testing of the value t gives the following result:




	
t=1 gives m3=1<2,



	
t=2 gives m3=256−115=49, GCD(49,7)≠1,



	
t=3 gives m3=4096−115=817, GCD(817,3)=1, GCD(817,7)=1.








So, we get the RNS {3,7,817} with SQ=8191=213−1.



Case 2. RNS with 4 moduli. In this case, SQ is even. Consider the problem: for m1, m2, m3 choose m4 in such a way as to SQ=2k. If we denote M0=m1m2m3, S0=m1m2+m1m3+m2m3 then S=M0+S0m4. It is clear that GCD(M0,S0)=1. From the equality 2k=M0+S0m4 follows


2k≡M0(modS0).



(28)







If S0 is prime and 2 is a primitive root modulo S0 then Congruence (28) has a solution on k. Suppose that ρ is the smallest non-negative solution of ongruence (28). Then k=ρ+(S0−1)t, t=0,1,2,…. It means that 2ρ+(S0−1)t=M0+S0m4 from which


m4=2ρ+(S0−1)t−M0S0, t=0,1,2,…



(29)







Since GCD(2ρ+(S0−1)t,m1)=GCD(2ρ+(S0−1)t,m2)=GCD(2ρ+(S0−1)t,m3)=1 then for any t=0,1,2,… it will be obtained that the number m4 is relatively prime with m1, m2 and m3. If S0 is a composite number, then Congruence (28) may have no solutions. If S0 is prime and 2 is not a primitive root modulo S0 then Congruence (28) may have no solutions too. In other words, to construct RNS with four odd moduli and SQ=2k, two conditions must be fulfilled.




	
S0=m1m2+(m1+m2)m3 is prime.



	
2 is a primitive root modulo S0








Example 4.

Suppose that m1=3, m2=7, m3=11. In this case M0=m1m2m3=231 and S0=m1m2+(m1+m2)m3=131 is prime. Two is a primitive root modulo 131. From the equality 2k=231+131m4 follows congruence 2k≡100(mod131). The least nonnegative solution of this congruence is 94, therefore k=94+130t, t=0,1,2,…





Hence m4=294+130t−231131, t=0,1,2,… For t=0 we have m4=294−231131.



We received RNS {3,7,11,294−231131} with SQ=294.



Case 3. RNS with 5 moduli. In analogy with the above notations, we denote M0=m1m2m4m4 and S0=m1m2m3+m1m2m4+m1m3m4+m2m3m4 and S=M0+S0m5. One can verify that S≡1(mod4). Let us see whether it is possible for the odd m1, m2, m3 and m4 choose such an odd m5 that the SQ=2k+1.



If S=2k+1 then 2k=S−1=M0−1+S0m5. Similar to case 1, the equality


2k=M0−1+S0m5



(30)




is possible if:




	
GCD(M0−1,S0)=2ω;.



	
M0−12ω and S02ω are odd








Then 2k−ω=M0−12ω+S02ωm5 or


2k−ω≡M0−12ω(mod S02ω).



(31)




If S02ω is prime and 2 is a primitive root modulo S02ω then Congruence (31) has solutions concerning k−ω modulo S02ω−1. Suppose that ρ is the smallest nonnegative such a solution. Then 2ρ+(S0ω−1)t=M0−12ω+S02ωm5 and t=0,1,2,…



Hence m5=2ρ+(S0ω−1)t−M0−12ω(S02ω) wherein t should be chosen so that m5 will be relatively prime with m1, m2, m3 and m4.



Example 5.

Suppose that m1=3, m2=5, m3=7 and m4=11. Then




	
M0=1155, M0−1=1154, S0=886.



	
GCD(M0−1,S0)=GCD(1154,886)=2.



	
M0−12=577 is odd, S02=443 is prime and 2 is a primitive root modulo 443.










Hence, we can choose such an odd number as m5 that the following SQ=2k+1. From the equality 2k−1=577+443m5, we obtain 2k−1≡557(mod443), from which k−1=53+443t, t=0,1,2,…



Hence m5=253+443t−577443, t=0,1,2,… where t needs to be chosen such that GCD(3,m5)=GCD(5,m5)=GCD(7,m5)=GCD(11,m5)=1.



The smallest t=3 where this condition is performed t=3, therefore m5=21382−577443. We obtain RNS {3,5,7,11,21382−577443} with SQ=21383+1.



The above methods for constructing RNS with a diagonal function of the 2n, 2n−1 and 2n+1 forms allow us to develop efficient circuits for comparing numbers and reverse conversion. In the rest of this article, we demonstrate examples of such circuits and show the advantages of their technical characteristics in comparison with the known analogs.






3. Results


The goal of modeling is a comparison of the methods of implementing the numbers comparison operation and reverse RNS to binary conversion by the proposed methods, a method based on CRT [18] and a method based on CRTf [21]. We use {3,5,14}, {7,9,124} and {5,29,93,313} moduli sets, because their DF has form 2n−1 and 2n which are low-cost RNS [42]. Figure 1 shows the circuit for numbers comparison in RNS with DF of the form 2n−1. The bit-widths of the RNS moduli {m1,m2,m3} are denoted as a1,a2,a3. Multipliers by constants |Xi⋅ki|2n−1,i=1,2,3 modulo 2n−1 implement the generation of partial products modulo 2n−1. A modulo 2n−1 compressor is implemented as in [21]. Kogge–Stone adder with end-around carry (KSA-EAC) uses for modulo 2n−1 addition, and it is implemented as in [27]. The circuit for numbers comparison in RNS with DF of the form 2n has a similar structure to that presented in Figure 1, but it should have four inputs for compared numbers X and Y, since in the theoretical part, we demonstrate that only RNS with four modules can have DF of the form 2n. In addition, compressors and Kogge-Stone adders (KSAs) must implement modulo 2n operations that are achieved by simply dropping the carrying of the most significant bit (MSB).



Figure 2 shows the reverse conversion circuit for RNS with the DF of the form 2n−1. The bit-widths of the RNS moduli {m1,m2,m3} are denoted as a1,a2,a3. Multipliers by constants |Xi⋅ki|2n−1,i=1,2,3 modulo 2n−1, modulo 2n−1 compressor and KSA-EAC blocks are realized as in Figure 1. The rest of the blocks are implemented in standard binary form. The symbol aR denotes the bit-width of RNS range and symbol at denotes the bit-width of the value M⋅D(X)+∑i=1nxiMi. Division by SQ is implemented as multiplication by multiplicative inverse SQ modulo 2at. The output of the circuit presented in Figure 2 is a group of aR most significant bits (MSBs) of the last KSA output. The reverse converter circuit for RNS with a DF of the form 2n has a similar structure to that presented in Figure 2, with differences similar to the comparator described above.



Also, modeling was done to compare the proposed moduli sets with balanced RNS moduli sets. The following types of moduli sets were chosen for the simulation: {2n−1,2n,2n+1} [29,30], {2n−1,2n+k,2n+1} [31], {2n−1,2n,2n+1,2n+1+1} [34], {2n−1,2n+1,2n±1−1,2n+k} [35].



All simulated circuits were described in very high speed integrated circuit (VHSIC) hardware description language (VHDL). Hardware modeling was performed on Xilinx Artix 7 xc7a200tfbg484-2 in Vivado 2016.3 and the strategy of synthesis was highly area optimized. The modeling results are presented in Table 2, Table 3 and Table 4 and show time, hardware costs and the area·delay (A·D) metrics calculated as a product of delay by a number of look up tables (LUTs).



A simulation of magnitude comparison shows that for the {3,5,14} moduli set, the method using CRTf works 21.22% faster than the proposed method, and 29,93% faster than the method using CRT. However, the proposed method uses 34.91% fewer hardware resources than CRTf, and 18.52% less than CRT. For {7,9,124}, the circuit, based on CRTf, works 5.98% faster than the circuit, which is based on the proposed method, and 30.96% faster than the circuit which is based on CRT. Furthermore, the circuit, based on the proposed method, uses 17.02% fewer hardware resources than CRTf method and 49.72% less than CRT. For {5,29,93,313}, the proposed method works 4.92% faster than the method using CRTf, and 21.95% faster than the method using CRT. Moreover, the proposed method uses 36.38% fewer hardware resources than the method using CRTf, and two times fewer resources than the method using CRT. Thus, for the magnitude comparison operation, the proposed method reduces the consumption of hardware resources compared tp known methods. In addition, in the case of using the moduli set {5,29,93,313} the proposed method also reduced the delay of the devices. Table 2 also demonstrates the advantages of the proposed method in A·D metrics and power consumption.



A simulation of reverse RNS to binary conversion shows that for the {3,5,14} moduli set method using CRTf works 19.12% faster than the proposed method, and 0,29% faster than the method using CRT. Moreover, CRTf method uses 43.81% fewer hardware resources than the proposed method and 6.35% less than CRT. For {7,9,124}, circuit, based on CRTf, works 1.33% faster than the circuit based on the proposed method, and 13.82% faster than circuit based on CRT. Furthermore, the circuit based on the proposed method uses 20.39% fewer hardware resources than CRTf method and 1.38% less than CRT. For {5,29,93,313}, the method using CRTf works 4.47% faster than the proposed method, and 20.79% faster than the method using CRT. Moreover, it uses 12.30% fewer hardware resources than the proposed method and 7.72% fewer resources than the method using CRT. Therefore, the proposed method allows us to reduce hardware resources for the moduli set {7,9,124} compared to known methods.



For the {3,5,14} moduli set, the RNS dynamic range is equal to M=210. Due to comparing the performance of the circuit using the proposed moduli set with a circuit using known common moduli sets, two balanced moduli sets were chosen: {2n−1,2n,2n+1}, n=3 [29,30] and {2n−1,2n+k,2n+1}, n=2, k=2 [26], which are close to this dynamic range. Modeling of the magnitude comparison showed that the circuit using the proposed {3,5,14} moduli set works 24.73% faster than {2n−1,2n,2n+1}, n=3 moduli set and 15.47% faster than {2n−1,2n+k,2n+1}, n=2, k=2 moduli set. Moreover, the proposed moduli set uses 2.5 times fewer hardware resources than {2n−1,2n,2n+1}, n=3 moduli set and 26.67% less than {2n−1,2n+k,2n+1}, n=2, k=2 moduli set. Hardware simulation of reverse RNS to binary conversion showed that using the proposed moduli set {3,5,14} requires 25.22% fewer time costs than the {2n−1,2n,2n+1}, n=3 moduli set and 10.32% less than the {2n−1,2n+k,2n+1}, n=2, k=2 moduli set. Although the proposed moduli set uses 13.33% more hardware resources than {2n−1,2n+k,2n+1}, n=2, k=2 moduli set, it uses 37.87% less than the {2n−1,2n,2n+1}, n=3 moduli set.



For the proposed {7,9,124} moduli set, the dynamic RNS range is equal to M=7812. For this dynamic range, two known balanced moduli sets were chosen:{2n−1,2n,2n+1}, n=4 [29,30] and {2n−1,2n,2n+1,2n+1+1}, n=3 [34]. Modeling of magnitude comparison showed that circuit using proposed {7,9,124} moduli set works 20.94% faster than the {2n−1,2n,2n+1}, n=4 moduli set and 29.20% faster than the {2n−1,2n,2n+1,2n+1+1}, n=3 moduli set. In addition, the proposed moduli set uses 0.73% fewer hardware resources than the {2n−1,2n,2n+1}, n=4 moduli set and 36.06% less than the {2n−1,2n,2n+1,2n+1+1}, n=3 moduli set. Hardware simulation of reverse RNS to binary conversion showed that using the proposed moduli set {7,9,124} requires 14.66% less time cost than the {2n−1,2n,2n+1}, n=4 moduli set and 33.07% less than the {2n−1,2n,2n+1}, n=4 moduli set. Although the proposed moduli set uses 7.72% more hardware resources than the {2n−1,2n,2n+1}, n=4 moduli set, it uses 36.24% less than the {2n−1,2n,2n+1}, n=4 moduli set.



For the proposed {5,29,93,313} moduli set, the dynamic range of RNS was equal to M=4220805. For this dynamic range, two known balanced moduli sets were chosen: {2n−1,2n+1,2n+1−1,2n+k}, n=4, k=4 and {2n−1,2n+1,2n−1−1,2n+k}, n=6, k=0 [33]. Modeling of the magnitude comparison showed that the circuit using the proposed {5,29,93,313} moduli set works 28.06% faster than the {2n−1,2n+1,2n+1−1,2n+k}, n=4, k=4 moduli set and 2 times faster than the {2n−1,2n+1,2n−1−1,2n+k}, n=6, k=0 moduli set. Although the proposed moduli set uses 44.81% more hardware resources than the {2n−1,2n+1,2n+1−1,2n+k}, n=4, k=4 moduli set, it uses 3 times less than the {2n−1,2n+1,2n−1−1,2n+k}, n=6, k=0 moduli set. Hardware simulation of reverse RNS to binary conversion showed that the using of the proposed moduli set {5,29,93,313} requires 27.16% fewer time costs than the {2n−1,2n+1,2n+1−1,2n+k}, n=4, k=4 moduli set and 42.91% less than the {2n−1,2n+1,2n−1−1,2n+k}, n=6, k=0 moduli set. Although the proposed moduli set uses 45.47% more hardware resources than the {2n−1,2n+1,2n+1−1,2n+k}, n=4, k=4 moduli set, it uses 29.88% less than the {2n−1,2n+1,2n−1−1,2n+k}, n=6, k=0 moduli set.



Thus, in comparison to known balanced moduli sets, the proposed moduli sets reduce the delay of magnitude comparison and reverse conversion in devices. In case of operation magnitude comparison, using the proposed moduli sets, {3,5,14} and {7,9,124}, reduces the use of hardware resources in devices.



The experimentally obtained results showed that the approach developed in this paper allows us to improve two problem operations in the RNS: the comparison of numbers and reverse conversion. The proposed devices for such operations can be used in those applications of the RNS for which these operations are the most important, for example, in video processing systems, sorting networks, etc.




4. Discussion


The results obtained in Section 3 are summarized in Table 5. The main conclusion we can assume is that the RNS construction with all cases SQ=2n, SQ=2n−1, SQ=2n+1 is principally possible. The cases SQ=2n−1 and SQ=2n+1 for RNS with one even module are easiest for practical implementation. All cases for RNS with all odd moduli are more complicated. However, among these cases, there is one particularly attractive option. As we have demonstrated, there is the possibility of RNS constructing with SQ=2n. This case requires the use of four odd RNS moduli.



According to the proposed construction method of RNS with a convenient form of DF, moduli sets with three and four moduli were chosen: {3,5,14}, {7,9,124} and {5,29,93,913}. We performed the hardware simulation of magnitude comparison and reverse RNS to binary conversion using RNS with the presented moduli sets and using different approaches to perform the non-modulo comparison operation: the proposed method, method [18], and method [21]. The hardware simulation results of magnitude comparison show that, for three moduli, the use of the proposed method reduces hardware resources, and the use of method [21] reduces circuit delay. For four moduli, the proposed method reduces both time and hardware costs. The modeling of reverse RNS to binary conversion shows that method [21] works faster and requires fewer hardware resources than the others considered methods. Comparison of the simulation results of proposed moduli sets and balanced moduli sets shows that the use of the proposed moduli sets reduces circuit delay, although, in several cases, it required more hardware resources than balanced moduli sets.




5. Conclusions


The paper concerns the problem of RNS construction with convenient forms of DF. We propose several methods of RNS construction with SQ forms 2n, 2n−1 and 2n+1. The use of these forms of moduli allow for developing efficient methods of hardware implementation. We performed hardware implementation of magnitude comparison and reverse RNS to binary conversion using the proposed method, method [18] method [21]. A comparison of the implementation results shows that using the proposed method is effective for magnitude comparison operation, but for the reverse RNS to binary conversion operation, method [21] performs better modeling results than the proposed method and method [18]. In addition, according to the simulation results, the proposed moduli sets reduce circuit delay in comparison with balanced moduli sets, although, in several cases, require more hardware resources than balanced moduli sets.



The proposed method allows more efficient and problematic operations in RNS, such as sign detection, number comparison, and division, to be performed. It can be used in the development of video processing systems and customized signal processing units using RNS.
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Figure 1. Magnitude comparison circuit using the diagonal function (DF) of the form 2n−1. 
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Figure 2. Reverse conversion circuit for the residue number system (RNS) with a DF of the form 2n−1. 
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Table 1. Known balanced moduli sets.






Table 1. Known balanced moduli sets.





	
Number of Modules

	
Moduli Set

	
Condition

	
References






	
3

	
{2n−1,2n,2n+1}

	

	
[29,30]




	
{2n−1,2n+p,2n+1}

	

	
[31]




	
{22n+p,22n−1,22n+1}

	
n odd, p≤n−52

	
[32]




	
4

	
{2n−1,2n,2n+1,2n−1−1}

	
n even

	
[33]




	
{2n+1,2n−1,2n,2n−1+1}

	
n odd

	
[32]




	
{2n+1,2n−1,2n,2n+1+1}

	
n odd

	
[34]




	
{2n+k,2n−1,2n+1,2n±1−1}

	
n even, k∈[0,n]

	
[35]




	
5

	
{2n−1,2n,2n+1,2n+1−1,2n−1−1}

	
n even

	
[36]




	
{22n+p,2n−1,2n+1,2n−2n+12+1,2n+2n+12+1}

	
n odd, p≤n−52

	
[33]




	
8

	
{2n−5−1,2n−3−1,2n−3+1,2n−2+1,2n−1−1,2n−1+1,2n,2n+1}

	
n=2k, k≥4

	
[37]
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Table 2. Modeling results of the circuit of magnitude comparison.
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Moduli Set

	
Known Methods

	
Proposed Method




	
CRT [18]

	
CRTf [21]






	
Delay, ns

	
{3,5,14}

	
10.961

	
7.680

	
9.749




	
{7,9,124}

	
16.110

	
11.123

	
11.830




	
{5,29,93,313}

	
15.363

	
12.611

	
11.991




	
LUTs

	
{3,5,14}

	
135

	
169

	
110




	
{7,9,124}

	
543

	
329

	
273




	
{5,29,93,313}

	
1,141

	
863

	
549




	
A·D

	
{3,5,14}

	
1479

	
1297

	
1072




	
{7,9,124}

	
8747

	
3659

	
3229




	
{5,29,93,313}

	
17529

	
10883

	
6583




	
Power, W

	
{3,5,14}

	
4.061

	
5.757

	
4.581




	
{7,9,124}

	
21.751

	
13.929

	
11.840




	
{5,29,93,313}

	
40.950

	
47.128

	
24.733
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Table 3. Modeling results of the circuit of reverse RNS to binary conversion.
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Moduli Set

	
Known Methods

	
Proposed Method




	
CRT [18]

	
CRTf [21]






	
Delay, ns

	
{3,5,14}

	
8.181

	
8.157

	
10.085




	
{7,9,124}

	
15.493

	
13.351

	
13.531




	
{5,29,93,313}

	
21.228

	
16.814

	
17.600




	
LUTs

	
{3,5,14}

	
63

	
59

	
105




	
{7,9,124}

	
289

	
358

	
285




	
{5,29,93,313}

	
997

	
920

	
1,049




	
A·D

	
{3,5,14}

	
515

	
481

	
1,058




	
{7,9,124}

	
4,477

	
4,779

	
3,856




	
{5,29,93,313}

	
21,164

	
15,468

	
18,462




	
Power, W

	
{3,5,14}

	
5.946

	
5.504

	
11.733




	
{7,9,124}

	
22.226

	
39.154

	
26.789




	
{5,29,93,313}

	
65.901

	
106.867

	
117.797
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Table 4. Modeling results of magnitude comparison and reverse RNS to binary conversion for proposed and balanced moduli sets.






Table 4. Modeling results of magnitude comparison and reverse RNS to binary conversion for proposed and balanced moduli sets.





	
Moduli Set

	
Ref.

	
Magnitude Comparison

	
Reverse Conversion




	
Delay, ns

	
LUTs

	
A·D

	
Delay, ns

	
LUTs

	
A·D






	
{2n−1,2n,2n+1}

	
n=3

	
[29,30]

	
12.953

	
272

	
3,523

	
13.486

	
169

	
2,279




	
{2n−1,2n+k,2n+1}

	
n=2, k=2

	
[31]

	
11.533

	
150

	
1,729

	
11.246

	
91

	
1,023




	
{3,5,14},

	

	
Proposed

	
9.749

	
110

	
1,072

	
10.085

	
105

	
1,058




	
{2n−1,2n,2n+1}

	
n=4

	
[29,30]

	
14.964

	
275

	
4,115

	
15.855

	
263

	
4,169




	
{2n−1,2n,2n+1,2n+1+1}

	
n=3

	
[34]

	
16.710

	
427

	
7,135

	
20.217

	
447

	
9,036




	
{7,9,124}

	

	
Proposed

	
11.830

	
273

	
3,229

	
13.531

	
285

	
3,856




	
{2n−1,2n+1,2n+1−1,2n+k}

	
n=4, k=4

	
[35]

	
16.669

	
303

	
5,050

	
24.163

	
572

	
13,821




	
{2n−1,2n+1,2n−1−1,2n+k}

	
n=6, k=0

	
[35]

	
24.962

	
1,767

	
44,107

	
30.831

	
1,496

	
46,123




	
{5,29,93,313}

	

	
Proposed

	
11.991

	
549

	
6,583

	
17.600

	
1,049

	
18,462
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Table 5. The possibility of RNS constructing with a given sum of quotients (SQ) form.
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Type and Number of RNS Moduli

	
Form of SQ




	
SQ=2n−1

	
SQ=2n

	
SQ=2n+1






	
one even module

	
exist

	
not exist

	
exist




	
all moduli are odd

	
3 moduli

	
exist

	
not exist

	
not exist




	
4 moduli

	
not exist

	
exist

	
not exist




	
5 moduli

	
not exist

	
not exist

	
exist












© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
X X X

aj aoH ds;
|
h 4 A A A ¢ ¢
|X1 'k1|2"—1 |X2 'k2|2”—1 |X3 'k3|2"-1 Xl 'Ml XZ -M2 X3 '
n (X X d n n (X X n }/I [ X X n
Compressor mod 2" —1
n n
KSA-EAC
D(X)-n
D(X)-M
dr ... - dgr dr -dRr Tdr AR TR
Compressor
a1 arl
KSA
X' ldr
xso7|,
27 |Ha
di v 0

Compressor mod 2%

da; da;

KSA mod 2%
TGRMSBS
X






nav.xhtml


  electronics-08-00694


  
    		
      electronics-08-00694
    


  




  





media/file0.png





media/file2.png
X X5 X; Y, Y Y;
a; Tag Taj' a a ds
, r
|Xl ' k1|2"—1 |X2 -k, |2”—1 |X3 'k3|2"—1 |Yl 'k1|2”—1 |Y2 -k, |2"—1 |Y3 -k |2"—1
n.. n n... n n... n n... n n... n n... n
y A 4 \ 4 \ 4 y 4 A \ 4 \ 4 y A

Compressor mod 2"-/

Compressor mod 2"-/

no o n n o n
KSA-EAC KSA-EAC
|
| |
da; Vi rdj D(X) in D(Y) in
Comparator Comparator

Xpoyi Xp=yi Xio i | D) DY) D(X) = DY) DX) — DY)

/

] 11

/

/ /

X < Y X —

Y XY






media/file3.jpg
Xi Xs
o a;
kil X Rl XKl XM,
n..n n.n L
Compressor mod 2" —
nn
KSA-EAC
DY) n
DX)M
lar ... Jar {9r {ar {ar {or {ar (o
Compressor

arl  larl

Compressor mod 2°
Ja
KSA mod 2*
TapMSBs
X





media/file1.jpg
X;

a a as

R S A S Ry

noom n.nn n
Compressor mod 2"~/
n n
KSA-EAC
a v DY)
Comparator
Xy xi=y xoy | DY) DY)
1 1 1 I

Compressor mod 2"/

n n
KSA-EAC

DY) in

Comparator
D(X) = D(Y) D(X) ~ D(Y)

1 1

¥ E>F





