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Abstract: It is crucial for unmanned surface vessels (USVs) to detect and track surrounding vessels in
real time to avoid collisions at sea. However, the harsh maritime environment poses great challenges
to multitarget tracking (MTT). In this paper, a novel tracking by detection framework that integrates
the multimodel and multicue (M3C) pipeline is proposed, which aims at improving the detection
and tracking performance. Regarding the multimodel, we predicted the maneuver probability of a
target vessel via the gated recurrent unit (GRU) model with an attention mechanism, and fused their
respective outputs as the output of a kinematic filter. We developed a hybrid affinity model based on
multi cues, such as the motion, appearance, and attitude of the ego vessel in the data association stage.
By using the proposed ship re-identification approach, the tracker had the capability of appearance
matching via metric learning. Experimental evaluation of two public maritime datasets showed that
our method achieved state-of-the-art performance, not only in identity switches (IDS) but also in
frame rates.

Keywords: maritime surveillance; tracking by detection; multimodel and multicue (M3C); deep
learning; unmanned surface vessels

1. Introduction

As a sea surface agent, an unmanned surface vessel (USV) needs to independently navigate and
perform specific tasks in a maritime environment. Robust and accurate awareness and understanding
of the surrounding environment are required to achieve this desired outcome, especially the ability to
detect and track surrounding vessels in real time. On a crewed vessel, such critical data can mainly be
obtained from navigation radar, sonar, and millimeter wave radar, but these are far from sufficient for a
USV, because radar and sonar have minimum detection ranges, and shipborne automatic identification
system (AIS) stations are only required for the vessels that weigh over 300 tons, according to the
regulations of the International Maritime Organization (IMO) [1,2]. In other words, most of the common
sensors have a blind zone at a certain distance, which is precisely what the USV should be paying
attention to. Using a vision sensor (visible light or infrared cameras) as auxiliary equipment can
compensate for this deficiency.

Approximately 80% of ship and bridge collision accidents are related to human factors, according
to the statistical evidence [3]. As deep learning and computer vision have attracted increasing attention,
researchers are dedicated to using them to more intuitively performing maritime vessel detection,

Electronics 2019, 8, 723; doi:10.3390/electronics8070723 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics8070723
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/8/7/723?type=check_update&version=3


Electronics 2019, 8, 723 2 of 18

classification, and tracking tasks. Some maneuvering behavior may occur during collision avoidance,
such as acceleration or turning, which must take into account the capricious marine environment, the
swing, and yaw imposed by the ego vessel, the change of light, and possible occlusion [4]. All of these
pose great challenges to vessel detection and tracking research in the maritime environment. Tracking
by detection is one of the state-of-the-art frameworks for multi target tracking (MTT). It is a two-stage
strategy, which includes two independent steps: detection and tracking. Detection constructs a solid
base for the subsequent tracking. We focus on the latter, on the basis of a state-of-the-art detector.

The significant contributions of this paper can be summarized, as follows. Firstly, we propose a
multimodel (MM) filter approach that is based on a gated recurrent unit with attention (GRU-attention)
mechanism. The maneuverability of the surrounding vessel is predicted by using the GRU recurrent
neural network, being driven by the time series of the historical state of the target vessels. Secondly,
a multicue (MC) data association method that considers the long-term and short-term cues is presented.
Thirdly, treating the tracking by detection of maritime vessels as a typical problem of monitoring a
moving object from video images captured by a moving camera [5], we propose a ship re-identification
(Ship-ReID) method, which uses metric learning to determine whether the same ship is in the incoming
video frame. We are the first to introduce GRU-attention for surrounding vessel maneuver prediction,
to the best of our knowledge. This paper is also the first to introduce Ship-ReID to solve the identity
switches (IDS) problem that is caused by camera motion, appearance variation, occlusion, and even
blur in the process of maritime vessel detection and tracking.

The structure of this paper is organized, as follows. The related works are introduced in Section 2.
Section 3 presents the proposed MM and MC (M3C) tracking by detection pipeline. We evaluate the
performance of M3C on the Singapore Marine Dataset (SMD) [1] and PETS 2016 maritime dataset [6] in
Section 4. Finally, Section 5 discusses the main conclusions and future work.

2. Related Work

2.1. Deep Learning for Generic Target Detection

The convolutional neural network (CNN) has played an increasingly important role in artificial
intelligence, especially in the field of computer vision, as a new structure of neural network.
The CNN-based detectors are roughly classified into two categories: two stages and single stage. For the
two-stage detection method, the features are first extracted from the image, then proposal regions are
generated, followed by classification task performance, and finally, the positioning regression task is
completed. The typical algorithms include regions with CNN features (R-CNN), fast/faster R-CNN,
R-FCN [7–9], and so forth. The single-stage detector omits the task of generating proposal regions in
the two-stage method, and such as single shot multibox detector (SSD) [10], YOLOv1/v2/9000/v3 [11]
are the typical frameworks. In recent years, anchor-free methods have become very popular, which
use the corner or area as the anchor instead of the bounding box directly [12,13].

2.2. Deep Learning for Generic Target Tracking

Traditional target tracking algorithms are divided into tracking by detection and tracking before
detection, according to the interaction between the detector and tracker in the tracking process [14].
Tracking before detection can effectively detect dim and small targets. It has been extensively used in
radar and infrared image processing. Based on machine vision, especially in visible vision processing,
more attention has been paid to joint detection and tracking [15], rather than tracking before detection.
Gordon et al. proposed a real-time generic tracker by incorporating temporal information that is
founded on a recurrent neural network [16]. Bae et al. proposed an online tracking framework by
combining tracklet confidence with deep appearance learning [17]. Arandjelović applied a multiview
appearance to track and recognize vehicles in the aerial sequential images [18]. Re-identification is a
subissue of image retrieval, which aims to identify the same target from multiple cross cameras or the
same target at different moments from a single camera. In the field of using target re-identification to
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improve the tracking performance, most of the current achievements have focused on pedestrians [19,20]
or vehicles [21,22], and there have been no reports that are related to achievements in the detection and
tracking of maritime vessels.

2.3. Visible Vessel Detection and Tracking

Despite state-of-the-art object detection and tracking for generic objects having recently
demonstrated impressive performances, these have not been adequate for the complicated maritime
environment. It is common knowledge that, as surrounding vessels traveling from far to near enter the
ego vessel’s surveillance area, they always first appear near the sea antenna (horizon line). With regard
to moving shipborne or even buoy-mounted cameras, ship detection and tracking while using the
guidance of the sea-sky line has also been proposed in recent years [23]. Jeong et al. proposed a method
to estimate the horizon line while using the region of interest [24]. Horizon line detection, dynamic
background, and foreground segmentation was performed by means of discrete cosine transform
in [25]. Sun et al. also proposed a robustly coarse-fine-stitched strategy to detect the horizon line for
USV [26].

Bovcon et al. explored semantics segmentation assisted by an inertial measurement unit (IMU)
for stereo obstacle detection [27]. Cane et al. evaluated the semantic segmentation networks on several
public maritime datasets and compared their performances [28]. Kim et al. proposed a probabilistic
method to detect and classify ships based on a faster R-CNN detector and improved the probability
of ship detection by intersection over union (IOU) tracking [29]. Marié et al. proposed a key point
tracking method to generate high-quality region proposals and then fed them into a fast R-CNN for
further processing [30]. Cao et al. made use of a CNN to extract the features from the vessel image and
to eventually identify the ship in a frame of a video sequence [31]. Leclerc et al. took full advantage of
ship classification that is based on deep transfer learning to enhance the estimation capability of the
trackers [32].

3. The Proposed Tracking by Detection Approach

In this section, we present a novel tracking by detection framework combining MM and MC
(M3C), which has the ability to re-identification the vessels that have lost their track. The overall
architecture of M3C is detailed in Figure 1.
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Figure 1. The architecture of our proposed M3C tracking by detection pipeline. It comprises eight
modules, among which the video stabilization unit uses the algorithm introduced by [33]. We proposed
the four blue units, and their interaction with the other three green units is discussed in detail later.

3.1. The Detector Based on YOLOv3

We devised a maritime vessel detector based on YOLOv3. YOLOv3 is one of the state-of-the-art
CNN-based generic object detectors, and it treats the detection and classification of targets as a
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regression problem [11]. By regressing the location of the detected objects and performing classification,
the bounding box and class of the objects are obtained by looking at each video frame only once. It can
conduct three different scale predictions. When feeding into a 608 × 608 pixel image, the detection is
performed using the scales of 19 × 19, 38 × 38, and 76 × 76, respectively. The structure of the detector is
shown in the Figure 2.
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Figure 2. Framework of the detector. Among them, Darknetconv2d_BN_Leaky (DBL) is the basic
unit, which consists of a convolutional layer (conv), batch normalization, and a leaky rectified linear
unit (ReLU).

3.2. Multimodel for Tracking by Detection.

We formulated the maneuvering prediction of a surrounding vessel as the estimation of the
matching probability of each candidate model at the next moment based on the vessel’s historical
trajectory and while considering the ego vessel’s posture via GRU recurrent neural networks.

3.2.1. Maneuvering Model of Vessels

According to the kinematic behavior [34–36] of maritime vessels, we predefined the three most
common kinds of motion maneuvers in advance as candidate models, named constant velocity (CV),
constant acceleration (CA), and curvilinear motion (CM), respectively.

The CV model was used to describe the target performing straight line motions at a constant
velocity in the two-dimensional (2D) plane. The state vector describing the dynamic characteristics
of the vessel consisted of two elements: pixel position of the target x, y and velocity

.
x,

.
y (i.e., the

state vector at time t can be denoted by XCV(t) =
[

xt
.
xt yt

.
yt

]T
, satisfying the conditional that

..
x = 0,

..
y = 0). The target state equation of CV at the current time was modeled, as follows:

XCV(t + τ) = FCV(t)XCV(t) + GCV(t)v(t) (1)

where τ is an indication of the time interval between the current and previous measurement and
v(t) = [vx, vy]

T is the process noise vector. The transition matrix FCV(t) and the process noise
distribution matrix GCV(t) are stated, as follows, respectively:

FCV(t) =


1 0 τ 0
0 1 0 τ
0 0 1 0
0 0 0 1

, GCV(t) =


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0 τ
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A vessel modeled as CA was usually considered to move at constant acceleration. The state
vector of a vessel consisted of three components: position x, y, velocity

.
x,

.
y, and acceleration

..
x,

..
y and

satisfied the conditional that
...
x = 0. The target state equation was the same as Equation (1), but the
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state vector was XCA(t) =
[

xt
.
xt

..
xt yt

.
yt

..
yt

]T
. The transition matrix FCA(t) and the process

noise distribution matrix GCA(t) are stated, as follows, respectively:

FCA(t) =



1 τ 0.5τ2 0 0 0
0 1 τ 0 0 0
0 0 1 0 0 0
0 0 0 1 τ 0.5τ2

0 0 0 0 1 τ
0 0 0 0 0 1


, GCA(t) =



0.5τ2 0
∆t 0
1 0
0 0.5τ2

0 τ
0 1


(3)

The CM model was based on CV and CA, and it depicted the parabolic trajectory of a ship in a
turning mode. For this, we needed to estimate the turning rate ω in real time, and the state vector

was extended to XCM(t) =
[

xt
.
xt yt

.
ytω

]T
. The transition matrix FCM(t) and the process noise

distribution matrix GCM(t) are stated, as follows, respectively:

FCM(t) =


1 ω−1 sinωτ 0 ω−1(cosωτ− 1) 0
0 cosωτ 0 − sinωτ 0
0 ω−1(1− cosωτ) 1 ω−1 sinωτ 0
0 sinωτ 0 cosωτ 0
0 0 0 0 1


, GCM(t) =


0.5τ2 0 0
τ 0 0
0 0.5τ2 0
0 0 0
0 0 1


(4)

3.2.2. Encoder-Decoder Model of GRU-Attention

We utilized the multimodel weighting method to adapt the change of the target stateI in our
proposed M3C pipeline, during the kinematic filter procedure. The primary task was to estimate the
match score of each predefined candidate model and the current state of the vessels. For this, the
GRU-attention model was deployed to improve the prediction performance. Long short-term memory
(LSTM) networks were proposed to solve the long-term dependencies problem of traditional recurrent
neural networks (RNNs) with increasing time intervals [37]. Through proper training, it can remember
the critical data and forget the less-important data. GRU [38] improves LSTM by reducing the number
of gates and removing all of the memory units, so that only reset gates and update gates remain.
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Figure 3. Typical structure of a gated recurrent unit (GRU) neural network. Ot(ht) is the output at time
t; rt denotes the reset gate, which determines the combination of current input and historical memory
information; and, zt is the update gate, which determines the proportion of memory left behind.

As shown in Figure 3, the formulas for forward propagation of GRU are as follows:

zt = σ(wr · [ht−1, xt] + bz)

rt = σ(wz · [ht−1, xt] + br)
(5)

where xt is the input vector at time t, σ represents the activation function, wr, wz are the weight matrix,
ht−1 represents the hidden activation value at the previous moment, and bz, br is the deviation vector.
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The activation value ht and the candidate activation value h̃t of the hidden node at time t are calculated,
as follows, where ⊗ indicates the element-wise multiplication:

h̃t = tanh(W · [rt ⊗ ht−1, xt] + bh)

ht = (1− zt) ⊗ ht−1 + zt̃ht
(6)

As stated above, the curvilinear motion model of vessels can be divided into three subpatterns,
according to tangential or normal acceleration: CV, CA, and CM, respectively. Their coexistence and
the uncertainty of switching time leads to an alignment problem. It is very difficult for a traditional
LSTM/GRU-based encoder–decoder approach to solve the alignment problem. We introduced an
attention model to encode each subsequence into a context vector, instead of encoding the entire
sequence into an integral vector. Through training, the attention model was encouraged to selectively
focus on the important part of all information while also ignoring other secondary information, so as
to generate more accurate prediction results by making full use of the subpatterns.

If we were to estimate the maneuvering model of the surrounding vessel at time t, the
input sequence would be zt−Nτ , . . . , zt−τ, zt, zt+τ, as can be seen from Figure 4. The context
vector was the weighted sum of output vector ht−Nτ , . . . , ht−τ, ht, ht+τ from encoders, and weights
ct−Nτ , . . . , ct−τ, ct, ct+τ could be calculated by

ci =
t+τ∑

j=t−Nτ

h jβi j (7)

where βi j is the attention weights to be learned, as obtained by the following formula:

βi j =
Exp(ei j)

t+τ∑
k=t−Nτ

Exp(eik)

, s.t.
∑

j

βi j = 1 (8)

ei j = FC(si−1, h j) (9)
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Figure 4. The improved framework of the GRU encoder–decoder with attention. The attention model
was embedded between encoders and decoders and learned the attention weights ct−Nτ , . . . , ct−τ, ct, ct+τ

via the fully-connected network (FC) and softmax with loss function, output vector of encoder
ht−Nτ , . . . , ht−τ, ht, ht+τ, and state vector of decoder st−(N+1)τ, st−Nτ, . . . , st−τ, st as the attention model’s
input sequence.
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The GRU-attention model was fed with a time-series vector, which described the short-term
historical motion measurements of the surrounding vessels. It could output the probability that each
candidate model matched the current motion state of the target vessels.

3.2.3. Multimodel Filter

As mentioned before, we defined a model set that meets the needs of tracking moving vessels on
the sea: M = {mi}i=1,2,···,N, consisting of a total of N candidate models. If at time t we have already

obtained the historical cumulative observation vectors, the state estimationY(t+τ)
i of the i-th model mi

can be modeled as the following formula [39], which rests on the conditional probability theory:

Ŷ
(t+τ)
i = E(Y(t+τ)

|m(t+τ)
i , Z)

, Y(t) + K(t)[X(t + τ) − F(t + τ)Y
(t)
i ]

(10)

where K(t) represents the gainer of the Kalman filter, and m(t) , P(m(t)
|Z(0)) = ψ(t)(0) is the prior

probability of the initial time that satisfies the sum-to-one condition of
N∑

t=1
ψ(t)(0) = 1.

As shown in Figure 4, Z = {zt−Nτ . . . zt−τztzt+τ} as the input sequence, which indicates the

cumulative set of measurements until time t. Among z j = [u j, v j, h j,γ j,
.
h j,

.
γ j,

.
x j,

.
y j,ρ j,ϑ]

T
, the

components of z j are the state’s parameter of j time, which we separately explain below: (u, v)
is the bounding box center coordinate, h is the bounding box height, γ represents the bounding box
ratio,

.
h j,

.
γ j are the velocities, (

.
x j,

.
y j) are the velocities along the x-axis and y-axis on the 2D plane,

ρ represents the root-mean-square (RMS) values of the ego vessel’s pitch and roll, and ϑ denotes the
type of target vessel.

The sums of the multimodel were weighted according to their matched likelihood probability.
The motion state of the target vessel was calculated by

Ŷ
(t+τ) = E[Y(t+τ)

|Z]
=

∑N
i=1 Ŷ

(t+τ)
i P(mi |Z)

(11)

and the estimation error of covariance matrix was:

P(t + τ) =
∑N

i=1
P(mi |Z){Pi(t + τ) + [Ŷ

(t+τ)
i − Ŷ

(t+τ)][Ŷ
(t+τ)
i − Ŷ

(t+τ)]
T
} (12)

where P(mi |Z) is the posterior probability that can be obtained from the softmax layer of the
GRU-attention model with loss and as the individual model’s output:

P(mi|Z) =
Exp(mi )∑N

k=1 Exp(mk )
(13)

The adaptive moment estimation (Adam) was used as the optimizer and the cross entropy for the
loss function. We assumed that Θ represented the parameter set of GRU to be trained, and the loss
function was written, as follows:

J(Θ) = −
1
N

N∑
i=1

miLog(hΘ(mi) + (1−mi)Log(1− hΘ(mi)) (14)

3.3. Multicue for Data Association

During the data association procedure, we propose a hybrid affinity model that is based on multi
cues to evaluate the similarity between the detected vessels and existing tracklets, which contains both
long-term cues and short-term cues. We regard appearance as a long-term cue and, meanwhile, the
short-term cues consist of surrounding vessels motion measurements and the dynamic attitude of ego
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vessel, such as pitch and roll. We use adaptive association gate of appearance to confirm the validation
of measurements before the data association algorithm is carried out.

3.3.1. Adaptive Association Gate of Appearance

The simple camera model [40] has been applied to put targets into a three-dimensional (3D)
perspective considering the height of the target in the image, and it assumes that all the objects of
interest rest on the ground plane. For a vessel sailing on the seaplane, which perfectly coincided with
the assumptions, we additionally assumed that the ship’s heading angle was consistent with its course.

Assume that camera parameters Θ consist of the following elements: focus length fΘ, height
hΘ, camera tilt angle ψΘ, absolute velocity υΘ, image center µc, horizon position vc, and 3D location
(xΘ, zΘ). Thus, the projection f can be defined as

Z̃ =

[
R(ψΘ) 0

0 1

]
Z +


xΘ

zΘ

0

, X = f (Z̃) =
[

fΘxZ

zZ
+ uc

fΘhΘ

zZ
+ vc

fΘhZ

zZ

]T

(15)

where X = [µ, v, h] represents the central coordination and the height of the vessel in the image plane,
while Z̃ denotes the location in the current camera coordinates. We could easily estimate the scale
and location variances of the vessel in the image based on the simple linear relationship between the
vessel’s image size and the y-axis image location [41].

When the target vessel moves closer to the camera, the bounding box of imaging area gradually
becomes larger and vice versa. Suppose that the bounding box center of the current target vessel is at
(x, y) coordinate of the image, x and y divide the whole image into four quadrants, and each quadrant
is a candidate region. We present four possible situations in Figure 5, while considering the pitching
and rolling attitude of the ego vessel at the present moment.
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3.3.2. Long-Term Cues

It is well known that the condition of a vessel on the sea is much more complex than that of vehicles
and pedestrians on the ground due to the influence of environmental factors, such as waves, wind, and
ocean currents. The camera also moves with the movement of the ego vessel, such as swing (surge,
sway, and heave) and rotating (roll, pitch, and yaw), which cause the target to be temporarily lost from
the camera scene. These dramatic changes on sea surface require the re-identification of the same
vessel from adjacent frames or even across some frames according to their similarity measurements as
the long-term cues.

The MDNet structure proposed in [22] was employed here, and a dataset with more than 500 vessels
and nearly 150,000 images, named Ship-ReID, was constructed. We found the optimal mapping from
image space to feature space after training on it. Suppose that inputs are triplet units

{
< Ia,Ip,In >

}
,

indicating the anchor image, positive image, and negative image, respectively. < Ia,Ip > is a positive
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pair belonging to the same vessel, while < Ia,In > is the negative pair from different vessels. We used
the normalized cosine similarity between the feature vector to measure the distance, such asDa,p and
Da,n, and guided the network to train in the direction of pushing positive and negative samples away.
We ensured that the distance between positive samples was very close by means of the improved
triplet loss, as follows:

L(Ia,Ip,In) =
N∑[
Da,p + max(Da,p −Da,n + λ, 0)

]
(16)

where λ is the pre-set threshold parameter.

3.3.3. Data Association and Fusion Method

As introduced in [42], we adopted heuristic simulated annealing to solve the assignment problem
during the data association stage [43]. Assuming that we have D detectors and T tracklets waiting to
match at time k, and D = {d1, d2, · · ·, dD},T = {t1, t2, · · ·, tT}, G(k) is the adaptive gate association set,
and F (k) is the tracking gate set consisting of the rectangular region generated by the coordination
predicted by MM filter trackers. Subsequently, the association cost matrix between the i-th tractlet’s
predictions t̂(k)i and the j-th detectors d(k)j could be defined as

C(k)(i, j) =

 c(k)(t̂i, d j), i f d(k)j ∩G
(k)
i , ∅ or d(k)j ∩G

(k)
i , ∅

∞, otherwise
(17)

where c(t̂i, d j) is the hybrid affinity metric of association at time k when the j-th detector falls into
the correlation gate corresponding to the prediction coordinate of the i-th tracklet, which can be
calculated as

c(k)(t̂i, d j) = (1− A) ·motion(k)(t̂(k)i , d(k)j ) +A · appear(k)(t̂(k)i , d(k)j ) (18)

where the weight coefficient is denoted as A, which is depicted by the attitude of the ego vessel.
Equation (18) demonstrates that, as the pitch and roll of the hull increase, the weight of the appearance
is enhanced, and vice versa.

A =

[
(p(k))

2
+ (r(k))

2
]1/2

λ
[
(pmax)

2 + (rmax)
2
]1/2

(19)

where p, r is the dynamic pitch and roll at time k, which can be obtained from real-time measurement
of the ego vessel’s electric compass or IMU; pmax, rmax represent the maximum range of pitch and roll,
which are determined by the intrinsic characteristics of the hull, which can be obtained from prior
measurement; and, λ is a hyper parameter.

appear(t̂i, d j) is the measurement of appearance similarity between t̂i and d j, and motion(t̂i, d j)

represents their measurements of motion similarity that were obtained by calculating the negative
logarithm of the intersection-of-union ratio:

motion(t̂(k)i , d(k)j ) = −log

 Intersection(t̂(k)i , d(k)j )

Union(t̂(k)i , d(k)j )

 (20)

3.4. The Proposed M3C Tracking by Detection

In this section, an end-to-end and real-time tracking by detection pipeline is presented, for which
the tracklet initiation and termination conditions were both determined by a continuous three-frame
method, as described in Algorithm 1:



Electronics 2019, 8, 723 10 of 18

Algorithm 1: The proposed M3C tracking by detection

Inputs: The sequential frames of surrounding vessels S, pre-trained GRU modelMgru, Darknet53 model
Md53, Ship-Reid modelMreid, and periodic attitude dataA of the ego vessel
Initialization: T ← ∅ ,Amax, (vk)count = 0, (ti)count = 0
Outputs: Continuous tracklets T = {ti}

M
i=1 of surrounding vessels

Procedure:
foreach frame at current time t

detect all potential vesselsV = {vk}
N
k=1 from the Ft frame usingMd53

foreach tracklet of vessel // Association gate generated from prior time
Predict the kinematic track gate from MM filter from time t− 1
& adaptive association gate of appearance

endfor
MC data association using simulated annealing algorithm
foreach pair of matched detection and tracklet

tracklet update by MM filter
endfor
foreach detection vessel vk not associated with any tracklets in T

(vk)count ++

if (vk)count >= 3 //Three-frame tracklet initiation
initialize a new tracklet t
T∪ = {t}

end
endfor
foreach vessel tracklet ti not associated with any detection in V

(ti)count ++

tracklet extrapolation
if (vk)count >= λmax // Extrapolation times exceeding the pre-set value λmax

terminate the tracklet ti
T = T − {ti}

end
endfor
endfor //reach the end of the video sequence

4. Experiment and Results Analysis

4.1. Experimental Setup

4.1.1. Datasets

We performed extensive experiments on SMD [1] and the PETS 2016 maritime dataset [6] to
evaluate performance of the proposed M3C. The detector was pretrained on a Marvel vessel image
dataset by the offline method [44].

SMD contains 51 annotated video fragments, 40 onshore videos, and 11 onboard videos. We
estimated the approximate range of roll and pitch of the ego vessel from horizon ground truths (GTs).
The PETS 2016 maritime dataset includes 20 RGB video fragments that were captured by four digital
pan-tilt-zoom (PTZ) cameras, three of which were at the side and one at the stern. Two skiff boats
and two fish boats as the supplementary target vessels performed behaviors, such as speeding up,
loitering, moving around the ego vessel, and so on. The collected the Marvel vessel image dataset that
consisted of more than 140,000 vessel images. It was divided into 26 superclasses, drawing from the
www.shipspotting.com website of online vessel photos and trackers. We resized the image to 608 × 608
pixels and manually labeled all of the selected pictures as belonging to five superclasses, which were
tug ship, container, fish boat, skiff boat, and passenger ship.

www.shipspotting.com
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4.1.2. Implementation Details

We used an i7-8700K CPU with 32 GB of memory and dual NVIDIA Titan RTX GPU with a
Pytorch deep learning framework to implement our algorithm. We devised the detector based on
the state-of-the-art YOLOv3, as mentioned in the previous section. The size of prior anchors is list in
Table 1.

Table 1. The feature map and prior anchors of Singapore Marine Dataset (SMD) and PETS 2016
maritime dataset. A total of nine anchors were used to generate bounding boxes, and the size of prior
anchors was calculated by the k-means algorithm.

Feature Map 19 × 19 38 × 38 76 × 76

Receptive Field Big Medium Small

Prior Anchors 110 × 84 176 × 93 267 × 166 35 × 65 62 × 57 107 × 39 43 × 19 38 × 39 68 × 29

We used GRU with 128 units for the vessel’s maneuverability discrimination and trained the model
while using Adam with a dropout of 0.2 for regularization and with a learning rate of 0.001. Due to the
lack of adequate vessel tracklets or video galleries for training, it was pretrained by the public AIS
dataset [45], and was then fine-tuned on the training set partitioned from SMD and PETS 2016.

4.2. Performance Evaluation

4.2.1. Evaluation Metric

The evaluation was carried out according to the standard root mean square error (RMSE)/mean
absolute deviation (MAE) and CLEAR MOT metrics that were proposed in [46], and a brief description
of each metric is listed below:

MOTA (↑): multi-object tracking accuracy, as calculated by the following formula:

MOTA = 1−

∑
t (N

(t)
FN + N(t)

FP + N(t)
IDS)∑

t N(t)
GT

(21)

where N(t)
FN, N(t)

FP , and N(t)
IDS are the number of false negatives, false positives, and IDS in the t frame

index; and, N(t)
GT represents the number of ground truth targets.

MOTP (↑): multi-object tracking precision, as calculated by the following formula:

MOTP =

∑
i,t d(t)i∑

t (N
(t)
TP + N(t)

IDS)
(22)

where N(t)
TP is the number of true positives in the t frame index and d(t)i represents the bounding box

overlap of the i-th target.
RMSE (↓): root-mean-square error; MAE (↓): mean absolute deviation; MT (↑): mostly tracked

targets; ML (↓): mostly lost targets; FN (↓): total number of false negatives; FP (↓): total number of false
positives; IDS (↓): identity switches; FPS (↑): frames per second; and, mAP (↑): mean average precision.
The colored arrow after each metric index indicates whether the value of increasing (↑) or decreasing
(↓) is beneficial. MOTP and MOTA lie in the range of [0,100%], with the best value being 100%.

4.2.2. Qualitative Results

For the sake of fairness, performance comparison was separately carried out according to onshore
or onboard datasets, because the results of some trackers can be biased due to camera motion.
We discuss the comparison with state-of-the-art tracking methods, such as the framework of Markov
decision process (MDP) [47], the combination of Kalman filter and Hungarian assignment algorithm
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(SORT) [48], the kernel correlation filter method (KCF) [49], the combination of Kalman filter and
Kuhn-Munkres (POI) [50], SORT with deep association metric (DeepSORT) [19], and candidate selection
combined with re-identification (MOTDT) [51].

The M3C pipeline obtained a 2.5% increase and a 33.5% decrease in MOTA and IDS as compared
with the second best onshore dataset, as shown in Table 2. As far as the onboard dataset, the
corresponding figures were 3% and 30.6%, and ML was also the lowest. In addition, on both onshore
and onboard datasets, FPS was more than 10 in both scenarios, which indicated that real-time
performance was obtained.

Table 2. Quantitative evaluation of different trackers on the two maritime datasets. We treated PETS
2016 as the onshore dataset considering a stationary large ship.

Dataset Tracker MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FPS↑

SMD (onshore)
+ PETS 2016

MDP 30.3% 71.3% 13.2% 38.4% 426 1
SORT 59.8% 79.6% 25.4% 22.7% 631 56
KCF 70.3% 80.2% 37.8% 22.3% 382 25
POI 66.1% 79.5% 34.6% 20.8% 453 10

M3C (Ours) 72.8% 80.4% 37.4% 21.2% 254 20

SMD
(onboard)

DeepSORT 60.4% 79.1% 32.8% 18.2% 56 36
MOTDT 57.6% 70.9% 34.2% 28.7% 49 23

M3C (Ours) 63.4% 74.6% 26.2 17.9% 34 16

4.2.3. Visual Tracking Results

We present the visual tracking results of some videos to illustrate the performance of our proposed
M3C framework intuitively.

In Figures 6 and 7, we show the tracking robustness of a reappearing vessel after being lost for
a short time Figure 7b, and even complete occlusion Figure 6b, for which our proposed Ship-ReID
worked well as the long term cue.
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Figure 6. Visual tracking results of video sequence (MVI_1448_VIS_Haze) with occlusion. Six vessels 

have been stably tracked in frame #0126 (a). Starting in frame #0264 (b), Sb001 was occluded by 

Tug001 until being completely occluded in frame #0355 (c) and then reappeared in frame #0370 until 

it was completely visible in frame #0438 as shown in (d). 
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Figure 7. Visual tracking results of video sequence (MVI_0799_VIS_OB) with reappear after lost. In 

frame #0075 (a), a vessel has been stably tracked. Due to the rolling of the ego vessel, Passenger001 

gradually disappeared from the camera scene in frame #0076 until frame #0078 (b), when it 

completely disappeared. Subsequently, it began to reappear in frame #0091 until frame #0094 (c), 

when it was completely visible. As shown in frame #0095 (d), the vessel was re-tracked steadily. 

4.3. Ablation Study and Analysis 

4.3.1. Effect of Multimodel Fusion Filter 

In this scheme, we considered three different motion scenarios of the target vessel, including a 

straight line with constant velocity motion, acceleration, and turning motion. We conducted an 

ablation experiment by replacing MM with a single Kalman filter ( CV ) and interactive multiple 

Figure 6. Visual tracking results of video sequence (MVI_1448_VIS_Haze) with occlusion. Six vessels
have been stably tracked in frame #0126 (a). Starting in frame #0264 (b), Sb001 was occluded by Tug001
until being completely occluded in frame #0355 (c) and then reappeared in frame #0370 until it was
completely visible in frame #0438 as shown in (d).
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Figure 7. Visual tracking results of video sequence (MVI_0799_VIS_OB) with reappear after lost.
In frame #0075 (a), a vessel has been stably tracked. Due to the rolling of the ego vessel, Passenger001
gradually disappeared from the camera scene in frame #0076 until frame #0078 (b), when it completely
disappeared. Subsequently, it began to reappear in frame #0091 until frame #0094 (c), when it was
completely visible. As shown in frame #0095 (d), the vessel was re-tracked steadily.

4.3. Ablation Study and Analysis

4.3.1. Effect of Multimodel Fusion Filter

In this scheme, we considered three different motion scenarios of the target vessel, including
a straight line with constant velocity motion, acceleration, and turning motion. We conducted an
ablation experiment by replacing MM with a single Kalman filter (CV) and interactive multiple
models (IMM) [52] while considering the CA, CV, and CM model by keeping other conditions
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unchanged. RMSE and MAE were used as the evaluation indicators, respectively. Table 3 shows the
comparison results.

IMM did not perform better than the single CV model with a Kalman filter when no maneuver
occurred and was even worse than the latter, because of the possible delay of model transfers, as can be
seen in Table 3. The proposed MM filter overcame this very well, and RMSE and MAE both increased
by 30% in the three common motion scenarios.

Table 3. Results of averaged RMSE and mean absolute deviation (MAE). SMD (onshore) and the PETS
2016 dataset were split into three different motion scenarios for the experiment, and a Kalman filter
with a single constant velocity (CV) model was used as the benchmark.

Motion
Scenarios

Algorithm Averaged RMSE (L2 Norm) Averaged MAE (L1 Norm)

X pos. Y pos. X pos. Y pos.

Straight line,
constant
velocity

Kalman (CV) 14.71 16.06 11.47 14.53

IMM (CV + CA + CM) 15.10 15.87 12.03 14.28

MM(Proposed) 9.10 9.58 5.75 6.02

Acceleration
Kalman (CV) 27.71 21.29 25.38 20.54

IMM (CV + CA + CM) 21.17 18.26 18.67 15.88

MM(Proposed) 13.93 12.21 8.04 7.04

Turning
Kalman (CV) 20.99 15.85 19.54 15.03

IMM (CV + CA + CM) 15.10 13.11 12.93 10.98

MM (Proposed) 12.44 9.56 8.80 6.67

4.3.2. Effect of Detector

As illustrated in Table 4, the detector built on YOLOv3 with Darknet53 as the backbone increased
mAP by nearly 40% when compared with SSD, and FPS was five times higher than that of faster
R-CNN. It was a good compromise between mAP and FPS, and both of them were equally critical
for improving tracking performance. These experiments showed that the quality of the detection
algorithm has significant influence on multi target tracking performance.

Table 4. Detector performance in the ablation study. We replaced the detector with SSD and faster
regions with CNN features (R-CNN), respectively, for these ablation experiments.

Tracker Detector mAP FPS
Averaged RMSE

(L2 Norm)
Averaged MAE

(L1 Norm)

X pos. Y pos. X pos. Y pos.

M3C
SSD300 (Mobilenet) 41.2 46 20.22 17.59 9.54 16.37

YOLOv3 (Darknet53) 57.9 20 9.10 9.58 7.75 6.02

Faster R-CNN (Resnet50) 59.1 4 8.94 6.39 8.44 5.83

4.3.3. Effect of Multicue Data Association

It can be observed from Table 5 that the M3C pipeline obtained the highest value of MOTA, which
is one of the most important indicators of multitarget tracking. These data lead us to the conclusion that
combining the motion features with appearance features can effectively improve the tracking accuracy.

By combining deep feature extraction and a traditional kinematic filtering algorithm, the proposed
M3C approach strikes a balance between tracking accuracy and speed and improves tracking accuracy
while guaranteeing real-time performance, as discussed previously.
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Table 5. Results of the ablation study. multimodel (MM), single model (SM), and re-identification
(ReID) denote appearance model, multimodel filter, single model filter, Ship-ReID, respectively.

Tracker Detector MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FPS↑

MM YOLOv3 46.2% 44.5% 12.9% 43.2% 74 28
MM + Attention YOLOv3 47.1% 43.8% 13.1% 44.7% 73 32

SM+ReID YOLOv3 59.8% 64.5% 21.4% 23.6% 62 20
MM+ReID (M3C) YOLOv3 63.4% 74.6% 36.2% 17.9% 24 16

5. Conclusions

We proposed a novel tracking by detection approach integrating MM and MC to detect and track
surrounding vessels of USVs at sea in this paper. MM was used to solve the problem of unstable
tracking of a maneuvering target in the traditional single-model Kalman tracker (such as the CV
model). MC combines the attitude of the ego vessel and the appearance of the target vessels to solve
the problem of frequent IDS that is caused by motion blurring and occlusion. Experiments have
demonstrated its efficiency and robustness and it achieved real-time performance. In the future, we
plan to focus on the following two directions. First, we will construct a more complete Ship-ReID
dataset and optimize the network framework and algorithm. Second, we intend to integrate Ship-ReID
with a convolutional neural network of the detector and to co-train them in a unified network, so as to
further improve the real-time performance.
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