
electronics

Article

Analysis of Counting Bloom Filters Used for
Count Thresholding

Kibeom Kim , Yongjo Jeong , Youngjoo Lee and Sunggu Lee *

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH),
Pohang 37673, Korea
* Correspondence: slee@postech.ac.kr; Tel.: +82-54-279-5936

Received: 7 June 2019; Accepted: 9 July 2019; Published: 11 July 2019
����������
�������

Abstract: A bloom filter is an extremely useful tool applicable to various fields of electronics and
computers; it enables highly efficient search of extremely large data sets with no false negatives but
a possibly small number of false positives. A counting bloom filter is a variant of a bloom filter that
is typically used to permit deletions as well as additions of elements to a target data set. However,
it is also sometimes useful to use a counting bloom filter as an approximate counting mechanism
that can be used, for example, to determine when a specific web page has been referenced more
than a specific number of times or when a memory address is a “hot” address. This paper derives,
for the first time, highly accurate approximate false positive probabilities and optimal numbers of
hash functions for counting bloom filters used in count thresholding applications. The analysis is
confirmed by comparisons to existing theoretical results, which show an error, with respect to exact
analysis, of less than 0.48% for typical parameter values.

Keywords: counting bloom filter; database search; count thresholding; hash function

1. Introduction

A bloom filter (BF) is a powerful tool that can be used to create novel, low-overhead methods for
dealing with big data sets in various software/hardware applications. Proposed by Burton Howard
Bloom in 1970 [1], a BF is an m-bit vector that is initialized to 0. Assuming that n elements are stored
into a data set, each time a new element is stored, k hash functions, each of which maps the element to
one of m bit locations, are applied and the corresponding bits in the BF are set to 1. To determine if
a new unknown element is a member of the data set or not, the k hash functions are applied to that
element and the corresponding bits in the BF are checked. A positive answer is returned if all of those
bits are found to be 1. Since the search time is independent of the number of elements in the data set,
this results in extremely space-efficient and fast search of large data sets. Although false positives are
possible, false negatives are not since the element could not have been stored in the data set if any of
the k hash function bits in the BF are 0.

Over the years, various BF variants have been proposed. One commonly cited variant is a counting
bloom filter (CBF), which has been proposed as a method that supports deletion as well as addition of
elements to a data set [2]. In a CBF, the m elements are multiple-bit counts instead of bits. Every time
an element is added to or deleted from the data set, k hash functions are applied to the element and all
of the k locations in the m-element CBF are incremented or decremented by one. In order to check if a
specific element is still in the data set, the k hashed locations in the CBF can be checked for the absence
of 0 values. Several methods have been proposed to enable efficient support of m-element CBFs [3,4].

BFs and CBFs have been found to be useful for numerous applications. For example, in a web
cache, instead of storing all web objects that are accessed, disk writes can be significantly reduced
by only storing those web objects that are referred to more than once, thereby eliminating “one-hit
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wonders” (accessed by a set of users once and never again). A BF can be used to quickly determine if
a specific web page has been referenced before or not. For long-term usage, a CBF can be used instead
of a BF in order to permit deletion of long unused web objects from the web cache. This approach has
been found to reduce the rate of disk writes by nearly half in an actual system of servers [5].

Other applications where BFs and CBFs have been found to be useful include communications
and networking applications [6–9], Huffman coding [10], cache architecture design [3,11], memory
wear leveling [4], and string search for DNA sequence identification [12–15].

Given that the elements in a CBF contain approximate “counts”, this paper examines the problem
of using a CBF as an approximate counting mechanism, in particular to check whether a certain data
element has been referred to θ or more times, where θ is a count threshold. For example, when applied
to the above web cache application, θ = 2 could be used to eliminate one-hit and two-hit web objects;
i.e., disk write usage could be reduced by only storing web objects that have been accessed two or
more times. As a second example, when applied to memory management in a computer system, a
value such as θ = 5 could be used to identify hot memory addresses. As a third example, when
applied to DNA sequence identification, approximate count thresholding could be used to quickly
identify or match specific strings in a DNA sequence that occur more than θ times. As a fourth example,
approximate count thresholding could be used to determine if a set of nodes are accessing a given
web page a large number of times within a short timespan and thus help guard that web page against
distributed denial of service (DDOS) attacks [16].

The main motivation for this paper to provide a solid theoretical foundation for the use of CBFs
for count thresholding applications. Towards this end, Section 2 introduces the traditional BF and
CBF analysis. Then Section 3 presents the newly proposed CBF analysis method and its main results.
Next, Section 4 uses comparisons to existing theoretical analysis to confirm this new analysis method.
Finally, Section 5 concludes this paper.

2. Previous Bloom Filter (BF) and Counting Bloom Filter (CBF) Analysis

The traditional BF analysis method proceeds as follows [17,18]. For insertion of n elements into
a data set, an m-bit BF, initialized with all 0 bits, is used. Every time an element is inserted into
the data set, k hash functions are applied and the corresponding bits in the m-bit BF are set to 1.
After the first element is inserted into the data set and the first hash function is used to set one bit of
the BF, an arbitrary bit in the BF is 0 with probability (1− 1/m). After all k hash functions are used,
an arbitrary bit in the BF is still 0 with probability (1− 1/m)k. Thus, after all n elements are inserted
and all k hash functions applied to each of those n elements, the probability that an arbitrary bit in the
BF is 0 is p0 = (1− 1/m)kn ≈ e−kn/m, where the approximation is based on the definition of e [17,18].

If a user wishes to determine if an element is present in the data set or not, he/she applies the k
hash functions and checks all k bits in the BF. If an element is not in the data set, an erroneous result is
produced when all k hashed bits in the BF are unity. Using this as an approximation, the false positive
probability ptrad

f p = (1− (1− 1/m)kn)k ≈ (1− e−kn/m)k. An important BF parameter that must be
selected is the number of hash functions, k, to be used. For this purpose, the k value that is typically
used is the one that minimizes the false positive probability. Thus, based on the above approximation,

ktrad
opt = (m/n) ln 2 . (1)

The careful reader will note that the above analysis is not strictly correct as it assumes
independence of the values of bits in the BF, even if the k hashed locations are for an element in the
data set [11]. However, using Chernoff bounds, Mitzenmacher and Upfal have shown that, for large m
and n, the same result is obtained even without the independence assumption [19]. Therefore, as can
be easily verified by the reader, given sufficiently large n and m (e.g., n = 25 and m = 100 or larger),
the above equations are highly accurate and k can be chosen based on Equation (1).
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Using the same assumptions as [18,19], the above analysis can be extended to a CBF. To do this, it is
noted that after n elements have been inserted into a data set and kn uniformly random hash mappings
have been used to increment the values in an m-element CBF, the probability that an arbitrary element
in the CBF has the value l is simply defined by the probability mass function (pmf) of a binomial
distribution with success probability 1/m. Denoting this as b(l, kn, 1

m ),

b(l, kn,
1
m
) =

(
kn
l

)
(

1
m
)l(1− 1

m
)kn−l .

Note that when l = 0, which corresponds to checking whether an arbitrary element in the CBF is 0,
this equation simplifies to b(0, kn, 1

m ) = (1− 1
m )kn = p0.

Suppose an m-element CBF is used to determine if an element has been referenced θ or more
times. After insertion of n elements in a data set, the probability that an arbitrary element of the CBF
has a value less than θ is simply the sum of b(l, kn, 1

m ) from l = 0 to l = θ − 1. Thus, the false positive
probability with count threshold θ is as follows.

p f p(θ, k, n, m) = (1−∑
l<θ

b(l, kn,
1
m
))k. (2)

3. Proposed Analysis and Results

Although clearly useful for certain applications such as web data caching, determination of hot
memory addresses, string matching in DNA sequence analysis, and protection again DDOS attacks,
there has been no previous detailed theoretical analysis of CBFs used for count thresholding in the
open literature (previous papers have only dealt with CBFs used to permit deletions of elements
in large data sets). Such an analysis is necessary in order to be able to predict the effectiveness of
a CBF solution and the specific CBF parameters to use. For example, m, the number of CBF elements
to be used, must be selected such that the resulting false positive probability level is acceptable for
the chosen application. In addition, k, the number of hash functions to be used, must be selected to
minimize the the false positive probability. This type of analysis is provided in this section.

3.1. False Positive Probability

The analysis starts with a derivation of a close approximation for the false positive probability,
which is necessary since the exact form given in Equation (2) involves a sum of binomial distributions,
which is extremely difficult and time-consuming to compute for large n and m values. For large xn and
small xp, it is well known that a binomial distribution b(x, xn, xp) can be approximated by a Poisson
distribution with mean xnxp [20]. For CBF applications, large n (data set size) and m (CBF size) values
satisfy these conditions since xn = kn and xp = 1

m . Thus, the approximate false positive probability
p̂ f p can be written as follows.

p̂ f p(θ, k, n, m) = (1− e−
kn
m ∑

l<θ

1
l!
(

kn
m

)l)k ≈ p f p(θ, k, n, m).

The cumulative mass function (cmf) of a Poisson distribution is a regularized incomplete gamma
function [21]. Thus, the approximate false positive probability can be written as

p̂ f p(θ, k, n, m) = p̂ f p(θ, κ) = (1− Γ(θ, κ)

Γ(θ, 0)
)k , (3)

where the mean of the Poisson distribution used is defined as κ = kn
m and Γ(θ, κ) =

∫ ∞
κ tθ−1e−t dt .

As shown in Figure 1, this incomplete Gamma function approximation results in a highly accurate
approximation of p f p. Note that the approximation p̂ f p only depends on the ratio of kn to m. Figure 1
shows that p f p and p̂ f p overlap almost 100%. The exact relative error of p̂ f p is shown in Figure 2.
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For the parameters shown, the relative error is less than 0.48% when an optimal number of hash
functions is used.
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Figure 1. Plot of false positive probabilities with θ = 1 to θ = 5 vs. the number of hash functions k.
The ratio m/n is set to four and the cyan dashed line shows kopt(θ). The sample points correspond to
p f p and the lines correspond to p̂ f p. The two functions overlap almost 100 percent.
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Figure 2. Plot of relative error between exact and approximate false positive probabilities with θ = 1
to θ = 5 vs. the number of hash functions k. n = 1000 and m = 4000 are used in this plot, and larger
values of n and m result in slightly lower relative errors.

The optimal k values kopt(θ), for which the false positive probabilities are the lowest, are shown
using a dashed cyan line in Figure 1. As can be seen in the figure, kopt(θ) is definitely not the same,
or even close, to ktrad

opt (θ) = kopt(1), shown as a solid vertical orange line in Figure 1, when θ > 1.
Before proposing a systematic method for finding kopt(θ) for general values of θ, a rigorous analysis
will be presented that shows that only one such value exists.
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3.2. Uniqueness of Optimal Number of Hash Functions

A sequence of lemmas are used to prove that there exists a unique value of kopt for which the false
positive probability is minimized. To follow this proof process, the reader is advised to refer to the
plots in Figures 3 and 4 when reading the following lemmas.

Since the optimal false positive probability point occurs when its slope is 0, the proof starts by
taking the derivative of p̂ f p(θ, k, n, m) with respect to k. To find the shape of the derivative of p̂ f p,
the logarithm of p̂ f p can be used.

ln p̂ f p(θ, k, n, m) = k ln(1− Γ(θ, κ)

Γ(θ, 0)
). (4)

By taking the derivative of Equation (4),

∂
∂k p̂ f p(θ, k, n, m)

p̂ f p(θ, k, n, m)
= ln(1−

Γ(θ, kn
m )

Γ(θ, 0)
) + k

∂

∂k
ln(1−

Γ(θ, kn
m )

Γ(θ, 0)
). (5)

By Leibniz’s rule and the definition of the incomplete gamma function [21],

∂

∂k
Γ(θ,

kn
m

) = − n
m
(

kn
m

)θ−1e−
kn
m . (6)

Therefore, by applying Equation (6) to the right side of Equation (5) and multiplying both sides of
Equation (5) by p̂ f p(θ, k, n, m),

∂

∂k
p̂ f p(θ, k, n, m) = p̂ f p(θ, k, n, m)(ln(1−

Γ(θ, kn
m )

Γ(θ, 0)
) +

( kn
m )θe−

kn
m

Γ(θ, 0)− Γ(θ, kn
m )

).

For kopt(θ), this derivative should be set to 0. Since p̂ f p > 0, the second part must be 0. Then,
multiplying this second part by a common factor and denoting this term as g(θ, κ), the following
equations and lemmas follow.

g(θ, κ) = (1− Γ(θ, κ)

Γ(θ, 0)
) ln(1− Γ(θ, κ)

Γ(θ, 0)
) +

κθe−κ

Γ(θ, 0)

To determine whether g is a decreasing or increasing function, the derivative of g is needed.

∂

∂κ
g(θ, κ) =

κθ−1e−κ

Γ(θ, 0)
(1 + θ + ln(1− Γ(θ, κ)

Γ(θ, 0)
)− κ). (7)

In Equation (7), the first part is greater than 0. Thus, g is a decreasing or increasing function
depending on the polarity of 1 + θ + ln(1 − Γ(θ,κ)

Γ(θ,0) ) − κ. Let y1(κ) = ln(1 − Γ(θ,κ)
Γ(θ,0) ) and y2(κ) =

(κ − θ − 1). The y1 and y2 terms are defined in this manner in order to facilitate the examination of
the exact conditions under which g is a decreasing or increasing function, and thereby determine the
conditions for the changes in slope of the false positive probability function. Then,

∂

∂κ
g(θ, κ) =

κθ−1e−κ

Γ(θ, 0)
(y1(κ)− y2(κ))

Examples of the shapes of y1 and y2 are shown in Figure 3. An example of the g(θ, κ) function is shown
in Figure 4.



Electronics 2019, 8, 779 6 of 12

0 2 4 6 8 10
-20

-15

-10

-5

0

5

Figure 3. A plot showing y1 and y2, used in Lemmas 1 and 2, as a function of κ for θ = 5.
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Figure 4. g(θ, κ) as a function of κ for θ = 5 and m/n = 4. κ1 ≈ 1.2262, κ2 ≈ 5.5756 < 6, and
κ∗ ≈ 1.6117.

Lemma 1. For a fixed value of θ, y1 is a strictly increasing concave function of κ.

Proof of Lemma 1. Using the definition of an incomplete Gamma function, the first partial derivative
of y1 can be shown to be greater than zero. i.e.,

∂y1

∂κ
=

κθ−1

eκ(Γ(θ, 0)− Γ(θ, κ))
> 0

Then, using the second partial derivative, it can also be verified that y1 is concave when κ ≥ θ− 1.

∂2y1

∂κ2 =
κθ−2Γ(θ, 0)

eκ

(θ − 1− κ)(1− Γ(θ,κ)
Γ(θ,0) )−

κθ e−κ

Γ(θ,0)

(Γ(θ, 0)− Γ(θ, κ))2 . (8)
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Now consider the situation when κ < θ− 1. The following are well-known properties of a Poisson
distribution with mean κ, denoted by Poiκ(X = θ) [22],

Poiκ(X = θ) < Poiκ(X ≥ θ) <
Poiκ(X = θ)

1− κ
θ+1

. (9)

Then, based on [21] and applying Equation (9) to (θ − 1− κ)(1− Γ(θ,κ)
Γ(θ,0) )−

κθe−κ

Γ(θ,0) in Equation (8),

(θ− 1− κ)Poiκ(X ≥ θ)− θPoiκ(X = θ) < (
θ − 1− κ

1− κ
θ+1
− θ)Poiκ(X = θ) < −1 + κ + θ

θ + 1− κ
Poiκ(X = θ) < 0.

Thus, ∂2y1
∂κ2 < 0 when κ < θ − 1. Therefore, y1 is a strictly increasing concave function for all values

of κ.

Lemma 2. y1(κ = θ+1
2 ) > y2(κ = θ+1

2 )

Proof of Lemma 2. Lemma 2 is equivalent to

θ + 1
2

+ ln(1−
Γ(θ, θ+1

2 )

Γ(θ, 0)
) > 0.

From [21], by putting θ+1
2 into the ln( ) function,

ln(∑
l≥θ

( θ+1
2 )l

l!
) > 0,

which is equivalent to

∑
l≥θ

( θ+1
2 )l

l!
> 1. (10)

Then, by the Stirling inequality,

( θ+1
2 )θ

θ!
≥ 1

e
√

θ
(

e
θ
)θ(

θ + 1
2

)θ =
1

e
√

θ
(

e
2
)θ(1 +

1
θ
)θ .

The function on the right hand side decreases from θ = 0 to 1 and increases from θ = 1 to ∞.

The minimum value of this function is 1, which occurs at some point θ with θ > 0. Thus, ( θ+1
2 )θ

θ! ≥ 1.

Therefore, ∑
l≥θ

( θ+1
2 )l

l! >
( θ+1

2 )θ

θ! ≥ 1.

Lemma 3. lim
κ→0+

g(θ, κ) = 0, and g(θ, κ) is a strictly decreasing function for κ ∈ (0, κ1), where κ1 ∈ (0, θ+1
2 ).

Proof of Lemma 3. From L’Hopital’s rule, lim
x→0+

x ln x = 0. This implies that lim
κ→0+

(1− Γ(θ,κ)
Γ(θ,0) ) ln(1−

Γ(θ,κ)
Γ(θ,0) ) = 0. Therefore, lim

κ→0+
g(θ, κ) = 0.

As κ approaches 0 from the right, lim
κ→0+

y1(κ) = −∞, and lim
κ→0+

y2(κ) = −θ − 1. This implies that

lim
κ→0+

y1(κ) < lim
κ→0+

y2(κ). On the other hand, by Lemma 2, y1(κ = θ+1
2 ) > y2(κ = θ+1

2 ). Therefore, by

the intermediate value theorem, there exists a point κ1 ∈ (0, θ+1
2 ) that satisfies y1(κ1) = y2(κ1). Then,

since y1(κ1) < y2(κ) as κ → 0+, y2 is a straight line, and Lemma 1 states that y1 is a strictly increasing
function of κ, y1(κ) < y2(κ) for κ ∈ (0, κ1). Thus, ∂

∂κ g(θ, κ) < 0 for κ ∈ (0, κ1).
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Lemma 4. The function g(θ, κ) is a strictly increasing function for κ ∈ (κ1, κ2), where θ+1
2 < κ2 < θ + 1.

Proof of Lemma 4. From Lemma 2 again, y1(κ = θ+1
2 ) > y2(κ = θ+1

2 ). On the other hand, for all real
positive values κ, y1(κ) < 0, whereas y2(θ + 1) = 0. Thus, y1(θ + 1) < y2(θ + 1). Therefore, by the
intermediate value theorem again, there is a point θ+1

2 < κ2 < θ + 1 that satisfies y1(κ2) = y2(κ2).
Finally, in the interval of κ ∈ (κ1, κ2), ∂

∂κ g(θ, κ) > 0 because y1(κ) > y2(κ) in this interval.

Lemma 5. The function g(θ, κ) is a strictly decreasing function for κ ∈ (κ2, ∞), and lim
κ→∞

g(θ, κ) = 0.

Proof of Lemma 5. By the definition of an incomplete gamma function, Γ(θ, κ) =
∫ ∞

κ tθ−1e−t dt ,
the limit of Γ(θ, κ) as κ approaches positive infinity is 0. This makes the left term of g(θ, κ) become
1 ln 1 = 0 when κ approaches positive infinity. The right term becomes 0 by L’Hopital’s rule. Therefore,
lim

κ→∞
g(θ, κ) = 0. From Lemma 1, y1 is strictly concave, and from the proof of Lemma 4, y1(κ2) = y2(κ2).

Thus, for κ > κ2, ∂
∂κ g(θ, κ) < 0 because y1(κ) < y2(κ).

Theorem 1. Given n, m and a count threshold θ > 0, there exists a unique value k = kopt for which
the false positive probability of a CBF has the minimum value. Furthermore, kopt(θ) = bm

n κ∗(θ)c or
kopt(θ) = dm

n κ∗(θ)e.

Proof of Theorem 1. In the interval of κ ∈ (0, κ1], g(θ, κ) < 0 due to Lemma 3. Also, g(θ, κ2) > 0
because Lemma 5 states that g(θ, κ) is a strictly decreasing function from κ2 to ∞, at which point g(θ, κ)

approaches zero. Then, due to Lemma 4, there is a unique value κ∗ ∈ (κ1, κ2) such that g(θ, κ∗) = 0.
Finally, using the definition of κ, the theorem follows.

3.3. Procedure for Determining the Optimal Number of Hash Functions

Based on the lemmas and theorem of the previous subsection, a general procedure to be used to
find the optimal number of hash functions kopt(θ) is as follows. Start from k = 1 and compute the false
positive probability p̂∗f p(θ, k, n, m) using Equation (3). Then increment k by one and recompute the false
positive probability. Continue until the false positive probability starts to increase or k = (θ + 1)n/m,
whichever comes first. The k value that results in the minimum p̂∗f p(θ, k, n, m) is kopt(θ).

The above procedure can be simplified by using precomputed tables or a linear approximation.
Table 1 shows a table of precomputed optimal κ∗ values for count thresholds θ ranging from 1 to 30.
This table was created by following the procedure outlined above. Since κ = kn/m, this table can be
used to determine kopt by simply using the relationship shown in Theorem 1; i.e., kopt is either the floor
or ceiling of κ∗m/n.

For large count thresholds θ, a straight line approximation can be used to determine κ∗,
and thereby kopt. Figure 5 shows that the straight line approximation

κ̂∗(θ) = 0.2037θ + 0.9176 (11)

closely tracks κ∗(θ) for large θ values. By plotting the relative errors, as shown in Figure 6, it can be
seen that there is a relative error of less than about 2 percent when θ > 30.
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Figure 5. The functions κ∗(θ) and κ̂∗(θ) as a function of θ.
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Figure 6. Plot of relative error between κ∗(θ) and κ̂∗(θ) vs. θ.

Table 1. The κ∗(θ), κ̂∗(θ), and relative error between κ∗(θ) and κ̂∗(θ) values.

θ κ∗(θ) κ̂∗(θ) κ∗(θ)−κ̂∗(θ)
κ∗(θ)

θ κ∗(θ) κ̂∗(θ) κ∗(θ)−κ̂∗(θ)
κ∗(θ)

θ κ∗(θ) κ̂∗(θ) κ∗(θ)−κ̂∗(θ)
κ∗(θ)

1 0.6931 1.1213 −0.6177 11 2.9099 3.1583 −0.0854 21 5.0183 5.1953 −0.0353
2 0.9326 1.3250 −0.4207 12 3.1228 3.3620 −0.0766 22 5.2274 5.3990 −0.0328
3 1.1635 1.5287 −0.3139 13 3.3351 3.5657 −0.0691 23 5.4362 5.6027 −0.0306
4 1.3893 1.7324 −0.2469 14 3.5469 3.7694 −0.0627 24 5.6448 5.8064 −0.0286
5 1.6117 1.9361 −0.2013 15 3.7582 3.9731 −0.0572 25 5.8533 6.0101 −0.0268
6 1.8317 2.1398 −0.1682 16 3.9690 4.1768 −0.0524 26 6.0616 6.2138 −0.0251
7 2.0498 2.3435 −0.1433 17 4.1795 4.3805 −0.0481 27 6.2697 6.4175 −0.0236
8 2.2664 2.5472 −0.1239 18 4.3896 4.5842 −0.0443 28 6.4776 6.6212 −0.0222
9 2.4818 2.7509 −0.1084 19 4.5995 4.7879 −0.0410 29 6.6854 6.8249 −0.0209

10 2.6963 2.9546 −0.0958 20 4.8090 4.9916 −0.0380 30 6.8931 7.0286 −0.0197



Electronics 2019, 8, 779 10 of 12

4. Simulation Results

Simulations were conducted to verify the proposed theoretical analysis. A simulation program
was written in Java for a general CBF with n data entries, m CBF elements, and k hash functions.
The hash functions were created as uniform random distributions between 0 and m− 1 using the
pseudorandom number generator provided in the java.util.Random package and stored in tables so
that they could be reused during hashing. Care was taken to ensure that the hash functions created
were orthogonal to each other. This simulator program is freely available for all interested readers.

Figure 7 shows the false positive simulation results obtained with an example set of n, m, and
count threshold θ values. The open triangle, circle, square, and diamond marks refer to the simulation
results p̄ f p while the solid curves show the expected false positive probabilties p̂ f p.

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

Figure 7. Plot of false positive theoretical values (p̂ f p) and simulation results (p̄ f p) where n = 10,000,000,
m = 40,000,000, θ = 1, 2, 3, 4, 5, and nq = n vs. k between 1 to 20.

Each simulation result, which was the average of 100 simulation runs, was obtained in the
following manner. The CBF was initialized by setting all m CBF entries to 0. Then, n data entries were
generated randomly. For each data entry, k hash functions, applied by looking up table values from
precomputed random hashes (as described above), are applied and used to increment the CBF entries
corresponding to the hash function outputs. Finally, nq = n queries were randomly generated and
the k hash functions are applied to each of those queries. Each query resulted in a “true” answer if
all k CBF elements mapped by the k hash functions are greater than or equal to the count threshold
θ. Finally, the number of false positives generated in this manner were counted and divided by nq to
produce the false positive probability.

Figure 7 shows the false positive rate simulation and analysis results, as a function of k, with n = 10
million, m = 40 million, and θ values ranging from 1 to 5. As can be seen from the figure, the simulation
results closely map the theoretical results, with slight variations only visible for exceedingly low false
probabilities of 10−7 or smaller. Exceedingly low false probabilities imply rare occurrences of false
positives, thus requiring longer simulation runs to obtain accurate results. Even lower false positive
probabilities (smaller than 10−9) then result in zero occurrences of false positive events in our simulations.
Thus, simulation results were not recorded, since false positive events did not occur, for θ = 5 and k = 4
through 10 in Figure 7.
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5. Conclusions

This paper has investigated the problem of determining the optimal parameter values to be used
for counting bloom filters used in applications requiring approximate count thresholds. Rigorous
analysis has led to a highly accurate equation for the false positive probability, with relative errors
of less than 0.48% given typical parameter values. It has also been proven that there exists a unique
number of hash functions kopt for which an minimal false positive probability is obtained. Next,
a systematic procedure based on precomputed tables and a linear approximation has been presented
for finding kopt. Finally, realistic simulations modeling the use of a CBF for a count thresholding
application has been used to show that the theoretical analysis closely models actual CBF behavior.
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