Design and Characterization of a Microwave Planar Sensor for Dielectric Assessment of Vegetable Oils
Abstract
:1. Introduction
2. Sensor Design and Simulations
3. Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Materials Characterization, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Liu, W.; Sun, H.; Xu, L. A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor. Sensors 2018, 18, 1438. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Jiang, Q.; Jing, S. Calibration-independent and position-insensitive transmission/reflection method for permittivity measurement with one sample in coaxial line. IEEE Trans. Electromagn. Compat. 2011, 53, 684–689. [Google Scholar]
- Haase, N.M.N.; Fuge, G.; Trieu, H.K.; Zeng, A.; Jacob, A.F. Miniaturized transmission-line sensor for broadband dielectric characterization of biological liquids and cell suspensions. IEEE Trans. Microw. Theory Tech. 2015, 63, 3026–3033. [Google Scholar] [CrossRef]
- Patricia, L.R.; David, E.B.; David, P.M.; Frank, W. Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites. Sensors 2016, 16, 967. [Google Scholar]
- Liu, W.; Xu, L.; Yang, X.; Shi, Y.; Zhan, H. Complex permittivity determination based on a radio frequency device. Sens. Actuators A Phys. 2018, 272, 75–82. [Google Scholar] [CrossRef]
- Reinecke, T.; Hagemeier, L.; Spehlbrink, H.; Guenther, S.; Klintschar, M.; Zimmermann, S. Open-ended coaxial probe for the quantification of edema in human brain tissue. Sens. Actuators B Chem. 2014, 204, 763–769. [Google Scholar] [CrossRef]
- Ocera, A.; Dionigi, M.; Fratticcioli, E.; Sorrentino, R. A novel technique for complex permittivity measurement based on a planar four-port device. IEEE Trans. Microw. Theory Tech. 2006, 54, 2568–2575. [Google Scholar] [CrossRef]
- Janezic, M.D.; Williams, D.F.; Blaschke, V.; Karamcheti, A. Permittivity characterization of low-k thin films from transmission-line measurements. IEEE Trans. Microw. Theory Tech. 2003, 51, 132–136. [Google Scholar] [CrossRef]
- Liu, C.; Pu, Y. A microstrip resonator with slotted ground plane for complex permittivity measurements of liquids. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 257–259. [Google Scholar]
- Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies. Meas. Sci. Technol. 2006, 17, 55–70. [Google Scholar] [CrossRef]
- Hinojosa, J.; Lmimouni, K.; Lepilliet, S.; Dambrine, G. Very high broadband electromagnetic characterization method of film-shaped materials using coplanar waveguide. Microw. Opt. Technol. Lett. 2002, 33, 352–355. [Google Scholar] [CrossRef]
- Hippel, A.V. Dielectric Materials and Applications; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Hippel, A.V. Dielectrics and Waves; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Ganchev, S.I.; Qaddoumi, N.; Bakhtiari, S.; Zoughi, R. Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors. IEEE Trans. Instrum. Meas. 1995, 44, 1023–1029. [Google Scholar] [CrossRef]
- Hasar, U.C. Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements. Prog. Electromagn. Res. 2009, 97, 27–43. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, D. Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement. Prog. Electromagn. Res. 2007, 67, 205–230. [Google Scholar] [CrossRef]
- Queffelec, P.; Gelin, P. Influence of higher order modes on the measurements of complex permittivity and permeability of materials using a microstrip discontinuity. IEEE Trans. Microw. Theory Tech. 1996, 44, 816–824. [Google Scholar] [CrossRef]
- Alahnomi, R.; Hamid, N.B.A.; Zakaria, Z.; Sutikno, T.; Mohd Bahar, A. Microwave planar sensor for permittivity determination of dielectric materials. Indones. J. Electr. Eng. Comput. Sci. 2018, 11, 362–371. [Google Scholar] [CrossRef]
- Nigmatullin, R.R.; Vorobev, A.S.; Nasybullin, A.R.; D’Orazio, A.; Maione, G.; Lino, P.; Grande, M. Advanced and sensitive method by discrete geometrical invariants for detection of differences between complex fluids. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 265–274. [Google Scholar] [CrossRef]
- Gregory, A.P.; Clarke, R.N. Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz; National Physical Laboratory Report; National Physical Laboratory: Teddington, UK, 2012. [Google Scholar]
- Mohd Bahar, A.; Zakaria, Z.; Ab Rashid, S.; Isa, A.; Alahnomi, R. Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement. Microw. Opt. Technol. Lett. 2017, 59, 367–371. [Google Scholar] [CrossRef]
- Alahnomi, R.; Zakaria, Z.; Ruslan, E.; Ab Rashid, S.; Mohd Bahar, A. High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection. IEEE Sens. J. 2017, 17, 2766–2775. [Google Scholar] [CrossRef]
εr of Substance | Frequency, GHz |
---|---|
2.2 | 5.4917 |
2.3 | 5.4882 |
2.4 | 5.4847 |
2.5 | 5.4812 |
Oil Sample | Minima Freq., GHz | Retrieved/Estimated εr |
---|---|---|
Olive A | 5.4942 | 2.294 |
Olive B | 5.4897 | 2.398 |
Sunflower | 5.4878 | 2.442 |
Mix A–B | 5.492 | 2.345 |
Mix A–Sunflower | 5.4918 | 2.349 |
Reference | Sensor Type | Sensitivity MHz/Permittivity Unit | Resonant Frequency | Q-Factor |
---|---|---|---|---|
[19] | Rectangular ring resonator | 25.7 MHz (avg) | 3.992 GHz | 174 |
[22] | Multiple split-ring resonator | 0.75–1 MHz | 2.121 GHz | 525 |
[23] | Symmetrical split-ring resonator with double spurlines (only solids—2 port systems) | 33.5 MHz (avg) | 2.22 GHz | 653 |
Proposed sensor | Rectangular double-ring resonator | 43 MHz (exp. avg)/ 35 MHz at 5.5 GHz | 5.652 GHz | ~572 (sim. empty Petri dish) ~230 (exp. empty Petri dish) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.; Agliullin, T.; Laneve, D.; Portosi, V.; Vorobev, A.; Nigmatullin, R.R.; Nasybullin, A.; Morozov, O.; Prudenzano, F.; D’Orazio, A.; et al. Design and Characterization of a Microwave Planar Sensor for Dielectric Assessment of Vegetable Oils. Electronics 2019, 8, 1030. https://doi.org/10.3390/electronics8091030
Ivanov A, Agliullin T, Laneve D, Portosi V, Vorobev A, Nigmatullin RR, Nasybullin A, Morozov O, Prudenzano F, D’Orazio A, et al. Design and Characterization of a Microwave Planar Sensor for Dielectric Assessment of Vegetable Oils. Electronics. 2019; 8(9):1030. https://doi.org/10.3390/electronics8091030
Chicago/Turabian StyleIvanov, Aleksandr, Timur Agliullin, Dario Laneve, Vincenza Portosi, Artem Vorobev, Raoul R. Nigmatullin, Aydar Nasybullin, Oleg Morozov, Francesco Prudenzano, Antonella D’Orazio, and et al. 2019. "Design and Characterization of a Microwave Planar Sensor for Dielectric Assessment of Vegetable Oils" Electronics 8, no. 9: 1030. https://doi.org/10.3390/electronics8091030
APA StyleIvanov, A., Agliullin, T., Laneve, D., Portosi, V., Vorobev, A., Nigmatullin, R. R., Nasybullin, A., Morozov, O., Prudenzano, F., D’Orazio, A., & Grande, M. (2019). Design and Characterization of a Microwave Planar Sensor for Dielectric Assessment of Vegetable Oils. Electronics, 8(9), 1030. https://doi.org/10.3390/electronics8091030