Atomic Norm-Based DOA Estimation with Dual-Polarized Radar
Abstract
:1. Introduction
2. Dual-Polarized Radar System
3. Novel Atomic Norm-Based Method for DOA Estimation
4. Simulation Results
- With denoising method—this method is realized by calculating the correlation between the received signals and the steering vector to obtain the spatial spectrum, where the spatial spectrum is ().
- Simultaneous orthogonal matching pursuits (SOMP) method [32]—this method is proposed for the sparse reconstruction in the scenario with multiple measurements with lower computational complexity. In the SOMP method, the column of dictionary matrix indicating the corresponding DOA is selected iteratively.
- Sparse Bayesian learning (SBL) method [26]—SBL method is the sparse Bayesian learning method and achieves good reconstruction performance in the scenario with correct distribution assumptions for the received signals, noise, and target scattering coefficients. However, the computational complexity of SBL is much higher.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, L.; Lops, M.; Wang, X. Adaptive Interference Removal for Uncoordinated Radar/Communication Coexistence. IEEE J. Sel. Top. Signal Process. 2018, 12, 45–60. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Liu, L.; Feng, M. Compressed Sensing-Based DOA Estimation with Unknown Mutual Coupling Effect. Electronics 2018, 7, 424. [Google Scholar] [CrossRef]
- Cao, Z.; Geng, H.; Chen, Z.; Chen, P. Sparse-Based Millimeter Wave Channel Estimation with Mutual Coupling Effect. Electronics 2019, 8, 358. [Google Scholar] [CrossRef]
- Burintramart, S.; Sarkar, T.; Zhang, Y.; Salazar-Palma, M. Nonconventional least squares optimization for DOA estimation. IEEE Trans. Antennas Propag. 2007, 55, 707–714. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.; Lee, J. Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1710–1713. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H. Joint estimation of DOA and TDOA of multiple reflections in mobile communications. IEEE Access 2016, 4, 3815–3823. [Google Scholar] [CrossRef]
- Chen, P.; Qi, C.; Wu, L.; Wang, X. Waveform Design for Kalman Filter-Based Target Scattering Coefficient Estimation in Adaptive Radar System. IEEE Trans. Veh. Technol. 2018, 67, 11805–11817. [Google Scholar] [CrossRef]
- Rueckner, W.; Papaliolios, C. How to beat the Rayleigh resolution limit: A lecture demonstration. Am. J. Phys. 2002, 70, 587. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Yu, C. Sparse off-grid DOA estimation method with unknown mutual coupling effect. Digit. Signal Process. 2019, 90, 1–9. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Zoltowski, M.; Kautz, G.; Silverstein, S. Beamspace Root-MUSIC. IEEE Trans. Signal Process. 1993, 41, 344–364. [Google Scholar] [CrossRef]
- Claudio, E.D.D.; Parisi, R.; Jacovitti, G. Space time MUSIC: Consistent signal subspace estimation for wideband sensor arrays. IEEE Trans. Signal Process. 2018, 66, 2685–2699. [Google Scholar] [CrossRef]
- Vallet, P.; Mestre, X.; Loubaton, P. Performance analysis of an improved MUSIC DoA estimator. IEEE Trans. Signal Process. 2015, 63, 6407–6422. [Google Scholar] [CrossRef]
- Yuen, N.; Friedlander, B. Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms. IEEE Trans. Signal Process. 1996, 44, 2537–2550. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Z.; Zhang, X.; Liu, L. SBL-Based Direction Finding Method with Imperfect Array. Electronics 2018, 7, 426. [Google Scholar] [CrossRef]
- Li, W.T.; Lei, Y.J.; Shi, X.W. DOA estimation of time-modulated linear array based on sparse signal recovery. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2336–2340. [Google Scholar] [CrossRef]
- Yu, Y.; Petropulu, A.P.; Poor, H.V. Measurement matrix design for compressive sensing-based MIMO radar. IEEE Trans. Signal Process. 2011, 59, 5338–5352. [Google Scholar] [CrossRef]
- Xiong, W.; Greco, M.; Gini, F.; Zhang, G.; Peng, Z. SFMM design in colocated CS-MIMO radar for jamming and interference joint suppression. IET Radar Sonar Navig. 2018, 12, 702–710. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L. Exact joint sparse frequency recovery via optimization methods. IEEE Trans. Signal Process. 2016, 64, 5145–5157. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, L.; Wang, X.; Li, H.; Wu, L. Moving target detection using colocated MIMO radar on multiple distributed moving platforms. IEEE Trans. Signal Process. 2017, 65, 4670–4683. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, Y.D.; Chen, T. DOA estimation using compressed sparse array. IEEE Trans. Signal Process. 2018, 66, 4133–4146. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed Sensing Off the Grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling. IEEE Trans. Signal Process. 2019, 67, 208–220. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, P.; Nehorai, A. Joint Sparse Recovery Method for Compressed Sensing with Structured Dictionary Mismatches. IEEE Trans. Signal Process. 2014, 62, 4997–5008. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse bayesian inference. IEEE Trans. Signal Process. 2012, 61, 38–43. [Google Scholar] [CrossRef]
- Fang, J.; Li, J.; Shen, Y.; Li, H.; Li, S. Super-resolution compressed sensing: An iterative reweighted algorithm for joint parameter learning and sparse signal recovery. IEEE Signal Process. Lett. 2014, 21, 761–765. [Google Scholar] [CrossRef]
- Teke, O.; Gurbuz, A.C.; Arikan, O. Perturbed Orthogonal Matching Pursuit. IEEE Trans. Signal Process. 2013, 61, 6220–6231. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Dogancay, K.; Tran, H.; Berry, P.E. Parameter-Refined OMP for Compressive Radar Imaging of Rotating Targets. IEEE Trans. Aerosp. Electron. Syst. 2019. [Google Scholar] [CrossRef]
- Teke, O.; Gurbuz, A.C.; Arikan, O. Sparse delay-Doppler image reconstruction under off-grid problem. In Proceedings of the 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, 22–25 June 2014; pp. 409–412. [Google Scholar]
- Nguyen, N.H.; Doğançay, K.; Tran, H.T.; Berry, P. An Image Focusing Method for Sparsity-Driven Radar Imaging of Rotating Targets. Sensors 2018, 18, 1840. [Google Scholar] [CrossRef]
- Determe, J.; Louveaux, J.; Jacques, L.; Horlin, F. On the Noise Robustness of Simultaneous Orthogonal Matching Pursuit. IEEE Trans. Signal Process. 2017, 65, 864–875. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
The signal-to-noise ratio (SNR) of received signals | 20 dB |
The number of antennas N | 20 |
The number of targets K | 4 |
The distance between adjacent antennas d | wavelength |
The detection DOA range | |
The type of antennas | dual-polarized antennas |
Methods | Target 1 | Target 2 | Target 3 | Target 4 | RMSE (deg) |
---|---|---|---|---|---|
Ground-truth DOA | – | ||||
Without denoising method | |||||
Simultaneous orthogonal matching pursuits (SOMP) method | |||||
Sparse Bayesian learning (SBL) method | 11 | ||||
Proposed method |
Methods | Time (s) |
---|---|
Without denoising method | |
SOMP method | |
SBL method | |
Proposed method |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Dou, W. Atomic Norm-Based DOA Estimation with Dual-Polarized Radar. Electronics 2019, 8, 1056. https://doi.org/10.3390/electronics8091056
Han M, Dou W. Atomic Norm-Based DOA Estimation with Dual-Polarized Radar. Electronics. 2019; 8(9):1056. https://doi.org/10.3390/electronics8091056
Chicago/Turabian StyleHan, Min, and Wenbin Dou. 2019. "Atomic Norm-Based DOA Estimation with Dual-Polarized Radar" Electronics 8, no. 9: 1056. https://doi.org/10.3390/electronics8091056
APA StyleHan, M., & Dou, W. (2019). Atomic Norm-Based DOA Estimation with Dual-Polarized Radar. Electronics, 8(9), 1056. https://doi.org/10.3390/electronics8091056