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Abstract: As one of the most important and computationally-intensive parts in bioinformatics
analysis, the Pair Hidden Markov Model (Pair-HMM) forward algorithm is widely recognized and
has great potential. Therefore, it is important to accelerate the process of this algorithm. There are
various approaches to accelerate Pair-HMM, especially the accelerators stemmed from the Field
Programmable Gate Array (FPGA) due to the highly-customizable on-chip resources and deep
pipeline potential available to the designer. In this paper, we focus on the FPGA-based accelerators
for the Pair-HMM forward algorithm proposed in recent years. The non-cooperation structure, which
was proposed in our previous work, is compared with the Systolic Array (SA) structure and PE ring
structure in the structure characteristics, calculation mode, computational efficiency, and storage
requirement. We build an analysis model to evaluate the performance of the ring structure and
our non-cooperative structure. Furthermore, based on this, we provide a detailed analysis of the
characteristics of structures of different accelerators and of the selection of a suitable structure for
different scenarios. Based on the non-cooperative PE structure, we design a new chain topology for
the accelerator. Experimental results show that our non-cooperation structure is superior to the other
structures in performance and execution efficiency, and our new topology improves the performance
of the accelerator. Finally, we propose some ideas about the improvement of the non-cooperative
structure accelerator for future work.

Keywords: accelerator structure; algorithm analysis; field programmable gate arrays; Pair-HMM
forward algorithm

1. Introduction

Gene sequence alignment is a process that compares the target sequence of DNA,
RNA, or a protein with the reference sequence and obtains the similarity between the two gene
sequences [1]. This technology is widely applied in the process of screening for disease-causing
mutation carriers [2–4], early-stage cancer detection [5,6], etc. In a typical gene alignment problem [7],
the Pair Hidden Markov Model (Pair-HMM) is most commonly used to evaluate the overall likelihood
of any possible alignments between two sequences. The forward algorithm in Pair-HMM is used in
the variant calling [8,9] stage in GATK HaplotypeCaller [10].

The execution of the gene sequence alignment needs intensive floating-point operations.
Therefore, parallel approaches such as multi-core Central Processing Units (CPUs) [11,12], Graphics
Processing Units (GPUs) [13,14], and Field Programmable Gate Arrays (FPGAs) [15–20] are used to
improve the calculation speed. Compared with CPU and GPU, FPGA has sufficient computational
and storage resources and can customize the hardware according to the requirements, especially for
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computationally-intensive applications. Therefore, FPGAs are suitable for the alignment of the genome
sequence and supply a higher performance power ratio.

The Systolic Array (SA) is a parallel architecture that can be applied to a wide range of problems
in a modular manner to simplify the design complexity. For the design of FPGA-based Pair-HMM
forward algorithm accelerators, the one-dimensional SA [17,21,22] is a common approach and has
some improved variants. The main structure of the SA is a pipeline, where the data flow among
the Processing Elements (PEs). These PEs are integrated as an array and calculate in sequence
alignment simultaneously. However, the SA structure will provoke the waiting and idleness of the PE
while calculating.

To overcome its shortcomings, a PE ring structure was proposed in [18,19]. Through one internal
buffer, it connects the first and the last PE in one SA. Thus, it provides high effectiveness and decreases
the idleness generated by sequences with different lengths. At the same time, the extra idleness also
happens when the PE ring structure accelerator is working, especially with the condition that the
lengths of sequences fed in the pipeline of one PE ring are different.

Both the SA structure and the PE ring structure are designed for the improvement of the
throughput. Nevertheless, the challenges of a large number of alignment programs and different sizes
of sequences put forward different methods to solve this problem. Considering the need for throughput
and performance while dealing with gene sequences with variable sizes, we designed a Pair-HMM
forward algorithm accelerator with the non-cooperative PE structure in [20]. In this structure, every
PE supplies high computational efficiency for the alignment tasks of gene sequences with different
sizes, independently. Beyond the PE layer, the topology of the overall accelerator is the three-layer tree
topology, which can balance the load.

Using an analysis model we built to evaluate the performance of these FPGA-based
accelerators, we provide a detailed analysis of the characteristics of the structures of different
accelerators. To be specific, the calculation mode, computational efficiency, and storage requirement
among the non-cooperative structure, the SA structure, and the PE ring structure are compared.
The non-cooperative structure can achieve higher computational efficiency. At the same time, due to
the independent control of each PE, it brings the consumption of the resources of the FPGA compared
with other structures. Based on this detailed comparison and analysis, we propose a new idea for the
topology of the accelerator. We design a chain topology for the overall accelerator, which will reduce
the difficulty of layout and the pressure of bandwidth, thus increasing the frequency of the accelerator
and improving its performance.

The rest of this paper is organized as follows. Section 2 shows the Pair-HMM forward algorithm.
Section 3 shows our analysis model to evaluate the performance of the ring structure and our
non-cooperative structure and the design of a new chain topology for the non-cooperative structure
accelerator. Section 4 explains the experimental analysis. Section 5 shows the conclusion.

2. Background

The Pair-HMM forward algorithm is a dynamic programming algorithm with a double-nested
loop for calculating the matching probability [22] of a pair of gene sequences under observations
consisting of the target and the reference sequence, namely the Read and the Haplotype. There are three
hidden states in Pair-HMM, namely Match (M), Delete (D), and Insert (I). The probability-based
transitions among the three hidden states are shown in Figure 1. Each parameter Wxy attached to the
red line denotes the transition probability from state x to state y. For convenience, here, we denote
the values of state M by Mr,c, which demonstrates the likelihood of every approach originating from
the first element of the Read sequence to the rth element in the M state. Dr,c and Ir,c are denoted in the
same way. The complete Pair-HMM forward algorithm applied in the variant calling analysis tool
named GATK HaplotypeCaller [23] is shown as follows in Algorithm 1.

As shown in Algorithm 1, the maximum length of the critical paths for calculating Mr,c is longer
than that for calculating Ir,c and Dr,c. In the field of FPGA, this imbalance leads to the idleness of
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hardware. Proposed in [19], two auxiliary variables, named ta and tb, are added into the recursion,
which calculate partial calculations of Mr,c in advance, to achieve unifying the lengths of the critical
paths. Therefore, while implementing this optimized algorithm, the cost of the memory resources will
increase accordingly. On this basis, the optimized Pair-HMM forward algorithm used in [20] is shown
in Algorithm 2 and the following.

Figure 1. The diagram of hidden state transitions in the pair hidden Markov model.

Algorithm 1: Pseudocode for the Pair-HMM forward algorithm.
Input: Read sequence: R, Haplotype sequence: H, base quality: bq, insert quality: iq, delete

quality: dq.
Output: Likelihood: result

1 Initialize M0,c = I0,c = 0 and D0,c = 2120/|H|, for c = 0 to |H|, Mr,0 = Ir,0 = Dr,0 = 0 for
r = 1 to |R|

2 for r = 1 to |R|, do
3 for c = 1 to |C|, do
4 Mr,c = Prior(r, c) · (Wmm ·Mr−1,c−1 + Wim · Ir−1,c−1 + Wdm · Dr−1,c−1).
5 Ir,c = Wmi ·Mr−1,c + Wii · Ir−1,c
6 Dr,c = Wmd ·Mr,c−1 + Wdd · Dr,c−1.
7 end
8 end
9 result = ∑c(I|R|,c + M|R|,c).

Algorithm 2: Pseudocode for the optimized Pair-HMM forward algorithm.
Input: Read sequence: R, Haplotype sequence: H, base quality: bq, insert quality: iq, delete

quality: dq.
Output: Likelihood: result

1 Initialize M0,c = I0,c = 0 and D0,c = 2120/|H|, for c = 0 to |H|, Mr,0 = Ir,0 = Dr,0 = 0 for
r = 1 to |R|, result=0 and the error rate sequence ε[q] = 10−q/10, for q = 0 to 128.

2 for k = 0 to < (|R|+ |H|), do
3 for r = max(0, 1 + k− |H|) to min(|R|, k + 1), do
4 c = k + 1− r
5 tar,c = Wim(r) · Ir,c−1 + Wdm(r) · Dr,c−1

6 tbr,c = Wmm(r) ·Mr,c−1

7 Mr,c = Prior(r, c) · (tar−1,c + tbr−1,c)

8 Ir,c = Wmi(r) ·Mr−1,c + Wii(r) · Ir−1,c
9 Dr,c = Wmd(r) ·Mr,c−1 + Wdd(r) · Dr,c−1

10 if r = |R| then
11 result+ = (Mr,c + Ir,c)

12 end
13 end
14 end
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The Read sequence, the Haplotype sequence, and quality factor sequences are the inputs of the
Pair-HMM forward algorithm. The intermediate variables of the recursion contain M, I, D, ta, and tb.
The output part is the likelihood of all possible alignments between two sequences.

To illustrate the comparative analysis of FPGA-based accelerators, we use two concepts defined
in [20].

• Task: The entire computation of the alignment of a pair of sequences.
• Computation matrix: In the task denoted above, the computation matrix indicates the process of

computation in which every element of the Haplotype and the Read sequences is to be compared.
The size of the computation matrix is length(Haplotype) × length(Read). The element of the
computation matrix, shown as [r, c], represents the calculating recursion in Algorithm 2 with the
same indices r and c.

For further analysis, we show the characteristics of the algorithm as Figure 2 and the following.

1. This is a computationally-intensive algorithm. With n and m representing the lengths of the
Read and Haplotype sequences, respectively, the time complexity is O(n ∗m), and the memory
complexity is O(n + m).

2. The sequences alignment tasks are independent, which means that there is no data dependence.
3. The traversal of Algorithm 2 is performed in a diagonal order. k denotes the kth diagonal.

The element [r, c] of the computation matrix indicates that the rth element of the Read sequence is
compared with the cth element of the Haplotype sequence. Shown in Algorithm 2, the result is
calculated by the sum of all M|R|,c and I|R|,c with all different c.

4. The calculations of one element are dependent on the calculations of the two elements that have
data dependence with it. For example, the element [r, c] is relevant to the elements [r, c− 1] and
[r− 1, c]. Therefore, the calculations of [r, c] depend on the calculations of [r, c− 1] and [r− 1, c].
Thus, among the elements on the same diagonal, there is no data dependence. These elements
can be calculated in parallel.

Knowing the algorithm clearly, we can perform the comparison of the accelerators based on this.

Figure 2. The features of the Pair-HMM forward algorithm.

3. Comparative Analysis of Accelerator Structures and a Novel Topology for the
Non-Cooperative Accelerator

3.1. Structures’ Characteristics

1. Systolic array: Typically, the systolic array structure is used to organize multiple PEs, perform
a single sequence alignment task collaboratively, and develop instruction-level parallelism.
As shown in [13,17,21], this structure has advantages, including a shorter calculation delay
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for a single alignment task and the convenience of data flowing among the neighbor PEs.
However, it has less adaptability for tasks with variable lengths of sequences in the pipeline.
It will also generate idleness when the lengths of sequences are different in the pipeline or when
partial PEs have finished the calculations of the current row of the computation matrix. With n
PEs in the array, the first PE can calculate the new row only after the last PE has finished the
calculations of the current calculation row n.

2. PE ring structure: The PE ring structure based on the PE array was proposed in [19]. This structure
is improved based on the SA structure. It connects the first PE and the last PE with an internal
buffer and generates a ring with n PEs. It benefits from sharing data when the first PE changes the
current calculation row k to the following calculation row n + k. It improves the adaptability to
variable length input, but there are still problems of a high idleness rate. The design of multi-PE
collaboration increases the complexity of control.

3. Non-cooperative structure: We proposed the non-cooperative PE structure in our previous
work [20]. Different from the two mentioned structures, our non-cooperative PE structure has no
cooperation among the PEs. Each PE can independently perform a single sequence alignment
task. The total accelerator integrates numerous PEs with the three-layer topology architecture.
Multiple tasks are processed in parallel independently. Therefore, this PE structure obeys the
principle of SPMD (Single Program Multiple Data).

The calculation processes of the three structures are shown in Figure 3. The blue-bordered grids
represent the sequence order of the PE processing in the pipeline. The dotted PE blocks in Figure 3a,b
represent the situation when calculating the previous element, and the red line represents the direction
in which the intermediate results are transmitted. The block, named Rawi

j,k, indicates the raw data

from the jth element of the Read sequence and the kth element of the Haplotype sequence in the ith task.
The block, named IRi

j, represents the jth element of the intermediate result data in the ith task. Note
that the intermediate result data are stored in the shape of a diagonal.

(a) Systolic Array Structure (b) PE Ring Structure

(c) Non-Cooperative Structure

Figure 3. The calculations of the three structures.
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As shown in Figure 3a,b, the SA structure and the PE ring structure are based on the principle
that multiple PEs cooperate to process one task. These PEs are used to calculate elements on
the same diagonal without data dependence. Multiple tasks are processed sequentially in the
pipeline. These two structures seek to meet the real-time requirements of a single task to complete in
shorter cycles.

In the SA, data streams synchronously flow through adjacent two-dimensional array elements.
It is not flexible enough such that only when all n PEs have completely processed all the elements of
the row, it can start calculating the next n rows of elements. As a consequence, it will generate idleness
during the calculations.

However, the PE ring structure can directly process the elements of the (n + 1)th row after all the
elements of nth row are processed to avoid the idleness generated by the SA while switching the rows.

The non-cooperative structure also pursues the throughput with the pipeline scheme.
The calculations of elements on the same diagonal are sequentially sent into the pipeline for processing.
When the calculations of the first element in the current diagonal are still waiting to be finished,
the data dependence will occur if the data in the adjacent diagonal are still fed. In this situation, idle
operations will be inserted.

3.2. Comparative Analysis

Since the PE ring structure surpasses the SA structure in performance, we will only compare the
non-cooperative structure with the PE ring in detail. The core difference between these two structures
is whether there is any cooperation among PEs. It can be reflected in the smallest repeatable unit,
i.e., a ring and the non-cooperative structure with the same number of PEs. On this basis, both the
PE ring structure and the non-cooperative structure have coarse-grained parallelism at a higher level.
We established a parametric analytical model for these two structures. In the following paragraphs,
we will present our analytical model and a comparative analysis of the two structures from three
main aspects.

3.2.1. Calculation Mode

The calculation mode of the PE ring structure is shown in Figure 3b. When the PEs calculate
elements in the task, the calculation mode is as if they are placed along the diagonal. In the first sweep,
the first n rows are calculated. After the first PE reaches the last element of the first row, it can continue
to process the (n + 1)th row in the computation matrix. All PEs start to process different elements of
one task in the same cycle and will start to process the elements in the same position as another task in
the next cycle. P tasks can be processed in the pipeline simultaneously where P represents the pipeline
depth of the PE. After the intermediate results of the first task are generated, these intermediate results
are passed to its adjacent PE. Then, the next element of the first task will be processed in the next cycle.
This procedure is shown in Figure 4a.
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Figure 4. The pipeline of adjacent PEs’ processing matrix elements of the PE ring and
non-cooperative structure.
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The calculation mode of the non-cooperative structure is shown in Figure 3c. Each PE processes
a single task. Each PE traverses the computation matrix along the diagonals and processes the elements
on the diagonal line in turn. Only when the results of the first element of the current diagonal are
generated can the calculations in the next diagonal start without waiting. Otherwise, it is necessary to
insert idle operations to wait for the calculation to complete and avoid the error. Shown as Figure 4b,
we can see that in the non-cooperative structure pipeline, each PE processes the elements of a task in
a diagonal order.

3.2.2. Computational Efficiency

Figure 5 shows the computational efficiency of the SA structure, the PE ring structure, and the
non-cooperative structure. In addition to the idleness caused in the startup and shutdown phases,
the SA also generates a large number of idle cycles while switching the passes. The PE ring structure
avoids this idleness while shifting the rows. The non-cooperative structure only generates idleness
in the startup and shutdown phases. In these two phases of the task, it is necessary to insert idle
operations at the end of the diagonals. This ensures that the calculation of the next diagonal starts
only after generating the results of the first element of the current diagonal, which has the data
dependence with the first element on the next diagonal. With the condition that the pipeline depth
is P , for the ith diagonal, there are P − i idle operations inserted. When i ≥ P , the pipeline can run
without any idle operation. Figure 6 shows the specific analysis of idle cycles in the PE ring and
non-cooperative structure. Figure 6a,b shows the PE idleness of the PE ring structure in the startup and
shutdown phases. Figure 6c,d shows the PE idleness of the non-cooperative structure in the startup
and shutdown phases.

It needs to be noted that the idleness in the shutdown phase in the PE ring structure is related to
the length of the Haplotype sequence. The total idle cycles in the non-cooperative structure maintain
a fixed value for variable lengths of sequences. According to Figure 6, when the number of PE is N ,
the length of the Haplotype sequence is LH , the length of the Read sequence is LR, and the pipeline
depth is P , we can characterize idle cycles for the PE ring structure as:

TRing
Idle_Startup = N ∗ (N − 1) ∗ P/2 (1)

TRing
Idle_shutdown =

1
N

N

∑
k=1

(LH − 1) ∗ (N − k) ∗ P = (N − 1) ∗ (LH − 1) ∗ P/2 (2)

TRing
Idle = TRing

Idle_Startup + TRing
Idle_shutdown = (N − 1) ∗ (N + LH − 1) ∗ P/2. (3)

For the non-cooperative structure:

TNon−co
Idle_Startup = TNon−co

Idle_shutdown = N ∗ (P) ∗ (P− 1)/2 (4)

TNon−co
Idle = TNon−co

Idle_Startup + TNon−co
Idle_shutdown = N ∗ (P) ∗ (P− 1). (5)

The ratio of idle cycles between the PE ring structure and the non-cooperative structure is:

TRing
Idle

TNon−co
Idle

=
(N + LH − 1) ∗ P ∗ (N − 1)

2 ∗ N ∗ (P) ∗ (P− 1)
(6)
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(a) Systolic Array Structure (b) Ring Structure (c) Non-Cooperative Structure

Figure 5. The computational efficiency of the three structures.

Working PEs

Idle PEs

(a)

(b)

Working Cycles

Idle Cycles

(c)

(d)

× P ×N

N
P-1

P-1

LH-1

N-(LR%N)

Figure 6. PE idle cycles in two structures. This figure shows the specific idle cycles in the PE ring
and the non-cooperative structure. (a,b) show the PE idleness of the PE ring structure, in the startup
and flush phase. (c,d) show the PE idleness of the non-cooperative structure in the startup and the
flush phase.

As shown in Figure 7, if the lengths of the sequences calculated in the pipeline on the same ring
are different, it will generate extra idle operations.

Figure 7. In the PE ring structure, in the case where the size of the two adjacent matrices on the pipeline
are different, the PEs are idle in two adjacent cycles. (a) shows the status of computation matrix for the
1st task in cycle k, and (b) shows the status of computation matrix for the 2nd task in cycle k+1.

In this case, the number of idle cycles of the PE ring structure is shown in (7). After data testing,
the ratio of the idle cycles influenced by the length of the Haplotype sequence in the two situations is
shown in Figure 8.

TRing
Idle_new = TRing

Idle + P ∗max(LH(i)) ∗max(LR(i))−∑P
i=1 LH(i) ∗ LR(i) (7)
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Figure 8. The ratio of idle cycles with the same or different lengths of input sequences and different LH .

3.2.3. Storage Requirement

The storage requirement is divided into two parts: five intermediate result variables M, I, D, ta,
tb and five raw data sequencesR, H, bq, iq, dq.

In the PE ring structure, the intermediate results between adjacent PEs can flow without delay,
which means that it does not need any extra memory to store the data. Therefore, only the internal
buffer after the last PE of the ring stores intermediate results for all pipeline stages. The ring performs
multiple tasks with the pipeline, which needs to store intermediate results of multiple tasks, as well.
As a result, the storage requirement for the PE ring structure is as follows:

RRing = [(max(LH)− N) ∗ P ∗ 5 + max(LH) ∗ P ∗ 5] ∗ 4Bytes = (max(LH) ∗ 2− N) ∗ P ∗ 20bytes (8)

The non-cooperative structure performs one task with one PE, meaning that it needs to store
intermediate results of one task. Therefore, the storage requirement is shown as follows:

RNon−Coop = [max(LH) ∗ N ∗ 5 + max(LH) ∗ N ∗ 5] ∗ 4Bytes = max(LH) ∗ N ∗ 40Bytes (9)

When the pipeline depth P = 12, the PE numbers N = 8 and max(LH) = 302; in this
case, RRing/RNon−Coop ≈ 1.48.

3.3. Advantages and Disadvantages of the Comparison

By comparing these structures, we can know that the non-cooperative PE structure shows notable
differences in calculation mode. This structure shows higher computational efficiency by decreasing
the idle cycles while calculating. It also decreases the idleness generated by the cooperation with other
PEs. On the other hand, the mode that PE performs independently makes the cost of the control of
each PE obviously larger than the SA and the ring structures.

3.4. A Novel Topology for the Non-Cooperative Accelerator

Based on the structure of non-cooperative PE, we originally designed a three-layer tree topology
in [20], which is shown in Figure 9. In the top module, the original topology structure transmits data to
multiple top-level modules’ allocation by polling, that is the FIFO (First In First Out) corresponding to
each allocation is directly connected to the DMA (Direct Memory Access) read engine. The advantage of
this design is that it can balance the load of all PEs in this accelerator. However, this architecture results
in the design of the layout where wires with a wide width are gathering.

After further consideration, we put forward a new idea on the overall topology of the accelerator.
We designed a novel chain topology to alleviate this problem and improve the performance.
In this way, the difficulty of layout and routing can be further reduced. In our new chain topology,
the FIFO corresponding to the first allocation is directly connected with the DMA read engine, while
the next FIFOs are connected with the previous one by a buffer, which is shown in Figure 10. We will
analyze this from the following aspects.
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1. Bandwidth: Consistent with the original tree topology.
2. Latency: In the chain topology, when data are transmitted between FIFOs, there will be delay.

However, in our design, NA has a small value of eight. Therefore, the latency added by data
transmission is only up to eight cycles. In the pipeline operation mode, the extra performance
loss caused by the new topology is negligible compared to the original structure.

3. Performance: Because the path bandwidth between the DMA read engine and FIFOs is relatively
large, if the original tree topology scheme is adopted, the layout and routing will be under
great pressure. The use of the chain topology will reduce the difficulty of layout and routing,
thus increasing the operating frequency of the accelerator and improving its performance.

4. Scheme mode: It is assumed that i is a PE index for judging whether or not data are allocated,
and the initial value is zero. Each allocation will generate a FULL signal to indicate whether
the PEs inside the allocation are already full of data being calculated. If the FULL signal of
Allocation[i] is FALSE, the data will be sent to Allocation[i], and i = i + 1. If the FULL signal of
Allocation[i] is TRUE, the data will not be transmitted, and i = i + 1, and so on. This can better
balance the load. All signals generated by allocation are processed centrally by the controller.
The data transfer is done through the buffer to the next allocation. The structure and scheme of
the allocation module have not changed.

Figure 9. The accelerator with the tree topology.

Figure 10. The accelerator with the chain topology.
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4. Experiments Analysis

The test data for our comparison were one dataset from the Whole Genome Sequence [24].
This dataset includes three datasets, named “tiny”, “10s”, and “1m”, of which the length of sequences
ranges from 10–302.

Table 1 shows the performance comparison among implementations in various platforms,
which included multi-core CPU, GPU, and FPGA. The middle-scale dataset, named “10s”, was used as
the test dataset for the comparison. In the Altera Arria 10, there were 128 PEs integrated both in [19,20].
The performance of the non-cooperative structure was 1.19 × higher than the average factor of the PE
ring structure as a result of fewer idle cycles and easier load balancing among PEs for different lengths
of Read-Haplotype pairs on the real-world dataset.

Table 1. Comparison of the performance of different implementations.

Acceleration Platform Runtime (ms) Speedup

Original Java [11] 10,800 1×
C++ Baseline [11] 1267 9×
Intel Xeon 24 Cores [19] 15 720×
Nvidia K40 GPU [19] 70 154×
Improved warp based [14] 12.8 843×
Alter OpenCL (Arria 10) [19] 2.8 3857×
PE Chunks (Xilinx KU3) [15] 5.0 2160×
PE Ring (Stratix V) [19] 5.3 2038×
PE Ring (Arria 10) [19] 2.6 4154×
Non-cooperative-128PE (Arria 10) [20] 2.2 4970×
Non-cooperative-64PE (tree topology, XC7VX485T) 4.4 2401×
Non-cooperative-64PE (chain topology, XC7VX485T) 4.3 2485×

The resource utilization and frequency results in the ring structure and the non-cooperative
structure implemented on FPGAs from [19,20] are shown in Table 2. From the perspective of
implementation, the storage requirements of the two structures were not the bottleneck limiting
computational resources. Considering the settings of parameters, there were subtle differences
in [20] and [19] between the Pair-HMM forward algorithms. Compared with the algorithm in [19],
one extra floating-point multiplication operation was added into the calculations of the “Prior”
parameter in [20]. This resulted in a higher computational resource utilization for a single PE than [19].

However, the control mode of the ring structure is that the ring composed of multiple PEs
uses one controller, while the control mode of the non-cooperative structure is that each PE has
an independent controller. With a large number of PEs integrated together, the pipeline control
module of all PEs in non-cooperative structure will occupy more LUT resources. For those FPGAs
with less DSP resources or unbalanced resources, such as Stratix V, the non-cooperative accelerator is
not recommended. Generally speaking, because floating-point computation in the algorithm cannot
be implemented entirely by DSP, a considerable amount of LUT resources are used to implement
floating-point computation, so there are resource bottlenecks in the implementation of the overall
accelerator, that is to say, the same number of PEs cannot be achieved. In this case, the ring structure
is better.

For FPGAs with more balanced resources of DSP and LUT, such as Altera’s Arria 10 and Xilinx’s
XC7VX485T, the non-cooperative structure can show its performance advantages better.

The non-cooperative structure has flexibility while computing a large number of sequence
alignment tasks to avoid redundancy in collaborative computing. However, it also means more precise
control, which brings more resource consumption. We think that the problem that the non-cooperative
structure consumes too much computational resources at present can be optimized and reduced
through further implementation design so that it can be better applied in more FPGAs.
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Table 3 shows the comparison of the runtime and effective cycle ratio in three implementations.
The runtime information shows the actual performance of the accelerator, which is affected by the
FPGA frequency. The effective cycle rate shows the ratio of the theoretically effective calculation
cycles to the actual consumption cycles of the accelerator based on the analytical model we established.
We can see that the accelerator of the non-cooperative 64 PEs version was the most efficient and had
significant advantages over the ring structure accelerator with the same number of PEs. At the same
time, under the same accelerator structure, the 64 PE version was slightly more efficient than the 128
PE version. After our analysis, this was because, in the accelerator of the 128 PE version, the number
of PEs that were controlled by the same controller to poll the computing task was more than the
accelerator of the 64 PE version, which led to greater delay.

As for the design of the chain topology of the non-cooperative PE accelerator, we implemented it
on Xilinx’s XC7VX485T. In Tables 1 and 2, we show the performance and the utilization of the chain
topology accelerator. We can see that, compared to the tree topology scheme proposed in [20], our new
chain topology improved the frequency of the accelerator and the performance with the same FPGA.

Table 2. Utilization for target FPGAs [19,20].

Accelerator Non-Cooperative Structure PE Ring Structure

FPGA XC7VX485T XC7VX485T XC7VX980T Arria 10 Stratix V Arria 10
# of PEs 64 (chain topology) 64 (tree topology) 128 128 64 128
Frequency 235.29 MHz 227.27 MHz 222.22 MHz 230 MHz 200 MHz 231 MHz
LUT 69.92% 69.82% 88.64% 90% 83% 4%
DSP 91.43% 91.43% 99.56% 93% 75% 93%
BRAM 45.15% 45.15% 57.07% 25% - -

Table 3. Comparison of the runtime and effective cycle ratio of different implementations in the three
test datasets.

Accelerator
Runtime/ms Effective Cycle Ratio

Test Datasets Test Datasets
Tiny 10 s 1 m Tiny 10 s 1 m

Non-cooperative-64PE (tree topology, XC7VX485T) 0.044 4.42 29.82 76.8% 97.1% 96.9%
Non-cooperative-128PE (Arria 10) 0.026 2.20 14.88 63.6% 96.2% 96.0%

PE Ring 8 × 8 PE (Stratix V) 0.060 5.26 35.79 64.1% 92.6% 91.6%

5. Conclusions and Future Works

In this paper, we compared three structures of the FPGA-based Pair-HMM forward algorithm
accelerators, including the SA structure, the ring structure, and our non-cooperative structure.

We built a parametric model to analyze the differences among the structures from the aspects of
the calculation mode, the computational efficiency, and the storage requirement. Regarding FPGAs
equipped with different computational hardware, these structures can be flexibly ported, improve
their applicability, and maximize computational resources’ utilization for the best performance.
The non-cooperative structure had considerable differences compared to the SA structure and the PE
ring structure in the calculation mode and organized schemes. The largest difference was that the data
would not flow among PEs, while in the SA structure and the PE ring structure, data flow in every PE
sub-structure. In other words, the non-cooperative structure revealed higher computational efficiency
and flexibility than other FPGA-based implementations with different structures. However, this
flexibility also brought a large amount of cost with respect to the control components. For those FPGAs
with limited resources, the non-cooperative accelerator is not recommended, and the ring structure is
better. For FPGAs with more balanced resources of DSP and LUT, the non-cooperative structure can
shows its performance advantages better.
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For the non-cooperative structure accelerator, we designed a new chain topology. It simplified the
complexity of layout and routing and improved the performance by about 4%.

Aiming at the defects of the current structures of accelerators, we will perform further research
to improve the performance. As our further work, we propose some ideas. Firstly, with further
optimization approaches to decreasing the consumption of the resources of controller components,
our FPGA-based accelerator can achieve higher performance. Secondly, according to the characteristics
of the sequence alignment task, we are going to research the cooperative controller of mini-batch input
data with the same sequence length, which will also decrease the consumption of the resources. Thirdly,
the flexible configuration of process units on the basis of a specific FPGA with limited resources may be
another important part of our further research. Fourthly, we will use the chain topology to reconstruct
the connection of PEs. These ideas of the structure of the accelerator can be applied in the acceleration
of other algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

Pair-HMM Pair Hidden Markov Model
FPGA Field Programmable Gate Array
CPU Central Processing Unit
GPU Graphics Processing Unit
PE Processing Element
DNA Deoxyribonucleic Acid
RNA Ribonucleic Acid
DSP Digital Signal Processor
GATK Genome Analysis Toolkit
SA Systolic Array
SPMD Single Program Multiple Data
FIFO First In First Out
DMA Direct Memory Access
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