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Abstract: With the aim of improved throughput with reduced delay, Google proposed the bottleneck
bandwidth and round-trip time (BBR) congestion control algorithm in 2016. Contrasting with the
traditional loss-based congestion control algorithms, it operates without bottleneck queue formation
and packet losses. However, we find unexpected behaviour in BBR during testbed experiments and
network simulator 3 (NS-3) simulations. We observe huge packet losses, retransmissions, and large
queue formation in the bottleneck in a congested network scenario. We believe this is because of
BBR’s nature of sending extra data during the bandwidth probing without considering the network
conditions, and the lack of a proper recovery mechanism. In a congested network, the sent extra data
creates a large queue in the bottleneck, which is sustained due to insufficient drain time. BBR lacks a
proper mechanism to detect such large bottleneck queues, cannot comply with the critical congestion
situation properly, and results in excessive retransmission problems. Based on these observations,
we propose a derivative of BBR, called “BBR with advanced congestion detection (BBR-ACD)”,
that reduces the excessive retransmissions without losing the merits. We propose a novel method
to determine an actual congestion situation by considering the packet loss and delay-gradient of
round-trip time, and implement a proper recovery mechanism to handle such a congestion situation.
Through extensive test and NS-3 simulations, we confirmed that the proposed BBR-ACD could
reduce the retransmissions by about 50% while improving the total goodput of the network.

Keywords: BBR; congestion control; actual congestion detection; retransmissions; TCP

1. Introduction

Despite rigorous research on the packet loss problem during data transmission [1,2], a significant
amount of packet losses are observed, especially in the wireless network. Packet losses can occur
due to both network congestion and network failures. While bottleneck buffer overflow is the primary
cause of network congestion, network failures can occur for multiple reasons, such as link disruptions,
bit errors, routing failures, etc. [3,4]. To handle packet loss issues, the end hosts have to actively control
the flow of data and retransmit the lost packets. In the 1980s, the Transmission Control Protocol (TCP)
introduced congestion control by interpreting packet loss as an indication of congestion [5]. TCP maintains
a congestion window (CWND) at the sender which determines the allowed amount of data to be sent. If
there is no packet loss event, the CWND increases, and whenever there is a packet loss event, it is halved
to slow down the flow of data. Even though packets can be lost for network failures too, the current TCP
congestion controls are mostly loss-based, interpreting each loss as an indication of congestion [6–10]. In
the case of the large bottleneck buffer, these loss based congestion controls arise bufferbloat by keeping
the buffer full, whereas for a small bottleneck buffer, they cause low throughput due to false recognition
of congestion.

Google proposed a new congestion based congestion control algorithm named bottleneck
bandwidth and round-trip time (BBR) with a view to avoid congestion [11]. In its essence, it prevents
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persistent queue formation in the bottleneck by controlling the sending rate by sequentially measuring
the minimum round-trip time (minRTT), bottleneck bandwidth (BtlBW), and delivery rate. As a result,
BBR keeps the RTT to a minimum level while utilizing the full bandwidth. This allows sending more
data in a short time, thus ensuring better network utilization. According to Google [11], BBR has
improved B4’s [12] bandwidth by 133 times, reduced YouTube’s median round-trip time (RTT) by more
than 80%, and converges to the Kleinrock’s [13] optimal operating point for the first time. Therefore,
BBR is expected to provide high goodput with fewer retransmissions.

Captivated by its promising performance improvements, several recent works have investigated
BBR’s performance in different scenarios [14–17]. We also tested BBR in our testbed environment and
found unexpected but significant performance degradation in a congested network scenario with
moderate bottleneck buffer size. To investigate in detail, we generated a fairly congested scenario in
network simulator 3 (NS-3) [18] and tested a modified version of Jain et al.’s BBR implementation [19]
in compliance with BBR v1.0 [20]. We found that a large persistent queue is formed in the bottleneck
during bandwidth probing due to BBR’s data overshooting nature irrespective of the network condition.
Because of insufficient drain time and absence of a proper recovery mechanism, this queue remains
and causes huge packet losses and retransmissions. Surprised by the results, we investigated further
and tried to answer the following three questions in this paper:

(1) How extreme is the performance degradation? To investigate the performance degradation
in BBR, we performed the experiments in NS-3 simulation environment with seven sources, seven
destinations, and two routers. The BtlBW was set as 1 Mbps between the two routers. The experiments
reveal that enormous packets are lost which tends to increase with the increase in simulation time. In a
300 s simulation time, about 42% of the packets were lost. While the average throughput was 0.87 Mbps,
the average goodput (the received number of original/not-duplicate packets per second) was only 0.5 Mbps.
In support of this finding, we found that Google has recently admitted the issue in IETF’98 [21] that, when
BBR replaced CUBIC in YouTube, the global average retransmission rate doubled, from approximately 1%
to around 2%. Several recent studies have also reported similar phenomenon [14,17,22].

(2) What is the reason behind such performance degradation? By comprehensive analysis, we find
that the poured extra data during the bandwidth probing generates a persistent queue in the bottleneck
and that the drain time is insufficient to release that queue. As a result, bufferbloat occurs, which
gradually leads to packet losses. TCP informs BBR about the packet losses or bufferbloat events by
the three-duplicate acknowledgments (3-dupACKs). However, BBR does not back-off properly and
continues to send data at almost the same rate, the queue sustains and results in enormous packet
losses with a significant increase in latency, which ultimately leads to a timeout event. In such a
timeout event, BBR resets its CWND to one MSS (maximum segment size) and starts the recovery
process. As a result, it cannot achieve the better goodput that it would have achieved with a proper
recovery scheme.

(3) How to solve the issues? In-depth analysis shows that whenever a persistent queue is formed,
first, bufferbloat occurs, then packets are lost. Inclusively, these two together can be regarded as a
clear indication of actual congestion. In addition, the relationship between the RTT and delivery rate
in respect to the amount of inflight data (Figure 1) shows that, when the buffer becomes full and
operating point B of the loss-based congestion control is crossed, the RTT and delivery rate remains
identical, i.e., does not change anymore; at this point the packets are simply discarded. Although RTT
remains identical before operating point A, BBR always operates beyond point A as reported by [14].
Therefore, packet loss events during RTT remaining identical can be considered as a clear indication of
actual congestion too. Thus, rather than being too conservative to reduce the CWND in loss events,
if we can implement a method that can recognize the actual congestion events by considering these
two factors and take proper actions, we might be able to mitigate the issues in BBR. Moreover, Google
is actively developing BBR v2.0, where the early presentations suggest that they are also considering
responding to loss events to reduce retransmissions [23]. However, responding to every loss event
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may degrade the performance when competing BBR flows are present, especially for large bottleneck
buffers as can be observed in the performance of current BBR v2 [24].

Therefore, we propose BBR with advanced congestion detection (BBR-ACD), a simple but effective
solution to mitigate BBR’s excessive retransmission problem without losing any benefits. BBR-ACD
detects actual congestion events by considering the delay-gradient of RTT, and packet losses; and
slows down the flow of data in the case of actual congestion events by halving the CWND. This allows
the bottleneck to get rid of the excess queue, reduces increased latency due to bufferbloat, and ensures
high link utilization.

We implemented BBR-ACD into BBR v1.0’s implementation in Linux [20] and extensively
experimented on the testbed. The evaluation results show that BBR-ACD reduces the retransmissions
by about 50%. Moreover, during simulation evaluation, BBR-ACD loses only about 3.3% of the actual
data packets, which is about 92% reduction in packet losses in comparison with BBR. Moreover,
BBR-ACD does not reduce the throughput, rather it enhanced it to 0.89 Mbps while increasing the
goodput to 0.86 Mbps because of the reduced packet losses.

The rest of the paper is organized as follows: Section 2 gives an overview of BBR, Section 3
provides details on the extents and causes of the excessive retransmission problem in BBR by both the
testbed and simulation experiments. Section 4 specifies BBR-ACD in details. Section 5 gives a detailed
performance analysis of BBR-ACD by the same testbed and simulation experiments. Finally, Section 6
concludes the paper.

Figure 1. Relationship of delivery rate and round-trip time with the amount of inflight data, and the
operating points of the congestion control algorithms according to [14].

2. BBR Overview

In this section, we give a brief description of BBR, the motivation behind it, how it works, and what
are its advantages. For further details, we would like to refer the interested readers to Cardwell et al. [11].

2.1. Motivation behind BBR: The Optimal Operating Point

A bottleneck is the network cluster which has the lowest available bandwidth on a path. In every
network, there is a bottleneck which determines the throughput of a network. This is also the
place where the persistent queue builds up [16]. Kleinrock et al. [13] have proved that, if the data
inflight—the unacknowledged data—matches to exactly one bandwidth-delay product (BDP), i.e.,
inflight = BtlBW × RTprop, it will maximize throughput, minimize RTT, and act as the optimal
operating point (point A in Figure 1) for both individual connection and the entire network. Here,
BtlBW stands for the bottleneck bandwidth, and RTprop is the round-trip propagation time which is
almost equivalent to minRTT. In simple words, if we can achieve a delivery rate equal to the BtlBW
while maintaining the RTT identical to the minRTT, we would be able to fully utilize the network and
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get maximum throughput off it. Motivated by this idea, BBR claims to operate at the optimal operating
point and tries to deliver maximum throughput.

2.2. BBR Operation

To operate at the optimal operating point, BBR requires to measure the BtlBW and minRTT
continuously. In order to measure the BtlBW, the pipe needs to be overfilled, whereas all the queues
need to be drained empty to measure minRTT. Therefore, BBR separately measures the BtlBW and
minRTT in a sequence. Based on the measured values of BtlBW and minRTT, BBR determines its
sending rate by two control parameters: Pacing rate and CWND. Pacing rate determines the rate at
which a sender sends data. CWND puts an upper limit on the data inflight, i.e., the maximum allowed
amount of inflight unacknowledged data. BBR operates in four states:

(1) Startup: In the startup phase, BBR starts with an exponential search for BtlBW. The sending
rate increases by a rate of 2/ln2 for the reception of every acknowledgment (ACK) until the delivery
rate stops growing. In the meantime, BBR maintains a maximum CWND/inflight-cap of 3 × BDP.

(2) Drain: During the startup bandwidth probing, a queue forms in the bottleneck due to extra
data pouring. To free up the excess queue, BBR slows down its sending rate by an inverse function of
startup rate, ln2/2, until the delivery rate matches BDP.

After draining, BBR steps into a steady-state phase where it cruises while sequentially measuring
the BtlBW and minRTT by the following two states.

(3) ProbeBW: BBR spends most of its time in this state. It consists of eight cycles; each cycle lasts
for one RTT. In one cycle, the pacing gain is set to 1.25, thus allowing BBR to pour extra data to overfill
the pipe in order to probe for extra bandwidth. In the very next cycle, the pacing gain is reduced to
0.75 so that BBR can drain out the extra data that it poured in the previous cycle. For the next six cycles,
BBR maintains a pacing gain of 1 so that it can cruise while maintaining the measured bandwidth.

(4) ProbeRTT: While in the ProbeBW state, if BBR cannot find any minRTT value less than the
existing minRTT for a 10 seconds timespan, BBR enters the ProbeRTT state. Here, it reduces its CWND
to only four packets so that all the queues become free and BBR can re-probe the minRTT.

2.3. Benefits of BBR

BBR has gained widespread attention over its other competitors because of the following benefits:

1. By operating in the optimal operating point, BBR claims to achieve high throughput while
maintaining RTT close to minRTT. As a result, better network utilization is assured.

2. BBR can be implemented quite easily by executing it only on the sender side. It does not require
any modification in the middleboxes or at the receiver end.

3. In the multitude of different congestion control protocols, after measuring the capacity of the
network, BBR claims a fair share and actively defends that share from being crowded out. As a
result, albeit being a congestion avoiding protocol that tries to keep the queue free, BBR sustains
in the battle with loss-based protocols which try to keep the queues fully occupied.

3. Excessive Retransmission Problem in BBR

In this section, we discuss in detail the retransmission issue in BBR with experimental results and
explain the reasons behind it. We start by experimenting with BBR v1.0 [20] in our testbed environment
and give a simple view of the retransmission problem observed in it. Then, in order to investigate the
extent of the problem and the cause, we experiment in a simulation environment.

3.1. Testbed Environment

To test the performance of BBR, we set up a testbed scenario with two senders, one destination,
and two routers as shown in Figure 2. Both the senders and destination used Linux Kernel v4.17 [25]
and BBR v1.0 [20]. A Linux-based computer acted as the intermediate router. Each sender had five
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flows of data connection (F1 to F5), where Sender #1 (S1) started the first flow at zero seconds, and
sequentially started the rest of four flows each after one second intervals. Similarly, Sender #2 (S2)
started its first flow at fifty-five seconds and the rest of the flows after one second intervals. The inset
of Figure 2 illustrates the start of different flows for the two senders. To enable pacing, we enabled
“fq” [26] as the queueing discipline. RTT and the bandwidth of the bottleneck were configured using
“NetEm” [27] and “ethtool” [28], respectively. The sender transmitted data to the receiver using
“iperf3” [29]. “Wireshark” [30] was used to measure the input/output packets per sender per second,
the number of lost packets per sender per second, and the total number of transmitted packets by
both the senders during the entire testbed experiment. “Netstat” [31] was used to measure the total
number of retransmitted packets per sender during that experiment time. As discussed in Section 1,
in a real network, there are multiple reasons for network failures, such as link disruptions due to
mobility and interference in the wireless network, bit errors, routing failure, etc. These can occur in
real-time without following any specific pattern. Therefore, to emulate packet drops due to network
failures in the testbed, we adopted the random loss scheme available in the “NetEm” [27]. Now to
investigate how BBR behaves for packet losses due to actual congestion and network failures, we
need to have situations where either packet losses because of actual congestion or network failures are
present. Therefore, a highly congested scenario with no network failures and a non-congested scenario
with network failures are required to serve the two cases, respectively. In addition, it is preferable to
observe BBR’s behavior for a mix-up of the two types of packet losses in both scenarios. Therefore, we
generate four scenarios by varying the queue size and loss ratio in Router #1 as follows:

Figure 2. The setup and testbed scenario.

Testbed Scenario #1—large bottleneck buffer without packet loss: Here, we set the buffer-size
of Router #1 to 100,000 packets and the loss ratio to zero. As the buffer is too large, there is no
chance for packet losses due to buffer overflow, i.e., no loss of packets because of network congestion.
Moreover, no network failure is present due to the zero loss ratio. This scenario allows us to observe
the performance of BBR in a comparatively unbounded network environment. Moreover, it enables to
compare the performance of BBR in congested and uncongested scenarios.

Testbed Scenario #2—large bottleneck buffer with packet loss: Again, we set the buffer-size of
Router #1 to 100,000 packets but with a loss ratio of 0.1%, i.e., one packet is lost during the transmission
of 1000 packets. This allows us to observe how BBR performs when there is packet loss only due to
network failures.

Testbed Scenario #3—small bottleneck buffer without packet loss: We set the buffer-size of Router
#1 to 100 packets and the loss ratio to zero. Therefore, there is no loss of packets due to network
failures. Thus, in any case, if a packet is lost, we can assume that the packet is lost only because of
buffer overflow, i.e., actual network congestion.
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Testbed Scenario #4—small bottleneck buffer with packet loss: Again, we set the buffer-size of
Router #1 to 100 packets but with a loss ratio of 0.1%. Therefore, besides the packet losses due to actual
congestions, packet losses because of network failures are present in this scenario.

3.2. Testbed Results

In this section, we compare the testbed experiment results for BBR in terms of input/output
packets per sender per second and the number of lost packets per sender per second as can be observed
in Figure 3.

Figure 3. Comparison of input/output packets per second per sender for different testbed scenarios —
(a,b) for Testbed Scenario #1, (c,d) for Testbed Scenario #2, (e,f) for Testbed Scenario #3, and (g,h) for
Testbed Scenario #4. The bars indicate the lost number of packets.

For Testbed Scenario #1, Figure 3a,b shows the performance of BBR. Because the buffer size is
sufficiently large, no packet loss is observed. The flows of Sender #1 start normally but start suffering after
the start of Sender #2’s flows. Then, after about 50 s, all flows cruise normally with almost equal shares.
This is the regular behavior of BBR. As Sender #2’s flows start, they try to measure the BtlBW by overfilling
the pipe. The extra data creates bufferbloat and causes the existing flows to slow down. Gradually,
they merge to an almost equal share state. From now on, we refer to this state as “equilibrium-state” and
the time required to reach this state as the “equilibrium-time”, unless stated otherwise.
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Figure 3c,d shows the performance of BBR for Testbed Scenario #2, where we can clearly observe
the effect of packet losses due to network failures. BBR responds to packet loss events by slightly
reducing the CWND as cwnd = inflight + acked [20]; the input/output rate drops for such events.
While there is no congestion and the packet losses are only due to network failures, by responding to
these events BBR only degrades its overall performance. The drop in the input/output rate is simply
of no advantage as it cannot help to get rid of the network failures. Rather, if BBR could maintain its
input/output data rate by maintaining normal CWND growth, it would have resulted in much higher
throughput. Moreover, it takes more than 70 s as equilibrium-time. This is because of the unstable
network condition that falsely triggered BBR’s packet conservation mechanism and hindered it from
quickly reaching an equilibrium-state.

Figure 3e,f demonstrates the outcome of BBR for Testbed Scenario #3. At the startup phase of
BBR, a large number of packets are lost for both the senders. As there is no packet loss due to network
failures, it is evident that the packet losses are the outcome of actual network congestion. During the
startup phase, BBR sends extra data to estimate the BtlBW of the network. This creates a large queue
in the bottleneck buffer resulting in congestion. Moreover, when Sender #2 starts its flows, Sender #1’s
CWND drops due to packet losses caused by the buffer overflow during the startup phase of Sender
#2. In this case, it takes almost 30 s equilibrium-time. Moreover, a continuous packet loss is observed
at an average rate throughout the rest of the experiment time. The root cause of such behavior needs
to be investigated further. Therefore, we performed simulation experiments which will be discussed in
the subsequent sections.

Figure 3g,h shows the experiment results of Testbed Scenario #4. In this scenario, the packet
losses due to both the actual congestions and network failures are present, an increase in packet loss is
observed in comparison with Testbed Scenario #3. Moreover, equilibrium-time also increases to almost
40 s. The reasons are similar to the reasons explained for Testbed Scenario #3. Moreover, because BBR
is slowly responding to packet losses for both actual congestion and network failures, the performance
degrades further.

3.3. Simulation Environment

As stated earlier, we performed the simulation analysis of BBR in a simulation environment of
NS-3 v3.28 [18]. Recently, Jain et al. [19] implemented BBR in NS-3.28 where they followed the near
actual implementation of the Linux implementation of BBR v1.0 [20]. However, we found a small
mismatch in the recovery mechanism which we fixed and uploaded the modified code in the GitHub
repository available at [32]. For the simulation experiment, we considered a simulation scenario shown
in Figure 4. Here, seven sources send data to seven different receivers. There are two intermediate
routers (Routers I and II). The sources are connected to Router I by ethernet connections each with
40 Mbps bandwidth and 8 ms delay. The receivers are connected to Router II by ethernet connections
each with 40 Mbps bandwidth and 2 ms delay. Routers I and II are connected by an ethernet connection
that has 1 Mbps bandwidth and 50 ms delay and that acts as the bottleneck link. Therefore, Router I acts
as the bottleneck router in the simulation scenario. Moreover, we set the size of the bottleneck buffer as
one BDP. Each source starts a constant bit rate (CBR) data flow at the start of the simulation experiment,
i.e., a total of seven flows start together and continue till the end. According to Hock et al. [14], BBR
overestimates the BtlBW when the flows do not perform the probeBW at the same time. Therefore,
much worse performance and severe congestions are expected for a situation when the flows start at
different times. Because our main focus is to observe the impact of a congested network situation, we
let the BBR perform in its optimum state and choose to start all the flows at the same time. Table 1
summarizes the key simulation parameters.



Electronics 2020, 9, 136 8 of 19

Figure 4. The simulation setup.

Table 1. Simulation parameters.

Parameter Considerations

Topology Point-to-point-dumbell
Number of left leafs 7

Number of right leafs 7
Access bandwidth left 40 Mbps

Access delay left 8 ms
Access bandwidth right 40 Mbps

Access delay right 2 ms
Point-to-point bandwidth 1 Mbps

Point-to-point delay 1 ms
Queue length 1 BDP

Application type Bulk send application

3.4. Evaluation by Simulation

In order to investigate the behavior and performance of BBR in the simulation experiments,
we measured the CWND of different flows, occupied buffer size at the bottleneck router, RTT of
different flows, and total throughput and total goodput of all the flows. We performed 30 separate
simulation experiments in the same scenario with a different set of random variables. All the
experiments showed a similar trend of results. However, in order to investigate and understand
the results properly, we need to arrange the results in the same timeline so that we can perceive
the exact sequence of occurrences of the events. Showing the average results of the experiments
would hinder a proper understanding of the results. Therefore, in this work, we show the result of an
experiment which was randomly chosen among the 30 simulation experiments. Moreover, interested
readers can download the simulation code from the GitHub repository [32] and experiment further.

With the aim of comparing the equal distribution of bandwidth between different flows,
we measured the CWND of different flows as shown in Figure 5a. In order to investigate what
is going on in the bottleneck buffer, for each addition or deletion of a packet from the bottleneck buffer,
we measured how much of the bottleneck buffer is occupied by the currently existing packets in the
bottleneck buffer. Figure 5b shows the size of the occupied bottleneck buffer in comparison with the
total usable bottleneck buffer size during the simulation experiment. To verify the claim that BBR
operates while maintaining a low RTT, we measured the RTT of different flows as can be observed
in Figure 5c. Finally, to evaluate the proper resource utilization of the entire network, we measured
the total throughput and goodput of the network as shown in Figure 5d. Here, the throughput for
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each flow was measured as the size of the received data packets per second. Hence, total throughput
represents the size of the total received data packets per second by all the receivers. The goodput for
each flow was measured as the size of actually received data packets—disregarding the duplicate data
packets—per second per receiver. So that the total goodput represents the total received actual data
packets per second by all the receivers.

Figure 5. In the simulation experiment, the performance of the bottleneck bandwidth and round-trip
time (BBR) congestion control algorithm in terms of (a) congestion window (CWND), (b) occupied
buffer size, (c) round trip time (RTT), and (d) throughput vs. goodput.

We can observe from Figure 5a that at the startup phase of BBR, it identifies BtlBW and enters
into the drain phase. However, during this startup phase, the CWND does not rise as rapidly as
expected and the bottleneck queue (Figure 5b) never becomes full. By close observation of the RTT
curve (Figure 5c), we can easily perceive that the RTT increases rapidly to 800 ms at the very beginning
during the startup phase. We believe that, because there was no packet at the bottleneck queue at the
initial state, when all the flows measured the minRTT, they got a very small value of minRTT, around
200 ms. However, because all the flows started at the same time, the network had to handle a lot of
packets at once. This caused the RTT to increase rapidly to about four times the minRTT. This hinders
the growth in delivery rate. Because BBR measures that the delivery rate is not increasing, it exits the
startup phase. Therefore, we believe that the exiting startup phase in this simulation scenario is mainly
caused by the rapid increase in RTT, rather than the actual congestion.

Moreover, from Figure 5a, during the steady-state of BBR, the CWND is not equally distributed
between different flows. As a consequence, BBR fails to equally share the available bandwidth among
several BBR flows. If we observe the insets closely, whenever a BBR flow enters into the probeBW state
(for example, Flow #7 at around 170 s), a bottleneck queue forms (inset of Figure 5b), ultimately the
bottleneck buffer becomes full. The drain time is simply insufficient to release this queue. As a result,
this queue is sustained, and the RTT increases as can be observed in the inset of Figure 5c. Moreover,
the RTT remains the same for several seconds, which implies that the operating point B (Figure 1) is
crossed and the packets are dropped. This phenomenon is also supported by Figure 5d, where the
goodput starts dropping at 170 s (inset of Figure 5d), and drops until it becomes almost zero. At this
moment, retransmission timeout (RTO) occurs, and the CWND resets to one MSS and continues with
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the recovery process. Therefore, although a high throughput is achieved by BBR (Figure 5d), the actual
goodput is significantly low. To be specific, during the 300 s simulation time, all the flows sent a total
of 68,420 packets, among which only 39,645 packets reached the destination, other 28,775 packets were
lost, which is almost 42% loss of packets. By default, TCP informs BBR about the packet losses via
3-dupACK, but BBR does not respond properly to such a severe congestion situation. This clearly
indicates that BBR could not handle a congested network scenario properly.

Based on the observation of BBR’s performance in the congested network scenario for both the
testbed and simulation experiments, we can summarize the following key findings:

1. At the startup phase, both congestion and network failures can impact the performance of BBR.
In particular, the congestion can cause a significant amount of packet losses.

2. BBR significantly takes longer equilibrium-time after the start of a new flow.
3. During the probeBW phase, BBR inserts a significant number of extra packets into the network

and creates a persistent queue. This queue sustains and causes packet losses.
4. Although there is a drain time, it is not enough for the network to get rid of the excess queue in a

congested network scenario.
5. TCP notifies BBR about the packet losses, but BBR does not comply properly, leading to RTO and

significantly low performance in terms of goodput.

4. BBR-ACD—A Solution to Reduce the Excessive Retransmissions

Based on the findings of the previous section, it becomes inevitable that BBR needs a proper
scheme to get rid of the excess queue. There can be two solutions: First, we can increase the drain
time so that BBR gets enough time to drain the excess queue; second, we can try to recognize excess
queue formation and take proper actions to eliminate it. For the first solution, increasing the drain
time might solve the excess queue problem in the case of a congested network scenario, but would
result in significant performance degradation in a large bottleneck buffer situation because this will
unnecessarily slow down the flow of data for a long time. Therefore, the second option, i.e., to properly
detect the excess queue formation and take a proper recovery mechanism so that it can release the
excess queue and solve the congested network situation is a better option. However, for that purpose,
BBR needs to identify the actual congestion events, i.e., differentiate between packet losses due to
network congestion and network failures. Considering these aspects, we propose a derivative of
BBR—BBR-ACD—that successfully detects the actual congestion events and take proper actions
without losing any merit of BBR. We design BBR-ACD in a very simple way so that it can be easily
integrated with the current BBR implementation. In BBR-ACD, firstly, upon the reception of each
3-dupACK, it checks whether the packet loss is due to actual congestion or network failures. Secondly,
in the case of an actual congestion event, BBR-ACD halves the CWND so that the network can get
rid of the excess queue. By this two-step process, we not only solve the high retransmission problem
in BBR but also help BBR to reach the equilibrium-state in a comparatively shorter equilibrium-time.
Moreover, we ensure better throughput and goodput by BBR-ACD. The details of BBR-ACD are
discussed in the following sections.

4.1. Detection of Congestion

Up until now, we have discussed the consequences of packet losses due to actual congestion
and network failures. Now, how to differentiate between packet losses due to actual congestions
and network failures? To answer that question, first, we need to identify the preconditions for a
packet loss event to be considered as the result of actual congestion. To do so, we have identified two
preconditions based on delay-gradient of RTT that surely differentiate between the two.

First, as we have observed in Section 1, when the operating point B (Figure 1) is crossed, the RTT
does not change anymore, it remains almost identical. When this phenomenon happens, the buffer
becomes full and the network starts discarding the extra packets; therefore, the packets are lost due to
network congestion. We use the term “almost identical” because, in practical networks, there always
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remains some network glitches that cause the RTT to always change a little. We consider that this
network glitch can cause a change of α ms to the RTT. For three consecutive ACK/dupACK events,
if the RTT remains in the range RTT ± α, we consider it as an almost identical RTT and name this
state as an identical-RTT state. This identical-RTT state indicates that if a packet is lost during this
state, it is lost due to actual congestion. We consider specifically three consecutive ACK/dupACK
events because the first two ACK/dupACK with similar RTT create an event of identical-RTT for the
first time, and the last two ACK/dupACK with similar RTT create the second event of identical-RTT
occurrences and confirm the first event.

Second, Hock et al. [14] showed via testbed experiments that for a small buffer or congested
network scenario, in fact, BBR does not operate at the optimal operating point as shown in Figure 1.
Rather, multiple BBR flows typically create a queueing delay of about 1.5 times the RTT. We also found
the same trend of results and observed that the RTT increases even more, typically beyond 1.5 times.
Therefore, we consider that when the current RTT becomes two times greater than the minRTT, if a packet
loss occurs at that time, the packet loss is the result of network congestion rather than network failures.

To implement it into Linux Kernel, we introduce a function named bbr_prob_congestion() that
is called upon the reception of each ACK/dupACK and returns true if any of the two preconditions
for network congestion is true, false otherwise. The Linux Kernel code of the bbr_probe_congestion()
function can be found in Figure 6.

Figure 6. Linux Kernel code of the proposed bbr_probe_congestion() function. Here, α = 1000 µs.

4.2. Action Taken for Congestion

Till now, we have defined a method to evaluate a packet loss event whether it is an outcome
of network congestion or network failures. Now, we need to define a mechanism to take proper
actions in the case of packet losses due to actual congestion events to get rid of the excess queue in the
bottleneck. As we have mentioned earlier, we propose to halve the CWND in such events complying
with the behavior of traditional TCP congestion control algorithms [5,6]. According to Ware et al.,
when BBR flows compete with other flows, BBR becomes window-limited and ACK-clocked, and
sends packets at a rate completely determined by its inflight-cap, which is the maximum allowed
CWND [22]. Therefore, instead of slowing down the sending rate, we halve the CWND so that the
bottleneck gets enough time for releasing the excess queue.

In the Linux Kernel implementation of BBR v1.0 [20], the bbr_set_cwnd_to_recover_or_restore()
function is called upon the reception of each ACK/dupACK to check and take necessary actions in
the case of a packet loss event. Therefore, we implemented the CWND halving mechanism inside
this function. The Linux Kernel code of the modified bbr_set_cwnd_to_recover_or_restore() function
can be found in Figure 7. Here, whenever a packet loss event occurs in the existence of any of the
actual congestion preconditions, packet_conservation becomes true. For such a case, we update the
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inflight-cap to one BDP and set the new CWND as a minimum between halved CWND and inflight-cap.
At the end of the recovery process, we set the new CWND as the maximum between the current
CWND and the CWND prior to the recovery process.

Figure 7. Linux Kernel code of the modified bbr_set_cwnd_for_recover_or_restore() function.

Flow chart of Figure 8 summarizes the key concept of actual congestion detection and the CWND
halving mechanism of BBR-ACD. The added complexity of BBR-ACD is only O(1). No extra signaling
overhead is required to implement BBR-ACD as the RTT information is already available in the TCP/IP
stack. The Linux Kernel code of BBR-ACD can be found in [33].

Figure 8. Flow chart of the key advanced congestion detection and CWND halving mechanism of BBR with
advanced congestion detection (BBR-ACD).
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5. Performance Evaluation

Now to evaluate BBR-ACD, first, we start with the testbed experiments, then we investigate
the improvements through simulation experiments. We evaluate the proposed BBR-ACD with the
exact same testbed scenario. In the case of simulation experiments, we experimented with the same
simulation environment with the exact same set of random variables. We assess BBR-ACD in respect
to the same parameters used to assess BBR in the previous section.

5.1. Testbed results

We start by evaluating the testbed experiment results for BBR-ACD in terms of input/output
packets per sender per second and the number of lost packets per sender per second which is given in
Figure 9.

Figure 9. Comparison of input/output packets per second per sender of BBR-ACD for different testbed
scenarios — (a,b) for Testbed Scenario #1, (c,d) for Testbed Scenario #2, (e,f) for Testbed Scenario #3,
and (g,h) for Testbed Scenario #4. The bars indicate the lost number of packets.

In the case of Testbed Scenario #1, as shown in Figure 9a,b, because the buffer is sufficiently large,
no packet loss is observed similar to BBR. Moreover, BBR-ACD takes about 40 s equilibrium-time,
which is almost equal to the normal BBR. We can also perceive that with the implementation of
BBR-ACD, the normal performance of BBR is not hampered, rather similar performance is achieved
for this scenario.
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From Figure 9c,d, we can observe the performance of BBR-ACD for Testbed Scenario #2. Here,
as the buffer is sufficiently large, the packets are lost mainly due to network failures. Therefore,
BBR-ACD does not respond to every packet loss event. However, the packet loss events cause
out-of-order delivery at the receiver, which leads to head-of-line blocking. As a result, a decrease in
the input–output curve is observed even in BBR-ACD for a large number of packet losses. Moreover,
if we compare the average input/output packets per sender per second, we can perceive that the rate
is significantly higher for BBR-ACD in comparison to normal BBR. Moreover, after the start of Sender
#2’s flow, the flows take a shorter equilibrium-time (30 s) than the BBR (70 s). At the start of each flow,
the new flows send extra data that create large queues and increase the RTT. BBR-ACD successfully
recognizes it and reacts by halving the CWND whenever packets are lost in such a scenario. As a result,
the flows were able to reach the equilibrium-state in a short time. Therefore, BBR-ACD significantly
improves the performance of BBR in Testbed Scenario #2.

For Testbed Scenario #3, we can perceive the performance of BBR-ACD from Figure 9e,f. At the
beginning of the first flow, the packets are lost because BBR-ACD sends extra data to estimate the BtlBW
following BBR. However, BBR-ACD quickly recognizes this phenomenon by observing the increase
in RTT and reacts whenever a packet is lost. This very much helps to reach the equilibrium-state at
a very short time. In particular, in this scenario, BBR-ACD takes only about 5 s as equilibrium-time.
Furthermore, we can observe that the input/output rate moves much more smoothly than normal BBR.
In the case of packet losses, unlike normal BBR, an average packet loss is observed almost continuously
after the start of Sender #2’s flows. This needs further investigation which has been carried out by
simulation experiments in the upcoming section.

In the case of the Testbed Scenario #4, a similar trend is observed as observed in the case of
Testbed Scenario #3. In comparison with BBR, BBR-ACD produces less packet losses as we can observe
from Figure 9g,h. Moreover, the equilibrium-time is shorter, about 10 s. And we can perceive that the
input/output rate is higher than the normal BBR, which clearly indicates the efficacy of BBR-ACD
over existing BBR.

Finally, Table 2 summarizes the performance difference between BBR and BBR-ACD in terms of
the equilibrium-time and the total number of transmitted packets by both the senders during the entire
testbed experiment time period as measured by Wireshark, and the total number of retransmitted
packets by both senders at the same time period measured by Netstat. Moreover, it includes the total
throughput and goodput results during the testbed experiment. In all testbed scenarios except Testbed
Scenario #2, BBR-ACD could reduce the number of retransmissions while uprising the number of sent
packets. However, in the case of Testbed Scenario #2, an increase in the number of retransmissions is
observed. The total throughput and goodput results also showed a similar trend. This is because we
designed BBR-ACD in such a way that it would only slow down for the packet losses due to actual
network congestion. If the packets are lost due to network failures as was induced in this scenario,
BBR-ACD does not slow down, but rather continues ignoring the packet losses. This ensures better
utilization of the network resources. Moreover, Testbed Scenario #2 was designed in such a way that
one packet will be lost upon transmission of every 1000 packets. Hence, the more the number of
transmitted packets, the more the number of lost packets. Therefore, we can observe that, although the
number of retransmitted packets increases, the number of total transmitted packets increases more
strongly. A similar trend is observed for total throughput and goodput comparison too. In addition,
it is certain that because the packets are not lost due to network congestion, reducing the CWND
or send rate would not help to mitigate the problem. Rather keeping the same CWND or send rate
ensures better network utilization.
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Table 2. Performance comparison between BBR and BBR-ACD.

Parameter BBR BBR-ACD

Testbed Scenario #1 Equilibrium-time (seconds) 50 40
Total transmitted (packets) 199,051 238,971

Total retransmitted (packets) 1 1
Total throughput (Mbps) 8.026 9.636

Total goodput (Mbps) 8.026 9.636

Testbed Scenario #2 Equilibrium-time (seconds) 70 30
Total transmitted (packets) 210,184 245,978

Total retransmitted (packets) 636 2852
Total throughput (Mbps) 8.475 9.918

Total goodput (Mbps) 8.449 9.803

Testbed Scenario #3 Equilibrium-time (seconds) 30 5
Total transmitted (packets) 228,826 243,739

Total retransmitted (packets) 9990 4568
Total throughput (Mbps) 9.227 9.828

Total goodput (Mbps) 8.824 9.644

Testbed Scenario #4 Equilibrium-time (seconds) 40 10
Total transmitted (packets) 227,853 245,893

Total retransmitted (packets) 9539 5103
Total throughput (Mbps) 9.188 9.915

Total goodput (Mbps) 8.803 9.709

5.2. Evaluation by Simulation

In this section, we investigate the performance of BBR-ACD in a congested network scenario
in the NS-3 simulation environment. As stated earlier, during the simulation, all the parameters,
variables, and the scenario were exactly the same as for the case of evaluating BBR. We also ran 30
separate simulation experiments and found the same trend of results. For the proper comparison with
BBR, we present the simulation result of BBR-ACD in Figure 10 which had been carried out in the
exact same environment with the same set of random variables that had been used to produce Figure 5
for BBR. We also evaluate the performance of BBR-ACD in terms of the same performance metrics.

In the case of the startup phase of BBR-ACD, we can observe the behavior of CWND from
Figure 10a. Similar to BBR, the CWND or the occupied bottleneck buffer does not grow too much as
expected. The same as BBR, the RTT grows rapidly to about 600 ms, whereas the measured minRTT was
about 125 ms. The reasons explained previously for the same behavior of BBR also applies for BBR-ACD.

However, in the steady-state phase, we can perceive the significant performance improvement
by BBR-ACD. As can be observed from Figure 10a, the CWND is distributed almost equally. As a
result, a fair share of bandwidth is allocated for each flow. If we observe the inset of Figure 10a,d
closely, a queue grows at the bottleneck during the probeBW phase. As stated earlier, by design
nature, BBR inserts extra data into the network during the probeBW phase. The buffer becomes fully
occupied quickly, the queue is sustained, resulting in bufferbloat, and the network fails to handle
this extra burden, causing a huge number of packet losses. However, this design is necessary to
correctly measure the BtlBw and ensure fair share among the different flows. Because BBR-ACD also
follows the same design principle, it also inserts extra data during the probeBW phase. However, it
contains a proper recovery mechanism to handle network congestion as proposed in this work. As the
flows enter the probeBW phase, a queue forms in the bottleneck, this causes the RTT to grow longer.
Moreover, sometimes the RTT does not change anymore as can be observed at between 170 and 180 s
of the simulation experiment. Here, as the queue is sustained longer, the operating point B (Figure 1) is
crossed; as a result, the RTT remains at its highest state. BBR-ACD considers both the elongated RTT and
identical-RTT as a signal of congestion. At this time, whenever a packet loss is signaled by 3-dupACK,
BBR-ACD halves its CWND in order to provide enough time to the bottleneck for processing the extra
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packets. As a result, the queue releases quickly, reduces the RTT, and stops unwanted retransmissions.
From Figure 10d, we can observe that the throughput and the goodput remain the same almost all
the time. The decreases are caused when the buffer becomes fully occupied and results in congestions.
Because of proper identification and management of such congestions by BBR-ACD, it recovers quickly
and produces not only a higher throughput but also a higher goodput. Specifically, BBR-ACD could send
a total of 70,324 packets during the same 300 s simulation time and successfully received 68,013 packets
during this time period, i.e., only 2311 packets are lost, which is only 3.3% loss of packets. The interested
readers can investigate further with the simulation code uploaded in the GitHub repository given in [32].

Figure 10. In the simulation experiment, the performance of BBR-ACD in terms of (a) congestion
window (CWND), (b) occupied buffer size, (c) round trip time (RTT), and (d) throughput vs. goodput.

Finally, Table 3 summarizes the effect of α on the performance of BBR-ACD during the simulation
experiment. As can be observed, the smaller value of α makes BBR-ACD less sensitive to losses and
results in comparatively higher retransmissions with a smaller number of sent packets. As a result, both
the throughput and goodput are comparatively low. On the other hand, BBR-ACD becomes comparatively
more sensitive to losses with a higher value of α. While the higher value of alpha reduces the number of
retransmissions, the number of sent packets reduces too. By setting the value of α as 1000 µs, we could
achieve both high throughput and goodput, i.e., we could send more packets with a smaller number of
retransmissions. However, we believe that the proper value of α may vary depending on the scenarios.
Therefore, in future work, traffic classification by network visibility techniques [34,35] can be adapted to
classify different scenarios in order to properly adjust the value of α.

Table 3. Performance of BBR-ACD for different values of α.

Parameter α = 500 µs α = 1000 µs α = 1500 µs

Total transmitted (packets) 69,236 70,324 69,139
Total retransmitted (packets) 4523 2311 1568

Total throughput (Mbps) 0.881 0.895 0.882
Total goodput (Mbps) 0.821 0.863 0.855
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6. Conclusions

In this work, we investigated the excessive retransmission problem of BBR in the case of a
congested network scenario. To tackle this issue, we proposed a derivative of BBR as BBR-ACD that
consists of a novel advanced congestion detection mechanism which enables it to successfully differentiate
between packet losses because of actual congestions and network failures. Upon detection of packet
losses due to actual congestion events, BBR-ACD halves the CWND so that the network gets enough time
to handle the congested network situation. The proposed BBR-ACD is easily implementable inside the
current BBR v1.0, the Linux Kernel code of which has been made available online.

We performed testbed experiments to investigate the performance of BBR and BBR-ACD,
and simulation experiments to investigate the root cause of the performance degradation of BBR
and the improvements by BBR-ACD. We could reduce about half of the retransmissions in testbed
experiments by BBR-ACD. In addition, we improved the goodput in both congested and uncongested
network scenarios because BBR-ACD could avoid contraction of the CWND for the packet loss events
due to network failures. From these results, we conclude that the addition of BBR-ACD would make
BBR more balanced and compatible with the current network and improve the performance further.

In future work, the proposed actual congestion detection approach can be extended to other
delay-based congestion control algorithms where the minRTT information is available. Moreover,
network visibility techniques can be used to further improve BBR-ACD.
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Abbreviations

The following abbreviations are used in this manuscript:

BBR Bottleneck bandwidth and round-trip time
BBR-ACD BBR with actual congestion detection
TCP Transmission control protocol
minRTT minimum Round-trip time
BtlBW Bottleneck bandwidth
RTT Round-trip time
NS-3 Network simulator 3
IETF Internet engineering tasking force
3-dupACK 3 duplicate acknowledgement
CWND Congestion window
MSS Maximum segment size
RTO Retransmission time-out
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