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Abstract: Implementation of deep learning in low-cost hardware, such as an edge device, is
challenging. Reducing the complexity of the network is one of the solutions to reduce resource
usage in the system, which is needed by low-cost system implementation. In this study, we use
the general average pooling layer to replace the fully connected layers on the convolutional neural
network (CNN) model, used in the previous study, to reduce the number of network properties
without decreasing the model performance in developing image classification for image search tasks.
We apply the cosine similarity to measure the characteristic similarity between the feature vector of
image input and extracting feature vectors from testing images in the database. The result of the
cosine similarity calculation will show the image as the result of the searching image task. In the
implementation, we use Raspberry Pi 3 as a low-cost hardware and CIFAR-10 dataset for training and
testing images. Base on the development and implementation, the accuracy of the model is 68%, and
the system generates the result of the image search base on the characteristic similarity of the images.

Keywords: low-cost system; edge site; CNN; general average pooling layer (GAP); cosine similarity;
image search

1. Introduction

Recently, many researchers have investigated in the merit of edge computing. Edge computing [1]
becomes one of the optimizing solutions to reduce network latency and save bandwidth in cloud
computing [2–7]. Since the edge device is near or close to the source of data, such as a sensor, it gives a
chance for real-time processing [8]. Scalability and privacy are also other benefits of edge computing
to avoid bottleneck because of connecting devices to the cloud and keeping the privacy of user data
from public internet usage [9].

The implementation of deep learning in edge devices is challenging. Since the computation of
deep learning requires high computing performance [10], edge computing gives many researchers
another chance to run the deep learning model in a limited resource such as the edge device. The
complexity of the model will increase the memory usage and execution time, which in turn increases
power consumption. As a result of this condition, a deep learning model should fit with the limitation
of memory on the microcontroller and limitation of resource in the edge device for computing the task
such as real-time classification processing [11]. Another solution to tackle this issue is by reducing the
size or number of parameter usages in building the deep learning model [12].

One of the popular deep learning techniques in classification is the convolutional neural network
(CNN). CNN shows excellent performance in image classification [13,14] because it captures the
high-level input data represented by the implementation of several convolutional filters. In the
previous study [15], we developed a classical CNN model in order to characterize the similarity
between tiny images from the CIFAR-10 dataset. Classifying the tiny image, such as the CIFAR-10
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dataset, is also challenging to prove the performance of the CNN as an image classifier. Small images,
such as the CIFAR-10 dataset, do not provide a high-quality image, but show a cleanly labeled
subset [16]. In image classification for image search task, cosine similarity is used to filter the most
similar images. By calculating the distance between feature vectors from testing images with the
reference feature vectors generated from the classical CNN model, the system could characterize over
90% for a similar image.

Considering the processing power, energy storage, and memory capacity in edge devices [5,17,18],
decreasing the number of neural network properties will decrease the hardware resource usage in
system implementation. The low complexity of the CNN model will be running in an embedded
processor such that the microcontroller in the edge device becomes an important point. Since the CNN
layer uses stacks of the layer with a different function to support the classification task, applying the
general average pooling (GAP) layer will reduce the number in the network because the GAP has fewer
parameters than fully connected layers which will thus reduce computational load and overfitting
risk [19–21].

In this study, we propose a deep learning model to address these challenges. We build a CNN
model using the GAP layer to reduce the parameter resource since the system will be running on a
low-cost edge device such as Raspberry Pi 3. The GAP layer will replace two fully connected layers in
the CNN model [15]. We also propose the image search task by using the CIFAR-10 dataset for training
and testing images to show how the proposed model works on the edge device. Then we use cosine
similarity to define the most similar images from our database and show the result of an image search
task on the Raspberry Pi 3 display.

2. Related Works

Considering the benefits of computing in edge devices, several researchers have studied the
implementation of deep learning in edge sites. A study by Neto et al. [22] classified edge devices for
supporting data processing. They classified the device into five classes in which the third and fourth
classes are suitable to run the machine learning algorithm since its powerful GPU (Graphics Processing
Unit) is in parallel processing of neural networks. This study conducted real experiments to obtain the
performance of each device in processing data from sensors and reduce network delays and bandwidth
using Raspberry Pi series and BeagleBone. As a result, in the smart pole application, the response
time of MySQL run in the server was similar to the response time of SQLite on Raspberry Pi 2 and
BeagleBone. Another experiment in this study is the smart place project in which an automatic air
conditioner is built using CNN MobileNet on different computers like a notebook, Raspberry Pi Zero,
Raspberry Pi 2, and Raspberry Pi 3. As a result, Raspberry Pi 3 shows that response time is faster than
another Raspberry Pi series.

Li, Zhou, and Chen [2] built Edgent to prove the capability of an edge device to run deep learning
techniques for specific applications. Edgent is a deep neural network (DNN) framework in the edge
device. This study implements the image recognition application using CIFAR-10 as the dataset and
AlexNet as the model on Raspberry Pi 3. As a result, Edgent shows the effectiveness of enabling
on-demand in edge devices. Another related study by Gauswami and Trivedi [23] discusses the
implementation of deep learning techniques on Raspberry Pi. This study uses the CNN for gender
detection. The result shows that the purposed system is working on various challenging levels of
datasets and gives the best performance in gender detection for each database.

Several studies were conducted to evaluate the CNN as a neural network model in low-edge
devices such as the Raspberry Pi platform. A study by Foley and O’Reilly [24] aimed to discover how
the object detection algorithm operates in a low-end device such as Raspberry Pi. They compared three
CNN algorithms for object detection, namely SSD MobileNet, Inception v2, and Tiny YOLO. Results
showed that the lower number of CNN gave a lower computational overhead, then decreased the
computation time of the image processing. Nikouei et al. [25,26] proposed a lightweight convolutional
neural network (L-CNN) by using the depth wise separable convolution. The aim of the L-CNN was
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to reduce the number of parameters in the network without affecting the quality of the output so that
it could fit with edge devices such as Raspberry Pi. The result shows that the L-CNN achieved a
satisfactory frame per second value and met the goals of the design.

3. Classification Using Image Data

3.1. Overview of Our System

In this study, we purpose a deep learning technique using the CNN model that has modified by
using the general average pooling layer to reduce the number the parameter in the learning process.
This system aims to work on low power devices such as Raspberry Pi 3 and uses Keras [27] and Tensor
flow [28] as a design framework. For the implementation of the system, we applied cosine similarity
measurement to characterize a similar image from CIFAR-10 [29] as a result of the image searching
task. Training and testing images use the CIFAR-10 dataset.

3.2. CIFAR-10 Dataset

Recently, many applications of machine learning have used the CIFAR-10 dataset, especially
for supervised learning processes. Image recognition, image classification, and image detection use
CIFAR-10 to evaluate the system performance of deep learning models for tiny images. CIFAR-10 has
ten image label categories. Every label has 6000 images for each class. The representative images for
each class and mapping label feature of CIFAR-10 are shown in Figure 1 and Table 1 as follows.
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Figure 1. CIFAR-10 image example [29].

Table 1. Mapping the label feature of CIFAR-10 [15].

Label. Category

0 Airplane
1 Automobile
2 Bird
3 Cat
4 Deer
5 Dog
6 Frog
7 Horse
8 Ship
9 Truck
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CIFAR-10 dataset contains 50,000 training images and 10,000 testing images. We used the mapping
of each class category in CIFAR-10 as a label in the data processing. Then we also used an image from
the CIFAR-10 dataset as the input of the image search task.

3.3. CNN Model

3.3.1. Small CNN for Raspberry Pi 3

The convolutional neural network (CNN) is a technique in supervised learning. CNN consists
of several convolutional layers as structures and requires an amount of dataset in the training
process to achieve the best accuracy. In many studies, the CNN shows better performance in image
classification [30–32].

Since the system will run in low power devices such as Raspberry Pi 3, the number of parameters
and the stack of layers have to reduce in the CNN model. In our previous study, we built a classical
CNN model [15]. Table 2 shows the model architecture of the classical CNN model and the small CNN
model. The previous model consists of two 2D convolutional layers for generating the feature vector,
three fully connected layers, and the Softmax layer as the classifier.

Table 2. Classical convolutional neural network (CNN) [15] vs. small CNN.

Classical CNN [12]. Small CNN

conv2d-1, ReLU, bnorm1
maxpooling2d-1

conv2d-2, ReLU, bnorm2
maxpooling2d-2

FC1, ReLU, dropout-1
FC2, ReLU, dropout-2

FC3
Softmax

conv2d-1, ReLU, bnorm1
maxpooling2d-1

conv2d-2, ReLU, bnorm2
maxpooling2d-2

General Average Pooling (GAP)
FC3

Softmax

In this study, we proposed a small CNN, which is appropriate with the Raspberry Pi 3 capability
as an edge device. As shown in Table 2 above, the main layers of the architecture consist of two 2D
convolutional layers, one layer of general average pooling, and one layer of a fully connected layer.
The GAP layer replaces the two fully connected layers in the previous model.

3.3.2. Global Average Pooling

Global average pooling is one of the most well-known pooling used in the CNN model. Generally,
pooling layers in convolutional layers aim to strengthen the translational invariance and reduce the
dimension of the feature maps [21]. In image classification of the Caltech101 dataset, global average
pooling obtains excellent accuracy [33].

General average pooling is utilized to replace the fully connected layer, which is prone to overfitting.
In the classification task using the CNN model, the feature map generated by the convolutional filter
becomes the input to a fully connected layer and Softmax layer as the classifier of the output. Since
fully connected layers are prone to overfitting, Lin, Chen, and Yan [20] used global average pooling to
replace them. The feature map as the output of the general average pooling was fed to the Softmax
layer by taking the average of feature maps from the output of the convolutional layers.

3.4. Database

3.4.1. SQLite

In the application of deep learning technologies such as the CNN in edge devices, we have to
consider the lite database to store essential data and key information. The database should be fit with
edge device capacity. Moreover, the purposed system will work as the off-line system in the image
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search task, and all processing of the database will run on edge devices without connection to other
means of access such as internet connectivity to the cloud. SQLite becomes one of the solutions in
edge site implementation because it is light. The SQLite is the library based embedded DBMS, which
can integrate easily with the existing source code [34]. It contains simple data types and has dynamic
querying capability [35], so it could operate smoothly. We use the SQL function to store the primary
data and build the database.

Figure 2 shows the block diagram of SQLite. By using the SQL command processor, SQLite
becomes convenient for designing the lite database. In this study, we used the SQLite library that is
available in the python environment. Since SQLite is a serverless engine [36], it tremendously fits for
small embedded hardware applications such as Raspberry Pi 3. Applying SQLite in the application will
reduce overhead related to network calls and simplify database administration [37]. After developing
the database, we wrote and read the data on the database easily without server configuration.
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Figure 2. Block diagram of SQLite [36].

3.4.2. Database Construction

In our system, we have several data including original files that contain the generated feature
vectors from testing images in the model and raw images of each class from the CIFAR-10 dataset.
These data and files are stored in the database. Since we used the lite database, the size is reasonable
with the Raspberry Pi 3 memory allocation.

We constructed the database, as shown in Table 3. We used id, name, feature, and raw_image as
the title for each row in the database. Id becomes the primary key for the database, feature contains the
generated feature vectors from the testing image, and raw_image contains the original image from
CIFAR-10 as feature vectors that were generated by the small CNN model. These files are stored in the
database as a blob type to support the lite storage and off-line system.
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Table 3. Database construction.

id. Name Feature raw_image

1 aeroplane_s_000002.png b’5.46540737152099xxxxx.... b’\x89PNG\r\n\x1a\n\x00\xx..

2 aeroplane_s_000040.png b’-5.6080293655395xxxxx
. . .

b’\x89PNG\r\n\x1a\n\x00\xx..

3 aeroplane_s_000045.png b’-2.4921542406082xxxxx
. . .

b’\x89PNG\r\n\x1a\n\x00\xx..

. . . .

. . . .

. . . .

100 aerial_ladder_xxxx.png b’-5.6080293655395xxxx
. . .

b’\x89PNG\r\n\x1a\n\x00\xx..

4. Evaluation

After preparing the dataset, we trained our model using the training images from the CIFAR-10
dataset. Since the system requires feature vectors that have been generated by the CNN model as
feature vector references in the database, we tested the model using the testing images from CIFAR-10.
The files of feature vectors and raw images of CIFAR-10 were loaded in the SQLite database. In the
implementation, we ran the system in Raspberry Pi 3 and executed the image search task. We used ten
images from CIFAR-10 for each class as the image input. Then, we evaluated the system performance
in finding and showing similar images as the result of the image search task on Raspberry Pi 3.

4.1. Evaluation Model

Figure 3 shows the architecture of the CNN model. In this model, we signed the general average
pooling before the fully connected layer to replace the two fully connected layers in the previous study.
After training the small CNN model, we achieved model accuracy of 68%. The model will generate
feature vectors from the testing images for each class of the CIFAR-10 dataset. In the implementation,
the model will predict the class of testing images by showing the label of the class, for example, 0 for
the airplane. We used the predicted label for reducing the computation time between the feature
vectors of the input image with the feature vectors that are stored in the database.
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4.2. Evaluation Condition

In the previous study, we discovered that the classical CNN model could determine the tiny
images, such as images of the CIFAR-10 dataset by using cosine similarity. In this study, we modified
the classical model architecture by removing two fully connected layers and adding one general
average layer. The accuracy increased to 68% compared to the previous accuracy of 56%.

Figure 4 shows the main schema for the image search task as an application of CNN in image
classification. Given the condition of edge devices such as Raspberry Pi 3, the SQLite database is
working well and has an appropriate amount related to its size. The file containing the feature vector
and the raw images are stored in the database. By storing these files in the database, it supports the
system to run as an off-line system in an edge site.
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Since the tiny images, such as the CIFAR-10 dataset, are a challenge in classification, we used the
cosine similarity, as shown in Equation (1), to obtain the most similar images. Also, the convolutional
filters in the CNN model can generate the feature vectors. It becomes a solution to use the cosine
similarity for image search tasks by calculating the cosine between the reference feature vectors and
feature vectors of image input.

cosine_similarity = cosθ =
p.q

‖ p ‖‖ q ‖
=

∑n
i=1 piqi√∑n

i=1 p2
i

√∑n
i=1 q2

i

(1)

Cosine similarity operates between two dot vectors. Vector p and q represent the feature vectors
for generating feature vector from the dataset as a reference and generating feature vectors from the
image input in the image search task. The result of the cosine similarity calculation will be on range 0
to 1. The highest value of cosine similarity indicates that two vectors are almost similar.

4.3. Results

We investigate the ability of the low-cost system in Raspberry Pi 3 by examining several images
as the image input. Images of representation for each class from the CIFAR-10 dataset are selected
randomly. Table 4 shows the representative images. After predicting the category of the input image,
the system will continuously calculate the cosine similarity between the input image feature vectors
with the reference feature vectors from the database.

Table 4. Input image and results.

Input Image Category cos_sim Id of Image Output Image

Airplane

100. 0
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As a result, the system shows the image result base on the value of the cosine similarity 
calculation. The system generates five images as the results for each image search task. After getting 
the calculation result of cosine similarity between the feature vector of the image input and feature 
vectors in the database, then the system will arrange the Id of the images. In displaying the image 
results in the Raspberry Pi 3 display, the system shows the images from the highest value of the 
cosine similarity, which means from the most similar image. 

4.4. Discussion 

Based on the results, there are several points to be considered. First is that the usage of the 
general average pooling layer is not only avoiding the overfitting but also reducing the number of 
parameters used in our model, the small CNN. The general average layer replaces the two fully 
connected layers. It reduces the number of resource usage in our small CNN model without 
decreasing the model performance in classification and image search tasks. This fact also tackled the 
memory limitation issue in low-cost hardware implementation.  

The second point is by using a general average pooling layer equally reduces the size of the 
generated feature vectors. In the previous study, the size of the feature vectors was 196. After 
applying the general average layer to the small CNN model, we obtained 64 feature vectors. It 
showed a positive impact on our system regarding the memory limitation in the edge device. Since 
this system works as an off-line system not connected to any public or local access, all of the required 
data, such as generated feature vectors as reference for image search tasks, are stored in the lite 
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cosine similarity, which means from the most similar image. 

4.4. Discussion 

Based on the results, there are several points to be considered. First is that the usage of the 
general average pooling layer is not only avoiding the overfitting but also reducing the number of 
parameters used in our model, the small CNN. The general average layer replaces the two fully 
connected layers. It reduces the number of resource usage in our small CNN model without 
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memory limitation issue in low-cost hardware implementation.  
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this system works as an off-line system not connected to any public or local access, all of the required 
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As a result, the system shows the image result base on the value of the cosine similarity calculation.
The system generates five images as the results for each image search task. After getting the calculation
result of cosine similarity between the feature vector of the image input and feature vectors in the
database, then the system will arrange the Id of the images. In displaying the image results in the
Raspberry Pi 3 display, the system shows the images from the highest value of the cosine similarity,
which means from the most similar image.

4.4. Discussion

Based on the results, there are several points to be considered. First is that the usage of the general
average pooling layer is not only avoiding the overfitting but also reducing the number of parameters
used in our model, the small CNN. The general average layer replaces the two fully connected layers.
It reduces the number of resource usage in our small CNN model without decreasing the model
performance in classification and image search tasks. This fact also tackled the memory limitation
issue in low-cost hardware implementation.

The second point is by using a general average pooling layer equally reduces the size of the
generated feature vectors. In the previous study, the size of the feature vectors was 196. After applying
the general average layer to the small CNN model, we obtained 64 feature vectors. It showed a positive
impact on our system regarding the memory limitation in the edge device. Since this system works as
an off-line system not connected to any public or local access, all of the required data, such as generated
feature vectors as reference for image search tasks, are stored in the lite database, SQLite. The less data
stored in the database, the smaller the size of the memory usage for database implementation on the
Raspberry Pi 3. In this study, the size of the database is 480 Kb.

In addition, using the CIFAR-10 dataset in the image search task is also a method to prove the
capability of the small CNN, especially in image classification with tiny images, because of the limited
information from available images in the CIFAR-10 dataset. In this study, model accuracy is improving.
It reached 68% accuracy compared with the previous study which had 56% accuracy. The small CNN
model showed good performance with the CIFAR-10 dataset. In future study, we would like to enlarge
the number of files in the database and enhance the small CNN model performance for low-cost
hardware implementation.

5. Conclusions

As the conclusion for this study, we discovered that a small CNN could be run in Raspberry Pi 3
as an environment to implement the image search task. For reducing the time in the image search task,
we use the predicted class. The cosine similarity calculates the distance between the feature vector of
the input image and feature vectors in the database. As a result, this system shows five similar images
as the result of the input image.

The small CNN model uses Keras, Tensorflow, Sqlite database, sckit-learn library, and some
python libraries such as pandas and numpy to build the model architecture. For training and testing,
the system works in different environments. In the training of the model, the system runs on the
personal computer in the laboratory. The environment of this step is a personal computer with Quadro
M5000 and Tesla K40c GPU. After preparing the small CNN model and database, the system runs on
Raspberry Pi 3 as an edge device which completed with the mini display.

Author Contributions: Conceptualization, M.D., M.A., and M.I.; methodology, M.D. and J.C.; validation, M.A.;
formal analysis, M.A. and M.I.; supervision, M.A. and M.I.; writing—original draft, M.D.; writing—review and
editing, M.D., J.C., M.A., and M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: M.D. gratefully acknowledges Research and Innovation in Science and Technology Project
(RISET-Pro) from KEMENRISTEKDIKTI (Ministry of Research, Technology, and Higher Education of the Republic
of Indonesia) for scholarship support during this study.

Conflicts of Interest: The authors declare no conflicts of interest.



Electronics 2020, 9, 153 9 of 10

References

1. Shi, W.; Cao, J.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 11.
[CrossRef]

2. Li, E.; Zhou, Z.; Chen, X. Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge
Synergy. In Proceedings of the 2018 Workshop on Mobile Edge Communications, Budapest, Hungary, 20
August 2018; pp. 31–36.

3. Murshed, M.G.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine Learning at
the Network Edge: A Survey. arXiv 2019, arXiv:1908.00080.

4. Jiang, Z.; Chen, T.; Li, M. Efficient Deep Learning Inference on Edge Devices. In Proceedings of the ACM
Conference on Systems and Machine Learning (SysML’18), Stanford, CA, USA, 15–16 February 2018; p. 3.

5. Kang, J.; Eom, D.-S. Offloading and Transmission Strategies for IoT Edge Devices and Networks. Sensors
2019, 19, 835. [CrossRef] [PubMed]

6. Zhang, X.; Wang, Y.; Lu, S.; Liu, L.; Xu, L.; Shi, W. OpenEI: An Open Framework for Edge Intelligence. In
Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
Dallas, TX, USA, 7–9 July 2019; pp. 1840–1851.

7. Han, Y.; Wang, X.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep
Learning: A Comprehensive Survey. arXiv 2019, arXiv:1907.08349.

8. Anglano, C.; Canonico, M.; Guazzone, M. Profit-aware Resource Management for Edge Computing Systems.
In Proceedings of the 1st International Workshop on Edge Systems, Analytics, and Networking (EdgeSys’18),
Munich, Germany, 10 June 2018; pp. 25–30.

9. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674.
[CrossRef]

10. Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading towards Edge Computing. Proc. IEEE 2019, 107,
1584–1607. [CrossRef]

11. Lai, L.; Suda, N. Enabling Deep Learning at the loT Edge. In Proceedings of the 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Marrakech, Morocco, 19–21 March 2018; pp. 1–6.

12. Véstias, M.P. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing.
Algorithms 2019, 12, 154. [CrossRef]

13. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial
Intelligence with Edge Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

14. Plastiras, G.; Terzi, M.; Kyrkou, C.; Theocharides, T. Edge Intelligence: Challenges and Opportunities of
Near-Sensor Machine Learning Applications. In Proceedings of the 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), Milan, Italy, 10–12 July 2018; pp. 1–7.

15. Diana, M.; Chikama, J.; Amagasaki, M.; Iida, M.; Kuga, M. Characteristic Similarity Using Classical CNN
Model. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers
and Communications (ITC-CSCC), Jeju, Korea, 23–26 June 2019; pp. 1–2.

16. Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do CIFAR-10 Classifiers Generalize to CIFAR-10? arXiv 2018,
arXiv:1806.00451.

17. Sultana, F.; Sufian, A.; Dutta, P. Advancements in Image Classification using Convolutional Neural Network.
In Proceedings of the 2018 Fourth International Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN), Kolkata, India, 22–23 November 2018; pp. 122–129.

18. Yazici, M.; Basurra, S.; Gaber, M.M. Edge Machine Learning: Enabling Smart Internet of Things Applications.
Big Data Cogn. Comput. 2018, 2, 26. [CrossRef]

19. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent
Advances in Convolutional Neural Networks. Pattern Recogn. 2018, 77, 24. [CrossRef]

20. Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400.
21. Zhang, B.; Zhao, Q.; Feng, W.; Lyu, S. AlphaMEX: A smarter global pooling method for convolutional neural

networks. Neurocomputing 2018, 321, 13. [CrossRef]
22. Neto, A.R.; Soares, B.; Barbalho, F.; Santos, L.; Batista, T.; Delicato, F.C.; Pires, P.F. Classifying Smart IoT

Devices for Running Machine Learning Algorithms. In Proceedings of the 2018 Anais do XLV Seminário
Integrado de Software e Hardware, Natal, Brazil, 22–24 July 2018; p. 12.

http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.3390/s19040835
http://www.ncbi.nlm.nih.gov/pubmed/30781650
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/JPROC.2019.2922285
http://dx.doi.org/10.3390/a12080154
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.3390/bdcc2030026
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1016/j.neucom.2018.07.079


Electronics 2020, 9, 153 10 of 10

23. Gauswami, M.H.; Trivedi, K.R. Implementation of machine learning for gender detection using CNN on
raspberry Pi platform. In Proceedings of the 2018 2nd International Conference on Inventive Systems and
Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 608–613.

24. Foley, D.; O’Reilly, R. An Evaluation of Convolutional Neural Network Models for Object Detection in
Images on Low-End Devices. In Proceedings of the 26th Irish Conference on Artificial Intelligence and
Cognitive Science, Dublin, Ireland, 6–7 December 2018; pp. 350–361.

25. Nikouei, S.Y.; Chen, Y.; Song, S.; Xu, R.; Choi, B.-Y.; Faughnan, T.R. Smart Surveillance as an Edge Network
Service: From Harr-Cascade, SVM to a Lightweight CNN. In Proceedings of the 2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018;
pp. 256–265.

26. Nikouei, S.Y.; Chen, Y.; Song, S.; Xu, R.; Choi, B.-Y.; Faughnan, T.R. Real-Time Human Detection as an Edge
Service Enabled by a Lightweight CNN. In Proceedings of the 2018 IEEE International Conference on Edge
Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 125–129.

27. Keras. Available online: https://keras.io/ (accessed on 19 July 2019).
28. Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 22 August 2019).
29. The CIFAR-10 Dataset. Available online: https://www.cs.toronto.edu/~{}kriz/cifar.html (accessed on 19

July 2019).
30. Park, K.; Kim, D.-H. Accelerating Image Classification using Feature Map Similarity in Convolutional Neural

Networks. Appl. Sci. 2018, 9, 108. [CrossRef]
31. Pena, D.; Forembski, A.; Xu, X.; Moloney, D. Benchmarking of CNNs for Low-Cost, Low-Power Robotics

Applications. In Proceedings of the RSS 2017 Workshop: New Frontier for Deep Learning in Robotics, Boston,
MI, USA, 15 July 2017; pp. 1–5.

32. Wang, C.; Xi, Y. Convolutional Neural Network for Image Classification; Johns Hopkins University: Baltimore,
MD, USA, 2015; p. 7.

33. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In Proceedings of the
Rough Sets and Knowledge Technology: 9th International Conference (RSKT 2014), Shanghai, China, 24–26
October 2014; pp. 364–375.

34. Dam, T.Q.; Cheon, S.; Won, Y. On the IO Characteristics of the SQLite Transactions. In Proceedings of the
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft),
Austin, TX, USA, 16–17 May 2016; pp. 214–224.

35. Bhosale, S.T.; Patil, M.T.; Patil, M.P. SQLite: Light Database System. Int. J. Comput. Sci. Mob. Comput. 2015, 4,
882–885.

36. SQLite. Available online: https://www.sqlite.org/index.html (accessed on 1 August 2019).
37. Allen, G.; Owens, M. The Definitive Guide to SQLite: Take Control of This Compact and Powerful Tool to Embed

Sophisticated SQL Databases within Your Applications, 2nd ed.; The Expert’s Voice in Open Source; Apress:
New York, NY, USA, 2010; ISBN 978-1-4302-3225-4.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://keras.io/
https://www.tensorflow.org/
https://www.cs.toronto.edu/~{}kriz/cifar.html
http://dx.doi.org/10.3390/app9010108
https://www.sqlite.org/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Classification Using Image Data 
	Overview of Our System 
	CIFAR-10 Dataset 
	CNN Model 
	Small CNN for Raspberry Pi 3 
	Global Average Pooling 

	Database 
	SQLite 
	Database Construction 


	Evaluation 
	Evaluation Model 
	Evaluation Condition 
	Results 
	Discussion 

	Conclusions 
	References

