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Abstract: Based on the 3D Reduced Inertial Sensor System (3D-RISS) and the Machine Learning
Enhanced Visual Data (MLEVD), an integrated vehicle navigation system is proposed in this paper.
In demanding conditions such as outdoor satellite signal interference and indoor navigation, this work
incorporates vehicle smooth navigation. Firstly, a landmark is set up and both of its size and position
are accurately measured. Secondly, the image with the landmark information is captured quickly by
using the machine learning. Thirdly, the template matching method and the Extended Kalman Filter
(EKF) are then used to correct the errors of the Inertial Navigation System (INS), which employs the
3D-RISS to reduce the overall cost and ensuring the vehicular positioning accuracy simultaneously.
Finally, both outdoor and indoor experiments are conducted to verify the performance of the
3D-RISS/MLEVD integrated navigation technology. Results reveal that the proposed method can
effectively reduce the accumulated error of the INS with time while maintaining the positioning error
within a few meters.
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1. Introduction

Navigation technology is becoming increasingly important in different aspects of daily life.
Positioning and navigation technologies for outdoor environments has dramatically developed,
a typical example is the Global Positioning System (GPS) [1,2]. In densely populated commercial
or public places, there is a growing demand for the location navigation, environment awareness
and real-time monitoring of people. Moreover, the indoor positioning technology should provide
sufficiently accurate location services to the users.

Integration of the Inertial Navigation System (INS) and the GPS is widely utilized to accurately
determine the position and the attitude of the moving objects. The GPS has the advantages of providing
absolute positioning with long-time stability and mid-level precision. The INS, on the other hand,
has a good short-term accuracy and does not rely on any external sources for determining the position,
velocity and attitude. However, the INS is prone to severe drift errors, especially when dealing with the
commercial-grade systems [3]. Additionally, the GPS could suffer from signal blockage, interference
and multipath. This could result in extended periods of GPS signal outage, which occurs in urban
canyons, forests and indoors. What’s worse, the positioning error of GPS would sharply increase
especially in indoors. Therefore, a vision system to aid the INS is proposed to enhance the overall
solution in such situations and keeping the cost to a minimum level [4,5]. The visual positioning
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is based on the image sequence to achieve the positioning. The feature points are extracted and
matched to the acquired image sequence, and the matched feature points are then utilized to solve the
transformation relationship of different frame images, and so the motion parameters are estimated. It is
also possible to set up the landmarks [6] and measure their information in advance, and then obtain
the vehicular position through the vehicle matching landmarks to achieve the purpose of precisely
navigation. In the literature, some works that focus on the INS [7–9] and vision had been done.
Martinelli A. [7] proposed a monocular vision and inertial navigation fusion algorithm to determine
the motion parameters of a vehicle moving in 3D unknown environment. The measurement data of
the monocular and inertial sensors in a short time interval were fused and estimated. The algorithm
outputs the vehicular velocity and attitude, as well as the absolute scale and the deviation that affect the
inertial measurement. To reduce the positioning error of the aircraft and loosely couple the monocular
vision and inertial sensors positioning data, an integrated Extended Kalman Filter (EKF) method
was presented in [8]. The positioning data of the inertial navigation system is used to compensation
the result of visual location. In [9], aiming at the pose estimation problem of small unmanned aerial
vehicles with GPS unavailability, a monocular camera with low-cost Inertial Measurement Unit (IMU)
installed on a drone was presented, and the fusion is completed by EKF for navigation.

Recently, Deep Artificial Neural Networks (DANNs) have promoted significant breakthroughs
in pattern recognition and machine learning [10]. Furthermore, Convolutional Neural Networks
(CNNs) have been successfully applied to a variety of recognition and classification tasks [11–14].
Compared to the standard feed forward neural networks with similarly sized layers, CNNs have
much fewer connections and parameters. Hence, they are much easier to be trained [15]. Deep
learning methods allow machines to be fed with raw data and then facilitate automatic discovery of the
representations required for detection and classification; in particular, they enable a model to work in
an end-to-end manner [16]. Nowadays, there are some works serve for robot navigation based on deep
learning [17–19]. They apply the neural network process raw sensors’ data to complete the navigation
and obstacle avoidance tasks. Current object recognition methods are strongly dependent on deep
learning and large datasets and there are many techniques for preventing overfitting during model
training, such as early stopping and dropping out. Therefore, the deep learning is indispensable in
image classification.

Tai et al. [18] proposed an indoor obstacle avoidance solution based on deep network and sensors
data. Their robot decisions show a high similarity with human decisions. Zhu et al. [19] presented an
indoor navigation method based on visual input. Their robot can successfully search for the given
target and learn the relationships between actions and environment. They applied deep learning and
reinforcement learning technique avoiding the feature matching process during navigating. Hussein
et al. [20] demonstrated the reinforcement learning based navigation method employ DCNNs and
learn directly from the raw visual input. The model they trained can successfully learn the navigation
policy from visual input while learning from experience. Through the combination with vision system,
the navigation robot could enhance the positioning accuracy while carrying our target recognition,
target tracking and target detection tasks.

In this study, a new integrated positioning system including inertial navigation and Machine
Learning Enhanced Visual Data (MLEVD) is proposed. Specifically, the 3D Reduced Inertial Sensor
System (3D-RISS) based inertial navigation could reduce the costs and maintain a high accuracy
rate. The monocular vision oversees the supplement of the positioning requirements of the vehicle.
Moreover, in the application of CNNs, a particular class of neural networks that shows a promising
performance in object recognition, is utilized to enhance the speed of processor. During the first
phase of our approach, the model extracts the landmarks from the visual scene that is input using
the camera. Then, the CNN outputs the prediction of the current road or building information by
a multi-label classifier. Furthermore, the position of the vehicle can be obtained by template matching
with landmarks that are pre-setup and the corresponding size and position are also computed. After
that, the EKF method is utilized for the fusion of the location signals from both the neural network
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model and the inertial sensors to calculate the current position of the vehicle. Finally, the feasibility of
the algorithm is verified through the outdoor and indoor experiments. Results show that the proposed
approach could effectively reduce the accumulated error of the INS with time while maintaining the
positioning error within a few meters for outdoor experiments and less than 1 m for indoor experiments.

2. Formulation

2.1. Convolution Neural Network

The CNNs are similar to the ordinary neural networks. The convolution is performed at the
convolutional layers to extract features from local neighborhood on feature maps in the previous
layer. It is the core block of a convolutional network. Among the layers of neural network, we use
the Rectified Linear Units (ReLUs) [21] as the activation function to train the model with gradient
descent method. One advantage of the ReLUs is that they don’t require the normalization of input
to avoid saturating. CNN is a hierarchical network for feature extraction with back-propagating the
gradients of errors. Convolution, non-linear activation and pooling are three main operations of the
featured hierarchy.

The convolution operation takes the weighted sum of pixel values in a receptive field. Equation
(1) shows its mathematical expression:

yi jk = (Wi ∗ x)ik + bi (1)

where yi jk is the pixel value at coordinate ( j, k) of i—the output feature map, W is the convolution
kernel, x is the input and b is related bias vector. The non-linear activation, ReLUs f (x) = max(0, x),
is applied after convolution. ReLUs has the piece-wise linear property.

The pooling layer summarizes the outputs of adjacent neurons in the same kernel map. During
our training, we applied the overlapping pooling which produces an output of equivalent dimensions
as the input. It takes the maximum or average value in an image batch to enhance the robustness of the
network. The stride parameter exists in the pooling layer and convolution layer. It is several moving
steps over pixels of convolution.

The last layer is an output layer that is chosen based on the task. For binary classification tasks,
there are only two neurons needed to compose the output layer. On the other hand, for a multi-label
classification tasks, the neurons of output layer are designed based on the actual number of categories.
Normally, the output layer is a standard fully connected layer.

To reduce the test errors, there are some works that combine the predictions of many models [22,23].
However, for an object recognition task, it is expense to train many models and combine their results.
Therefore, we adopt the dropout technique. The dropout is a technique that randomly disconnects
the neurons from the current layer to the next layer. This random disconnecting helps the network to
reduce the overfitting because no single neuron in the layer will be responsible for predicting a certain
class, object, edge or corner. In this research work, 25% dropout rate is adopted to avoid the overfitting.

2.2. Visual System

2.2.1. Camera Calibration and Correction of Distorted Image

Camera calibration is a procedure for estimating the intrinsic parameters K and radial distortion
parameters P of a given camera. It is usually finished by taking several images of a checkerboard
from different angles and different distances. From these images, and given the size of a checkerboard
square, the intrinsic parameters can be estimated. Using these parameters can achieve the purpose of
correcting the distortion of the picture. The method is described with details in the literatures [24–26].
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The checkerboard of camera calibration is shown in Figure 1. The side length of each square is
4 cm. After calibration K and P are solved as:

K =


3424.07 0 0

0 3434.69 0
1693.12 1203.11 1

, P = (−0.448, 0.2235, 0).
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that the two-pixel locations are within a distance threshold, we determine our position as the original 
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difference of squares, normalizing the difference of squares, determining the correlation, normalizing 
the correlation, calculating the correlation coefficient and normalizing the correlation coefficient [27]. 

Figure 1. Camera calibration board.

The distortion can be corrected by tuning the parameters of K and P. Figure 2 shows the comparison
between the original image and the correcting distortion image. It can be demonstrated that the
straight lines in the picture become no longer curved after correcting distortion especially at the edges
of the image.
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Figure 2. Original image and the image after correcting distortion. (a) Original; (b) Correcting Distortion.

2.2.2. Template Matching

Images are extracted from the video stream captured by a camera on-board the vehicle. For each
image, a smaller scanning block with several pixels (width and height), are swept from the top left
corner to the bottom right corner. The similarity between the part of the image within the scanning
block and a predetermined landmark from the pre-captured image is computed. When a good match
is searched, the pixel location of the landmark in the extracted image is recorded. This pixel location
is then compared with the pixel location of the landmark in the original pre-captured image. Given
that the two-pixel locations are within a distance threshold, we determine our position as the original
pre-captured known image position. There are six methods for the determination: matching by
difference of squares, normalizing the difference of squares, determining the correlation, normalizing
the correlation, calculating the correlation coefficient and normalizing the correlation coefficient [27].
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Each matching method could provide a decision area of the same size as the template and
determine the position of the area. Next, we determine whether the results of the six methods
are consistent.

Once the trajectory commences, the top left corner (xl, yl) of the best cross correlation match
R(xl, yl) is determined for each method. The best match for the landmark position from each method is
(xm, ym), where m = 1, 2, 3, 4, 5, 6.

Next, the distance between the landmark locations in pixels as determined from each method is
computed (di j; i = 1, 2, 3, 4, 5, 6; j = 1, 2, 3, 4, 5, 6; i , j):

di j =

√(
xi − x j

)2
+

(
yi − y j

)2
(2)

If di j ≤ α, then the results of method i and method j are taken to be the same. Let S be the number
of elements in di j that satisfy the condition di j ≤ α. For a small α, if S is large, we can conclude that the
matching algorithm is precise. If S = 15, the results of all methods are the same. Within the extracted
image sequences captured by the vehicle camera, the image with the largest S is taken to be the correctly
matched image. However, if S is too small, we conclude that there is no match.

2.2.3. Landmark Chosen

First, the characteristics of the driving recorder are measured. Because the linearity of the image
size and distance recorded by the driving recorder is low, the proportional relationship between the
distance from the camera to the landmark and the size of the landmark is a fixed value in one image.

The landmark is chosen as in Figure 3. The image size is 1920 × 1080. The coordinates of the
upper left corner are (0, 0) while those of the lower right corner are (1920, 1080). The red box in the
image is the set landmark. The real size is 1.2 m × 1.2 m. The size of the landmark in the image is
432 × 432. The distance between the landmark and the camera is 6 m. When the distance is 7 m,
the size of the landmark in the image is 379 × 379 and so on. The proportional relationship is shown
in Table 1. Through this ratio, the size of pixels on the picture can be obtained for the landmarks of
different sizes at different distances. Both the coordinate location and the size of every landmark are
previously measured by GPS receiver and ruler respectively.

Table 1. Proportional relationship between distance and landmark size.

Distance 6 7 8 9 10 11 12 . . .

Proportional 360 315.8 275 230.2 201.5 179 157.5 . . .
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The landmarks are usually limited to the middle of the image, and they are generally set at the
end of the straight road, it is considered that the signpost position is directly in front of the carrier and
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the experimental error is within an acceptable range. If the area is out of a fixed region of the picture,
this matching is judged as invalid. If the area becomes smaller, the higher positioning accuracy would
reach and the matched landmarks are less and less. For the same landmark, at least one template with
a size can be successfully matched to obtain the position information. The coordinate of the landmark
is (longl, latl), the azimuth of the landmark is α, and the distance between the landmark and the carrier
is d. Therefore, the coordinate of the carrier, (longv, latv), is given by

latv = arcsin(sin(latl) ∗ cos(d/R) + cos(latl) ∗ sin(d/R) ∗ cos(a)), (3)

longv = longl + arctan
cos(d/R) − sin(latl) ∗ sin(latv)

sin(a) ∗ sin(d/R) ∗ cos(latl)
, (4)

where R is the radius of the Earth.
For landmarks that are not easy to be computed directly, their locations can be calculated by

other point locations that is easy-to-computed using Equations (3) and (4), such as the landmarks in
indoor environment.

2.3. 3D-RISS Mechanization

The IMU mechanization is performed using a 3D-RISS, which employs an odometer, a uniaxial
gyroscope and a dual-axial accelerometer. It has been shown [28–30] that the 3D-RISS algorithm
outperforms the conventional method of complete mechanization that uses tri-axial gyroscopes and
accelerometers. The dead-reckoning position estimation from the 3D-RISS mechanization is then
integrated with the vision data using an EKF [31–33]. The detailed results of the integration are
presented in the next section.

During the 3D-RISS mechanization process, the pitch angle of the vehicle is calculated using the
forward accelerometer output information. The pitch angle p is calculated as

p = sin−1(
fy − aod

g
). (5)

where fy is the forward accelerometer measurement, aod is the odometer rate of change of velocity and
g is the acceleration due to gravity.

The schematic diagram of 3D-RISS mechanization is shown in Figure 4.
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The roll angle of the moving vehicle r is calculated using the transversal accelerometer information
fx, the azimuth gyroscope measurement ωz and the odometer velocity information vod.

r = − sin−1
(

fx + vodωz

g cos p

)
, (6)

The azimuth angle
.

A is given by

.
A = −

(
ωz −ω

ie sinϕ−
ve tanϕ
RN + h

)
, (7)

where ωie is the Earth rotation rate, ve is east velocity, ϕ is the latitude, h is the altitude of the vehicle
and RN is the normal radius of curvature of the Earth’s ellipsoid.

Then, the local-level frame velocity is given by

v =


ve

vn

vu

 =


vod sin A cos p
vod cos A cos p
vod sin p

, (8)

where ve, vn, and vu denote the East, North and Upward velocities respectively, which are transformed
from the vehicle’s speed along the forward direction v.

The 3D position is then obtained by

.
h = vu,
.
ϕ = vn

R+h ,
.
λ = ve

(R+h) cosϕ ,
(9)

where,
.
h,

.
ϕ, and

.
λ are the Altitude, Latitude and Longitude calculated by 3D-RISS, respectively.

R is the meridian radius of curvature of the Earth’s ellipsoid.

2.4. Kalman Filter Design of 3D-RISS/MLEVD Integration

The block diagram of the 3D-RISS/MLEVD integrated navigation system is shown in Figure 5.
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Through template matching, the camera can acquire the absolute Latitude, Longitude and azimuth
angle of the robot when it passes the landmarks. The 3D-RISS algorithm calculates the robot position,
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velocity and orientation based on the IMU and odometer data. A Kalman filter integrates this
information with the position and azimuth update from the camera.

The error state vector of the Kalman filter is defined as

δx = [δϕ, δλ, δh, δve, δvn, δvu, δA, δbz, δaod], (10)

where δϕ is the Latitude error, δλ is the Longitude error, δh is the Altitude error, δve is the East velocity
error, δvn is the North velocity error, δvu is the Upward velocity error, δA is the azimuth error, δaod is the
error in acceleration derived from odometer measurements and δbz is the error due to the gyroscope bias.

The motion Equations (8) and (9) are linearized by Taylor’s series expansion and only the first-order
terms are retained [34,35]. The state transition matrix F is formulated below. Fab identifies each non-zero
element in matrix F, where the subscript a denotes the row and b denotes the column of the matrix.

δ
.
ϕ =

δvn

(R + h)
}

F15

, (11)

δ
.
λ =

1
(R + h) cosϕ

}

F24

δve +
ve tanϕ

(R + h) cosϕ
}

F21

δϕ, (12)

.
h = δvu

F36

, (13)

δ
.
ve = sin A cos p

}

F48

δa0 + a0 cos A cos p
}

F47

δA−
(
ωz − bz −ωe sinϕ− ve tanϕ

R+h

)
}

F45

δvn + vn
F49

δbz

+vn

(
ωe cosϕ+

ve sec2 ϕ
R+h

)
}

F41

δϕ+
vn tanϕ

R+h
}

F44

δve
(14)

δ
.
vn = cos A cos p

}

F58

δa0 + a0 sin A cos p
}

F57

δA +
(
ωz − bz −ωe sinϕ− 2ve tanϕ

R+h

)
}

F54

δve

−ve
F59

δbz − ve

(
ωe cosϕ+

ve sec2 ϕ
R+h

)
}

F51

δϕ
(15)

δ
.
vu = sin p

F68

δa0, (16)

δ
.

A = δbz
F79

+

(
ωe cosϕ+

ve sec2 ϕ

R + h

)
}

F71

δϕ+
tanϕ
R + h
}

F74

δve, (17)

The drift error of the gyroscope and the error in the acceleration, which occurs because of the
odometer, are modeled by first-order Gauss–Markov processes as given below [36]:

δ
.
a0 = −β0

F88

δa0 +
√

2β0σ2
0w(t), (18)

δ
.
bz = −βz

F99

δbz +

√
2βzσ2

zw(t), (19)

where β and σ are the reciprocal of the correlation time and the standard deviation of the respective errors.
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The overall system dynamic matrix F is given by

F =



0 0 0 0 F15 0 0 0 0
F21 0 0 F24 0 0 0 0 0
0 0 0 0 0 F36 0 0 0

F41 0 0 F44 F45 0 F47 F48 F49

F51 0 0 F54 0 0 F57 F58 F59

0 0 0 0 0 0 0 F68 0
F71 0 0 F74 0 0 0 0 F79

0 0 0 0 0 0 0 F88 0
0 0 0 0 0 0 0 0 F99


, (20)

The measurement model that relates the 3D-RISS system estimate to the vision-based solution is
given by

z = Hδx, (21)

where H that relates the system state vector to the observations, is given by

H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 (22)

and Z can be written as

z =


Latvis − Latriss

Longvis − Longriss
Azivis −Aziriss

, (23)

where Latvis, Longvis, and Azivis are the Latitude, Longitude and azimuth determined by the vision,
while Latriss, Longriss, and Aziriss are the Latitude, Longitude and azimuth estimated by the 3D-RISS.

After the complete system model and measurement model are established, the EKF error state
vector and covariance matrix are utilized to implement the prediction step. When a landmark is
detected, the Kalman gain is calculated and the error state vector is updated accordingly.

3. Verification Experiments and Results Analysis

Both outdoor experiment and indoor experiment are conducted here to verify the performance of
the 3D-RISS/MLEVD integrated navigation technology in different challenging environments.

3.1. Outdoor Experiment

The outdoor experiment involves the integration of the inertial navigation with MLEVD.
The experimental equipment used are the FFG-16 INS [37], a set of driving recorders and high-precision
RTK GPS, which are installed and shown in Figure 6. Because of the arithmetic of 3D-RISS,
only 1 gyroscope and 2 accelerometers of FFG-16 were used, and their parameters are summarized in
Table 2. The odometer data was collected by the vehicle odometer. The GPS function was utilized to test
the effects of the combination of inertial navigation and visual data. The GPS device is UB480, which is
a multi-system GNSS high-precision board based on a new-generation Nebulas-II high-performance
GNSS SoC developed by Unicore Communications. Its static single-point positioning accuracy is 1.5 m
and RTK accuracy is 1.0 cm + 1 ppm. In this experiment, RTK technology was utilized. The GPS
precision is sufficiently high to be utilized as a reference. This is one reason why validation experiment
was done outdoors. Additionally, the outdoor environment is full of challenging for visual aided
integrated navigation technology because of its complexity.
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Table 2. Performance of the gyroscope and accelerometer in FFG-16.

Performance FFG-16

Gyroscope

Bias stability (◦/h) ≤0.01
Nonlinear degree of scale factor (ppm) ≤3

Resolution (◦/s) 0.0005
Dynamic range (◦/s) ≤600

Random walk coefficient (◦/h1/2) 0.003

Accelerometer

Input range (g) ±60
Bias (mg) <40

One-year composite repeatability (µg) <15
Scale factor (mA/g) 1.20–1.46

For this experiment, driving was performed inside the campus of Harbin Engineering University
(HEU). While driving, the inertial navigation system and the GPS continuously record the data.
Several landmarks were set up in advanced on the route and the position was measured by GPS.
The single-point duration was 10 min to ensure the accuracy. At the beginning of the experiment,
the vehicle kept static for 5 min for the fiber optic gyroscope seeking North direction and inputting the
initial heading angel. Before the first 5 s of the car movement, the camera sampling frequency is set to
10 Hz and in the rest time it is 1 Hz. The driving recorder has GPS device so that the time of video
streaming is GPS time. The IMU can also import GPS information so that every date has GPS time sign.
Therefore, the IMU data and the visual data are synchronized by GPS time.

3.1.1. Selecting Pictures by Machine Learning

In this study, the collected data include a series of photographs taken at a university, with 12650
items and 25 labels in total. The labels contain detailed road names, building names, etc.
The ground-truth output is labeled by human. The architecture of our neural network is shown in
Figure 7. The dimensions of the source photo are (1080, 1920, 3) and the input dimensions of the data
after preprocessing are (192, 108, 3). The convolutional kernels are (3, 3), and the pooling layers are as
follows: pooling layer 1 is (3, 3), and pooling layers 2 and 3 are (2, 2). To avoid overfitting, the model
has a dropout rate of 0.25. The neural network structure is inspired by VGGNet [38].
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Figure 7. Architecture of the neural network.

During the training process, we augment the dataset by rotating, flipping, clipping, etc.
Then, we split the dataset into a training set and a testing set. The output of the network contains the
probabilities of each label. As shown in Figure 8, the accuracy achieved after 100 training epochs is 98%.
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Figure 8. Training result.

The image recognition system can recognize landmarks, building signs, etc., in 1 s to determine
the coordinate of the robot rapidly. To evaluate the performance of the image recognition system,
we tested the system 10 times. Specifically, every time the robot passed Dormitory 4, our system
recognized it with 100% accuracy, and the average recognition speed was 1 s.

With the addition of this machine learning algorithm, a considerable amount of time is saved
for the road sign recognition. Each road sign recognition and location acquisition time are less than
5 s, which is although not up to the standard of real-time location, but greatly enhance the probability
of feasible.

3.1.2. Template Matching

A single-perspective camera was utilized to capture the video stream. The frames were processed
at a rate of 1 frame per second. Figure 9 shows an example of a landmark. The real size of the landmark
is 1.43 m × 1.43 m.

At time 10:47:16, S2 = 10. Figure 10 shows that five out of the six matching techniques were
accurate in identifying the landmark; hence, the value of S is greater. At time 10:47:17, S1 = 3. Figure 11
shows that only three out of the six methods were accurate in identifying the landmark. So it is an
incorrect match in Figure. Furthermore, the landmark was within the specified range in Figure 10.
Hence, we concluded that the image at 10:45:47 matches the landmark, and the position of the carrier
at that moment can be found using Equations (3) and (4).
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3.1.3. 3D-RISS and Vision Integration

The experimental results of the trajectory are shown in Figure 12. It can be clearly seen that the
trajectory obtained by the integrated 3D-RISS/MLEVD navigation is closer to that of the GPS trajectory
as compared to the trajectory obtained by 3D-RISS alone. Furthermore, the trajectory of the pure
3D-RISS increasingly deviates from the GPS reference line with time. It is obvious from the figure that
the drift over time, due to the IMU alone, is compensated for in the presence of landmarks. Every time
a landmark is identified, the Kalman filter incorporates the new information and adjusts the trajectory
to what it should be. The filter is tuned such that the observations are given enough importance to
correct the drift from the mechanization alone. Due to the addition of machine learning technology,
the time spent on this process has been greatly reduced. Thus, it can be concluded that integrated
inertial/visual navigation can effectively eliminate the error accumulated by the inertial navigation
system over time.
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Figure 12. The trajectory comparison of the 3D-RISS and the 3D-RISS/Vision.

The errors of the inertial navigation solution alone and the visually aided inertial navigation
solution with GPS positioning are shown in Figure 13. The error comparison at landmark points is
recorded in Table 3. The inertial navigation positioning error without visual assistance accumulates
with time and the cumulative error is effectively controlled by visual correction. A visually assisted
trajectory will be corrected once for each landmark. Once the camera mounted on the carrier captured
the landmarks, it would quickly match the corresponding landmark information through machine
learning, and then obtained continuous position information through template matching algorithm,
and then corrected it into the inertial navigation system. It is clear from Table 3 that the visual
aid-assisted inertial navigation system can increase the accuracy of the inertial navigation system by
up to 96.31%. The error of 3D-RISS/MLEVD system can always keep within 5 m and the error of only
inertial navigation system has accumulated to over 40 m over time. At the same time, with the increase
of time, the advantages of visual aided inertial navigation system become more and more obvious.
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Table 3. Experiment Error Comparison at landmark points.

Landmark Number Error with Landmarks (m) Error without Landmarks (m) Correction Percentage

1 1.61 1.72 6.40%
2 2.41 3.79 36.41%
3 2.22 5.12 56.64%
4 2.01 7.03 71.41%
5 2.23 7.46 70.11%
6 1.92 12.93 85.15%
7 3.35 19.45 82.78%
8 4.13 22.54 81.68%
9 3.31 31.24 89.40%
10 1.89 35.62 94.69%
11 1.49 40.41 96.31%

3.2. Indoor Experiment

The indoor experiment equipment is shown in Figure 14. The vehicle is equipped with driving
recorder, high-precision optical fiber INS and low-precision Micro-electro-mechanical Systems (MEMS)
INS. The high-precision inertial navigation system is FFG-16 which has been introduced in outdoor
experiment and the parameters are summarized in Table 2. The low-precision inertial navigation
system is MPU-9250 [39] and the parameters are given in Table 4. The indoor experiment is to push
the car to walk in building No.61 of HEU. Five Landmarks have been set and their coordinates are
measured. The method of time synchronization between the vision and the high-precision INS is the
same as the outdoor experiment. The MEMS INS date and the high-precision INS date were recorded
by a computer so that it can be aligned by the computer. By this way the data of vision, high-precision
INS and MEMS INS are synchronized together. The initial heading angel of MEMS INS was given
by the high-precision fiber optic gyroscope. Taking the trajectory acquired by high-precision INS as
reference, the trajectory obtained by low-precision INS and the trajectory obtained by low-precision
INS combined vision are compared respectively.
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Table 4. Performance of the MPU-9250.

PARAMETER MIN TYP MAX

Gyroscope

Full-Scale Range (◦/s) - ±250 -
Gyroscope ADC Word Length (Bits) - 16 -

Sensitivity Scale Factor LSB/ (◦/s) - 131 -
Gyroscope Mechanical Frequencies (KHz) 25 27 29

Output Data Rate (Hz) 4 - 8000

Accelerometer

Full-Scale Range (g) - ±2 -
Sensitivity Scale Factor (LSB/g) - 16,384 -

ADC Word Length (Bits) - 16 -
Output Data Rate (Hz) 0.24 - 500

The experimental results of trajectory are illustrated in Figure 15. At low speed, the estimation of
the high-precision INS almost conforms to the map so that it can be used as a reference. The trajectory
obtained from the single low-precision inertial navigation system is very bad, while the trajectory
combined with the landmark information is very close to the reference. The single point errors of
the two trajectories and the reference trajectories are shown in Figure 16. Clearly, the two trajectories
are the same until the first landmark is identified. When the landmark is identified, the error of the
integrated system is significantly reduced. In addition, Table 5 is the error comparison at landmark
points. It can be seen the error of INS/vision navigation system is far less than that of single INS.
The correction effect is more obvious than outdoor.

As the indoor speed is slow, it meets the demand when the output frequency of video is 0.5 Hz.
With the addition of machine learning algorithm, the combined system can maintain high efficiency
with high precision. The indoor experimental results show that the algorithm has better accuracy
and speed.
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Table 5. Indoor Experiment Error Comparison at landmark points.

Landmark Number 1 2 3 4 5

Error with landmarks (m) 0.31 0.45 0.41 0.52 0.63
Error without landmarks (m) 6.21 33.12 38.21 37.02 20.20

4. Conclusions

By using landmarks at known positions, a feasible and accurate vehicular navigation solution was
proposed for challenging the situations where GPS signal is not available over extended periods of time.
Specifically, the template matching technology was utilized to detect the presence of the landmarks,
and every time a landmark was detected, the location and azimuth angle of the vehicle was fed into an
EKF. By using this method, over most of an indoor trajectory, the vehicular position was accurately
estimated to be within the range of the map. This study revealed that the proposed integration
of the 3D-RISS/MLEVD could provide the accurate location information. Moreover, the proposed
3D-RISS/MLEVD vehicular navigation technology was conducted by an outdoor experiment the
high-precision GPS positioning only used as a benchmark.

Results showed that the trajectory provided by the visual/inertial integrated navigation system
is closer to the referenced GPS trajectory than the trajectory provided by inertial navigation alone.
Through the indoor experiment, a set of low-cost and low-precision INS with visual can achieve the
precision of high-precision INS in challenging environments such as in outdoor satellite signal outage
occasions or in indoor environment. By incorporating machine learning, the system could capture
the landmark information more quickly and accurately, which increases its potential for real-time
positioning application. The advantages of this system are low-cost, high-accuracy and suitable
for environments without GPS and simple operation. However, one of its disadvantages is that it
needs a lot of preliminary work such as setting landmarks and getting their information. Another
disadvantage is the light intensity sometimes would influence the visual positioning effect, which could
be compensated by collecting large amounts of data under different lighting conditions.
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