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Abstract: The detection of adjacent vehicles in highway scenes has the problem of inaccurate
clustering results. In order to solve this problem, this paper proposes a new clustering algorithm,
namely Spindle-based Density Peak Fuzzy Clustering (SDPFC) algorithm. Its main feature is to use
the density peak clustering algorithm to perform initial clustering to obtain the number of clusters
and the cluster center of each cluster. The final clustering result is obtained by a fuzzy clustering
algorithm based on the spindle update. The experimental data are the radar echo signal collected in
the real highway scenes. Compared with the DBSCAN, FCM, and K-Means algorithms, the algorithm
has higher clustering accuracy in certain scenes. The average clustering accuracy of SDPFC can
reach more than 95%. It is also proved that the proposed algorithm has strong robustness in certain
highway scenes.
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1. Introduction

Radar is an important part of the contemporary intelligent transportation system [1–3].
Multi-target tracking with radar is also a hot issue in intelligent transportation research [4–6].
By tracking passing vehicles, risky driving behavior can be predicted and an early warning signal
can be issued [7,8]. Vehicle tracking helps to reduce the occurrence of traffic accidents, and also helps
the development of intelligent transportation [9]. Currently, there are many image-based multi-target
tracking algorithms [10]. However, these methods do not show good adaptability in the actual traffic
scenes. Because they cannot adapt to the effects of weather, environment, and light [11,12]. Since radar
signals can be well adapted to complex scenes [13], more and more researchers are beginning to use
millimeter-wave radar to solve multi-target tracking problems [14,15] in traffic.

The sampling points collected by the radar are scattered, and doped with noise [16]. Therefore,
clustering sampling points before the target tracking can promote better tracking of the targets [17].
The experimental scene of this paper is a straight four-lane highway. In this scene, vehicles in the
adjacent lanes may be close to each other during driving. At this time, the sampling points of the
vehicles may be close together and cover each other. Current clustering algorithms cannot distinguish
adjacent targets and covered targets well, and real-time performance is not good as well. Therefore,
the purpose of this paper is to improve the cluster accuracy of adjacent vehicle sampling points in
highway scenes.
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There are a lot of clustering algorithms at present. For example, partition-based clustering
algorithms [18], hybrid density clustering algorithms, graph clustering algorithms, fuzzy clustering
algorithms, and so on. The classic one in the partition-based clustering algorithm is the K-Means
clustering algorithm [19,20]. This algorithm has a wider application and higher efficiency, but it also
has obvious limitations. The algorithm must determine a cluster center of each cluster in advance.
The choice of this cluster center determines the quality of the clustering results. The algorithm is
sensitive to abnormal sample points and can only process numerical data sets. The FCM (Fuzzy
C-Means) algorithm [21–23] is a widely used clustering algorithm applied to the field of image
segmentation. The algorithm uses a membership degree to determine the similarity of sample points.
It is a fuzzy clustering method based on the objective function [24–26]. The DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm is a density-based partitioning clustering
method. It treats the data set as a collection of several high-density clusters separated by low-density
regions. The main feature of this method is that clusters of any shape can be identified [27].

Many researchers have made many improvements to existing algorithms. The K-MODES
algorithm proposed by Nguyen [28] overcomes the shortcomings of the K-Means algorithm that
can only process numerical data. The K-MEDOIDS algorithm does not calculate the cluster center but
directly represents a cluster to represent the cluster, which can effectively handle abnormal data [29,30].
Bezdek’s research team improved the FCM algorithm and they globally optimized the fuzzy objective
function [31]. Birant et al. improved the DBSCAN algorithm and proposed a new ST-DBSCAN
(Spatial-Temporal DBSCAN) algorithm. The algorithm can find clusters of clusters in non-spatial
values, spatial values, and temporal values [32]. In 2014, density peak fast clustering was a new
efficient clustering algorithm proposed by Italian researcher Rodriguez et al. [33]. The main idea of the
algorithm is that the cluster center has a higher density than the neighborhood, and the cluster center
has a relatively large distance from the high-density point.

For the inaccurate clustering results of adjacent vehicles in the highway scenes, this paper
constructs a spindle-based density peak fuzzy clustering (SDPFC) system using traffic radar.
Our optimization goal is to increase the clustering accuracy of adjacent vehicles in highway scenes.
In order to increase the clustering accuracy, the cluster centers and the number of clusters are calculated
by the initial clustering algorithm based on density peak. The final clustering result is calculated by the
fuzzy clustering algorithm based on spindle update. The main diagram of the spindle-based density
peak fuzzy clustering system using traffic radar is shown in Figure 1. The experimental results show
that the SDPFC algorithm has advantages in clustering accuracy. In summary, the contributions of this
paper can be summarized as follows:

• This paper proposes a spindle-based density peak fuzzy clustering (SDPFC) algorithm.
The algorithm is divided into two parts: initial clustering and quadratic correction clustering.
The initial clustering is to determine the cluster center and the number of clusters by finding the
density peak. The quadratic correction clustering is to correct the clustering results by iterative
updating of the fuzzy matrix and the spindle. In this way, the problem of inaccurate clustering of
adjacent vehicles is solved.

• SDPFC overcomes the defect that the traditional fuzzy algorithm is not ideal for non-spherical
sample set clustering. To improve the accuracy of the clustering algorithm, this paper changes
the concept of iteratively updating the cluster center to the update of the spindle. In actual traffic
scenes, SDPFC is more reasonable than other commonly used algorithms.

• In order to accelerate the clustering algorithm, the randomly generated initial cluster center is
no longer used in this paper. Instead, the ideal initial cluster center is calculated by finding the
density peak. In this way, the structure of the SDPFC algorithm is optimized. Since the ideal
initial cluster center is close to the real target cluster center, the optimization algorithm greatly
reduces the number of iterations.
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Figure 1. The main diagram of the system.

The rest of this paper is organized as follows. In Section 2, we introduce the data acquisition
method of multi-target traffic microwave radar and feature data extraction for vehicles. The data
collected include distance, velocity, and angle. In Section 3, the clustering algorithms related to this
paper will be introduced. In Section 4, the spindle-based density peak fuzzy clustering algorithm is
explained. Section 5 describes the experimental results of several real highway scenes, the performance
of several algorithms is compared, and the applicability of the algorithm is discussed. Section 6
summarizes this paper.

2. Radar Signal Preprocessing

The traffic scene in this paper is a straight four-lane highway, as shown in Figure 2. On the
highway, safe driving is significant. Therefore, not only the driver’s driving experience but also the
strict supervision of the relevant departments are required to avoid accidents [34]. On the highway,
long-term cross-lane driving is extremely dangerous. However, in practice, it is found that, if two
vehicles are driving in parallel when the driving distance is too close, the sampling points will gather
and cover each other [35]. At this time, it is usually judged that this is a car driving on the lane
line. This will result in erroneous tracking of vehicle targets. At the same time, false alarms will be
issued and the vehicle will be photographed, which will cause the owner to accept the penalty. These
problems can result in wasted resources. Therefore, the algorithm in this paper is to solve the problem
of inaccurate clustering results of the adjacent vehicle in highway scenes.

Figure 2. Real traffic scene.

The radar systems used in this paper mainly include a radar, camera, and alarm. It is mounted on
a beam 7 m above the ground on the side of the lane. In addition, it is capable of monitoring vehicle
targets in the longitudinal direction between 50 and 300 m and in the lateral 4–5 lanes. The radar
has the ability to monitor passing vehicles on the road. The traffic radar used in this paper has high
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measurement accuracy. In a distance range of about 150 m, the distance measurement error is about
0.15 m, and the angle measurement error is about 0.1 degrees. By processing the data collected by the
radar, information such as the position and speed of each vehicle can be obtained, thereby tracking the
trajectory of all vehicles in the current monitoring scene.

The raw data received by the radar are a time-domain signal, which needs to be converted by the
following steps:

• Step 1: Receive an echo signal from the radar at the current time;
• Step 2: Transform the echo signal from the time domain to the frequency domain by using FFT

(Fast Fourier Transform);
• Step 3: Determine the distance between the vehicle target and the radar-based on the spectrum

information of the echo signal by Formula (1):

R=
cT∆ f

2B
, (1)

where R is the distance from the radar to the target vehicle; c is the speed of light; T is the period
of the transmitted signal; ∆ f is the difference frequency between the transmitted signal and the
received signal; B is the signal bandwidth;

• Step 4: According to the spectrum information of the echo signal, the angle between the target
vehicle and the radar is determined by Formula (2):

θ = arcsin(
λ

6π
·

3

∑
l=1

∆ϕl
dl

), (2)

where θ represents the angle between the target and the normal direction of the radar; λ represents
the wavelength of the electromagnetic wave emitted by the antenna; ∆ϕl represents the phase
difference between the l−th antenna and the l + 1−th antenna; dl represents the distance between
the l−th antenna and the l + 1−th antenna;

• Step 5: According to the distance and angle between the target vehicle and the radar, the two-
dimensional coordinate position (x, y) of the target vehicle in the plane rectangular coordinate
system is determined by Formulas (3) and (4):

x = R · sin θ, (3)

y =

√
(R · cos θ)2 − h2, (4)

where h represents the height of the radar from the road plane.

This paper establishes a plane rectangular coordinate system in the road plane, and the origin
of the plane rectangular coordinate system is the projection position of the radar on the road plane.
By transforming the coordinate (R, θ) in the polar coordinate system to the coordinate (x, y) of the
plane rectangular coordinate system, the vehicle trajectory can be visually displayed. The algorithm in
this paper mainly uses the coordinate z = (x, y) of the sampling point as input information.

3. Previous Works

3.1. DBSCAN Clustering Algorithm

DBSCAN is a density-based spatial clustering algorithm [36]. The algorithm divides a set of
sample points with sufficient density into one cluster [37], and finds a class of arbitrary shape in a
set of spatial sample points with noise. The algorithm defines the cluster as the largest set of points
connected by density [38]. Before describing the algorithm, we first define several related concepts:
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• σ-Neighborhood: The set of sample points within a given object radius σ is called the
σ-Neighborhood of the object in dataset D, denote by Nσ (zi) =

{
zj ∈ D|dist

(
zi, zj

)
≤ σ

}
.

• Core object: For any object zi ∈ D, if there are at least min pts objects in its σ-Neighborhood that
is, if |Nσ (zi) | ≥ min pts, then zi is the core object.

• Directly Density-Reachable: An object zj is said to be directly density-reachable from an object zi
if zj is within the σ-Neighborhood of zi, and zi is a core object.

• Density-Reachable: zj is density-reachable to zi if there exists an object chain p1, p2, · · · pT , such
that p1 = zj, pT = zi and pk+1 is directly density-reachable from pk.

• Density-Connected: An object zj is density-connected to object zi with respect to σ and min pts if
there exists a core object zk such that both zj and zi are directly density-reachable from zk with
respect to σ and min pts.

The flow of DBSCAN clustering algorithm as shown in Algorithm 1:

Algorithm 1 DBSCAN

Require: sample points z.
Ensure: cluster center zi, and label.

1: initialization: σ-Neighborhood, and min pts;
2: repeat
3: traverse all sampling points z and determine whether the point is a core object that satisfies the

σ-Neighborhood;
4: until all sample points are traversed, and find all core object sets that satisfy the σ-Neighborhood;
5: repeat
6: choose a core object, find all the density-Reachable sample points and generate clusters;
7: remove the density-reachable sample points found in the previous step from the remaining core

objects;
8: until core objects are traversed or removed;
9: return: cluster center zi and label;

The DBSCAN clustering algorithm can cluster dense sample points of any shape and can be used
in traffic scenes. However, the algorithm needs to coordinate the neighborhood radius and the sample
number threshold to find the optimal solution in the current scene. This is more complicated for the
user. In addition, in the traffic scene solved in this paper, the radar sampling points of adjacent vehicles
are close to each other and the density is similar. The DBSCAN clustering algorithm cannot solve the
problem of distinguishing adjacent vehicles in traffic scenes.

3.2. FCM Clustering Algorithm

The FCM algorithm is based on a data clustering method optimized for the objective function [39].
The clustering result is the degree of membership of each data point to the cluster center, and the degree
of membership is represented by a numerical value [40,41]. The FCM algorithm is an unsupervised
fuzzy clustering method, and no human intervention is needed in the algorithm running process after
manually determining the initial parameters [42].

Taking the sample points set of this paper as an example, the sampling points are z = zj,
j = 1, 2, · · · , mk. If the sampling points are divided into cluster i, the cluster center is ic, i = 1, 2, · · · , I.
Each sample j belongs to the cluster i with a membership of µij, so the objective function of the FCM is
defined as:

J =
I

∑
i=1

k

∑
j=1

µm
ij
∥∥zj − ic

∥∥2. (5)
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The sum of the membership degrees of each sample j belonging to a certain cluster i shall be 1:

I

∑
i=1

µij = 1, j = 1, 2, · · · , k. (6)

The Lagrange Multiplier Method is used to put the constraint into the objective function, and then
expand to get Formula (7):

J =
I

∑
i=1

k
∑

j=1
µm

ij

∥∥zj − ic
∥∥2

+ λ1(
I

∑
i=1

µij − 1) + · · ·+ λj(
I

∑
i=1

µij − 1) + · · ·+ λk(
I

∑
i=1

µik − 1). (7)

The extreme value of J is required. In addition, make the partial derivative result of µij and ic be 0:


∂J

∂µij
= m

∥∥zj − ic
∥∥2

µm−1
ij + λj = 0,

∂J
∂ic

=
k
∑

j=1
(−2µm

ij (zj − ic)) = 0.
(8)

Solve Formula (8): 

µij =
1

I
∑

n=1

 ‖zj−ic‖2

‖zj−in‖2

 2
m−1

,

ic =
k
∑

j=1

µm
ij

k
∑

j=1
µm

ij

zj.

(9)

The flow of the FCM clustering algorithm is as shown in Algorithm 2:

Algorithm 2 FCM

Require: sample points z.
Ensure: cluster center ic, and label.

1: initialization: Number of clusters i, weighted index m, termination error η, and membership

matrix µij;
2: repeat
3: calculate the cluster center position ic according to Formula (9);
4: update membership matrix µij according to new cluster center and Formula (9);
5: until the objective function J tends to be stable according to the condition in Formula (10);
6: return: cluster center ic and label;

ε =
I

∑
i=1

k

∑
j=1

(newµij − µij) < η. (10)

The FCM clustering algorithm calculates the membership degree of each sample point. If a
sample point has an absolute advantage in the membership degree of a certain cluster, it is a very
safe practice to assign the sample point to this cluster. The algorithm is highly accurate. However,
some parameters need to be set in the algorithm, the number of clusters i, the weighted index m, and
the termination error η. If the initialization of the parameters is not appropriate, it may affect the
correctness of the clustering results. Secondly, when the data sample set is large and the number of
features is large, the real-time performance of the algorithm is not good. In addition, in the traffic
scene of this paper, the radar sampling points of adjacent vehicles are close, and FCM cannot solve the
problem of distinguishing adjacent vehicles.



Electronics 2020, 9, 46 7 of 23

4. The Spindle-Based Density Peak Fuzzy Clustering (SDPFC) Algorithm

The SDPFC algorithm proposed in this paper is characterized by the idea of using quadratic
clustering to correct clustering results. The cluster center of each cluster and the number of clusters are
obtained by the initial clustering algorithm based on the density peak [43]. Then, the clustering result
of the initial cluster is corrected by the fuzzy clustering algorithm based on the spindle update, and the
final clustering result is obtained. The combination of these two clustering ideas will be explained in
this section.

4.1. Initial Clustering Algorithm Based on Density Peak

Taking the sampling points of the paper as an example, the sample points set S = {zi}n
i=1 to be

clustered. IS = {1, 2, · · · , n} is the corresponding indicator set [44]. Calculate the Euclidean distance
dij between all sample points, as shown in Formula (11). Thus, the number of dij is n(n−1)

2 :

dij = dist
(
zi, zj

)
. (11)

All dij are sorted in ascending order, and a percentage parameter p is set, then the truncation
distance dt is defined as the r−th dij, where r is calculated by Formula (12) and round represents
rounded off. In the experimental environment of this paper, the sampling points are relatively close,
so p in this article is chosen to be 2%. Users can modify p according to their own experimental
environment. The larger the p that is selected, the more clusters are filtered out. Therefore, p should be
determined through the experimental environment:

r = round
(

n (n− 1)
2

∗ p
)

. (12)

The density ρi of each sample point zi is calculated by Formula (13):

ρi = ∑
j∈IS\{i}

e
−
(

dij
dc

)2

. (13)

For each sample point zi, find all sample points zj that are denser than the sample point zi and
select the smallest dij, denoted as δi. If the opposite is true, select the largest dij and record it as δi.
The significance of this is that the characteristics of ρi and δi can be used to determine whether the
sample point is the cluster center. The selection method of δi is as shown in Formula (14):

δi =


min
j∈Ii

S

{
dij
}

, Ii
S 6= ∅,

max
j∈IS

{
dij
}

, Ii
S = ∅,

(14)

where ∅ represents the empty set, and the expression of the indicator set is as shown in formula (15):

Ii
S = {k ∈ IS : ρk > ρi} . (15)

You need to set the threshold parameter to find the center point of each type of sample, set the
density threshold to ρ0, and the distance threshold to δ0. If ρi > ρ0 and δi > δ0 of the sample point zi,
the sample point zi is considered to be the cluster center of a certain cluster.

As shown in Figure 3, this diagram is called a decision diagram. It can be clearly seen in the figure
that the colored elements in the upper right corner have a larger ρ and δ. This means that they are
more likely to be the center of the cluster. With the decision graph, we can easily determine which
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points qualify as the center point and which points are not qualified by defining the density threshold
ρ0 and the distance threshold δ0 according to the experimental environment.

0 1 2 3 4 5 6
0

5

10

15

20

 [
m

]

Figure 3. Decision graph.

Define
{

mj
}nc

j=1 as the number of the corresponding sample point of each cluster center that is,

zmj represents the center of the j−th cluster. In addition, define {ci}n
i=1 as the sample point clustering

label, that is, ci indicates that the i−th sample point in S belongs to the ci−th cluster. Thus, ci satisfies
the logic of Formula (16).:

ci =


k, i f (zi is the cluster center and belongs to the k− th cluster),

−1, otherwise.
(16)

Define {ni}n
i=1 as the number of nearest sample points in the sample points with the local density

greater than zi in the S, as defined by Formula (17):

ni =


arg min

j∈Ii
S

{
dij
}

, Ii
S 6= ∅,

0, Ii
S = ∅.

(17)

Using the attributes defined by Formula (17), the sample points are processed one by one by local
density—the highest density sample point except for the center point. It falls into the cluster to which
it is close. This way of processing one by one is much faster than loop iteration.

Define {hi}n
i=1 as the identity of the cluster core and cluster halo. The cluster core indicates that

the local density is large, corresponding to the core part of the cluster. The cluster halo is denser and
corresponds to the edge of the cluster. The value of hi is as shown in Formula (18):

hi =


0, zi ∈ cluster core,

1, zi ∈ cluster halo.
(18)

If nc > 1, an average local density upper bound
{

ρb
i

}nc

i=1
is generated for each cluster. For a fixed

cluster, first determine its boundary area, which consists of sample points: they belong to the cluster
itself, but within a range that does not exceed dc; sample points belong to other clusters. Using the
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cluster in the boundary area, an average local density can be calculated to distinguish between the
cluster core and the cluster halo.

The average density is calculated as shown in Formula (19):

ρ̄ =
ρi + ρj

2
. (19)

The upper bound of the average local density is obtained by Formula (20):
ρb

ci
= ρ̄, ρ̄ > ρb

ci
,

ρb
cj
= ρ̄, ρ̄ > ρb

cj
.

(20)

The value of hi is as shown in Formula (21):
hi = 1, ρi < ρb

ci
,

hi = 0, otherwise.
(21)

The general calculation process of the initial clustering algorithm based on the density peak is
described below. Firstly, after initialization and preprocessing, calculate the Euclidean distance dij
between all sample points and determine the cutoff distance dt according to Formula (12). Calculate ρi
and δi for each sample point. Secondly, determine the cluster center and initialize the label according
to Formula (16). The cluster centers and their numbers of the cluster are finally obtained. Thirdly,
the sample points that are not cluster centers are categorized until the categorization process for each
sample point is completed. Finally, if nc > 1, the sample points in each cluster are further divided into
cluster core and cluster halo.

The flow of initial clustering algorithm based on density peak as shown in Algorithm 3:

Algorithm 3 Initial clustering algorithm based on density peak

Require: sample points z.
Ensure: cluster center zi, the number of clusters i, and label.

1: initialization: cutoff distance dt, cluster center number i, density threshold ρ0, and distance

threshold δ0;
2: for i← 1 to n do
3: for j← 1 to n do
4: calculate the Euclidean distance dij between all sample points and calculate ρi and δi for each

sample point.
5: end for
6: end for
7: repeat
8: get the cluster center zi and its number i;
9: until classify all sample points that are not cluster centers;

10: for i← 1 to n do
11: if nc > 1 then
12: the sample points in each cluster are further divided into cluster core and cluster halo according

to Formula (21);
13: end if
14: end for
15: return: cluster center zi, the number of clusters i, and label;
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Taking a scene on the highway as an example, the clustering result of the initial cluster is shown
in Figure 4. The horizontal and vertical coordinates in the figure indicate the distance. Each point in
the graph represents each sample point. This graph is an image generated from the distance between
sample points. Therefore, the distance between each sampling point in the graph is real, but their
coordinate positions are not real positions. This graph is only used to clearly show the cluster centers
and the number of clusters.

-10 0 10 20

distx [m]

-3

-2

-1

0

1

2

3

4

5

d
is

ty
 [

m
]

Figure 4. Initial clustering result.

4.2. Fuzzy Clustering Algorithm Based on Spindle Update

According to the results obtained in the previous section, the correction after initial clustering is
performed to obtain the final clustering result. The results of the previous section used in this section
are: position coordinate information of all sampling points, cluster centers, and the number of clusters.
Define i = 1, 2, · · · , I represents the i−th cluster, and z(i)0 for the i−th cluster center.

The radar used in the article is a traffic scene monitoring radar that is mounted above the side
of the lane. Therefore, the positional relationship between the radar and the lane is unchanged.
The normal driving situation of the vehicle is that the vehicle travels forward between the lane lines.
In addition, it is illegal to travel across the lane for a long time. Whether driving normally or across the
lane, the vehicle travels in a direction parallel to the centerline of the lane. Therefore, based on the
results obtained in the previous section, we use the straight line passing through the cluster center and
parallel to the centerline of the lane as an important basis to correct the results of the initial clustering,
so as to obtain better clustering results. We traveled on the road in advance through a dedicated
calibration vehicle. The collected lane centerline is used as the initial spindle. Record the slope of the
initial spindle as a0.

According to the above characteristics, the initial spindle is constructed based on the center of
each cluster and the centerline of the lane. The initial spindle is a straight line parallel to the centerline
of the lane and passing through the cluster center. Express the spindle of cluster i as L(i)

c , and its
expression is: y = a(i)x + b(i), where i = 1, 2, · · · , I represents the i−th cluster and j = 1, 2, · · · , k
represents the j−th sample point, and the value of k is the number of all sample points except the
cluster center. The expression with a0 as the slope and the initial spindle passing through the cluster
center z(i)0 = (x(i)0 , y(i)0 ) of each cluster is:

y = a(i)0 x + b(i)0 . (22)
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The position coordinates of the sample points obtained in the plane rectangular coordinate system
are defined as:

zj = (xj, yj). (23)

In the text, the distance between the j−th sample and the spindle of the i−th cluster is expressed
by Formula (24), and its value is D(i)

j :

zj ∼ L(i)
c . (24)

Define the objective function T, and the expression is as shown in Formula (25):

T =
I

∑
i=1

k

∑
j=1

Bm
ij D(i)

j

2
, (25)

where B represents a fuzzy matrix, indicating the confidence that the sample points belong to a certain
cluster. m represents the factor of membership, that is, the weight. This value can be determined by
the user. The constraint of B is:

I

∑
i=1

Bij = 1, j = 1, 2, · · · , k. (26)

In order to achieve the optimal solution of the objective function, it is necessary to make T
obtain a minimum value under the constraint condition. The Formula (25) is expanded using the
Lagrange method:

T =
I

∑
i=1

k
∑

j=1
Bm

ij D(i)
j

2
+ λ1(

I
∑

i=1
Bij − 1) + · · · + λj(

I
∑

i=1
Bij − 1) + · · ·+ λk(

I
∑

i=1
Bik − 1). (27)

The proof that Formula (25) is a continuously differentiable function is shown in Appendix A. In
addition, the result of the partial derivative of T is:

∂T
∂Bij

= mD(i)
j

2
Bm−1

ij + λj = 0. (28)

Calculate Bij:

Bm−1
ij =

−λj

mD(i)
j

2 ⇒ Bij =
(−λj

m

) 1
m−1

 1

(D(i)
j

2
)
( 2

m−1 )

 , (29)

where Bij represents the membership between the j−th sampling point and the i−th clustering center.
Substitute Bij into Formula (26):

(−λj

m

) 1
m−1 I

∑
n=1

 1

(D(n)
j

2
)
( 2

m−1 )

 = 1, (30)

where n represents the n−th cluster center. Simplify Formula (30):

(−λj
m

) 1
m−1

= 1

I
∑

n=1

 1

(D(n)
j

2
)
( 2

m−1 )


.

(31)
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Substitute Formula (31) into Formula (29):

Bij =
1

I
∑

n=1

 1

(D(n)
j

2
)
( 2

m−1 )



 1

(D(i)
j

2
)
( 2

m−1 )

 = 1

I
∑

n=1

 D(i)
j

2

D(n)
j

2


2

m−1
.

(32)

It can be clearly seen from Formula (32) that, if you want to obtain the membership Bij between
the j−th sample point and the i−th cluster center, you need to calculate the ratio of the distance from
the sample point to a cluster center to the sum of the distances from the sample point to all cluster
centers. The higher the ratio, the higher the membership. The Formula (32) is the updated formula for
Bij. While updating the fuzzy matrix B, the spindle needs to be updated.

Spindle update process:
The straight line formula of the spindle is: y = a(i)x + b(i). The sample points are: zj :

(x1, y1), (x2, y2), · · · , (xmk , ymk ).

D(i)
j is the distance from the sample point to the spindle of the i−th cluster:

D(i)
j =



|a(i)xj−yj+b(i)|√
a(i)2+1

,
(

y(i)0 −
dc

sin(arctan(a(i)))

)
≤ yj ≤

(
y(i)0 + dc

sin(arctan(a(i)))

)
,

√(
x(i)j

2
− xj

2
)
+

(
y(i)j

2
− yj

2
)

, otherwise.

(33)

Next, we need to reconstruct the clusters of the sample points. If the ordinate of the sample point
is within the distance dc from the ordinate of the cluster center of a certain cluster, calculate the distance
from the sample point to the spindle. Otherwise, calculate the Euclidean distance of the sample point
to the cluster center. When D(i)

j is the minimum value, it is judged that the sample point is classified
into the i−th cluster.

The following update processes take place within the new clusters of reconstructing. Taking a
certain cluster as an example, the spindle is updated in the following ways.

Define δ as the sum of the squares of the errors. The expression is:

δ =
m

∑
j=1

Dj =
m

∑
j=1

(yj − axj − b)2, (34)

where m represents the number of sample points outside the center of a certain cluster. Calculate the
partial derivative of a, b respectively:

∂δ
∂a = −2(

m
∑

j=1
xjyj − b

m
∑

j=1
xj − a

m
∑

j=1
xj

2),

∂δ
∂b = −2(

m
∑

j=1
yj −

m
∑

j=1
b− a

m
∑

j=1
xj),

⇒


∂δ
∂a = −2(

m
∑

j=1
xjyj − bmx̄− a

m
∑

j=1
xj

2),

∂δ
∂b = −2(mȳ− bm− amx̄).

(35)
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Let the two formulas of Formula (35) be 0, and get:
a =

m
∑

j=1
(xj−x̄)(yj−ȳ)

m
∑

j=1
(xj−x̄)2

,

b = ȳ− ax̄.

(36)

The flow of the fuzzy clustering algorithm based on spindle update as shown in Algorithm 4:

Algorithm 4 Fuzzy clustering algorithm based on spindle update

Require: sample point set z(i)j , the number of clusters i, cluster center z(i)0 .
Ensure: cluster center z(i)0 , and label.

1: initialization: weighted index m, membership matrix B, spindle slope a0, spindle of each cluster

L(i)
c , and termination error η;

2: repeat
3: update membership matrix B according to Formula (32);
4: update the spindle of each cluster according to Formula (36);
5: until the objective function T tends to be stable according to the condition in Formula (37);
6: return: cluster center z(i)0 and label;

V =
I

∑
i=1

k

∑
j=1

(newBij − Bij) < η. (37)

The initial clustering results of the previous section are subjected to quadratic modified clustering,
and the final clustering result is shown in Figure 5.
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Figure 5. The SDPFC algorithm final clustering result.

5. Comparison of Experimental Results

The experimental scene in this paper is a straight four-lane highway scene with the radar mounted
above the side of the lane, as shown in Figure 6. The vehicles on the highway are characterized by a fast
speed and large distance between front and rear. However, during the driving process, the approach
of the vehicle will occur, which will cause the radar sampling points to approach and cover each other.
The current commonly used clustering algorithms cannot accurately distinguish between adjacent and
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covered vehicle targets. The spindle-based density peak fuzzy clustering algorithm proposed in this
paper can better solve the clustering problem of adjacent vehicles in this scene.

Figure 6. The experimental scene and the placement of the radar.

Scene 1: There are three vehicles with a relatively short distance on the straight four-lane highway.
Among them, two large vehicles have a lateral distance that is very close to each other and the other
one is farther away from the two cars, as shown in Figure 7. At this time, the radar returns a total of
117 valid sampling points, and the distribution of sampling points is shown in Figure 8.

Figure 7. The real situation of Scene 1.
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Figure 8. Sampling points of Scene 1.

The comparison of clustering results of various algorithms in this scene is shown in Figure 9.
In this scene, two large cars cover each other, resulting in an uneven distribution of sampling

points. The DBSCAN algorithm classifies by density and results in a large number of clusters.
The iterative update of the fuzzy matrix and the cluster center by the FCM algorithm cannot solve
the problem of distinguishing adjacent targets well. The K-Means algorithm does not classify well
for adjacent sample points. The clustering results obtained by the SDPFC algorithm in this paper can
correspond well to the real scene. Compared with the results of other algorithms, the conclusion of the
new algorithm is better.
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Figure 9. The clustering results of each algorithm: (a) DBSCAN; (b) FCM; (c) K-Means; and (d) SDPFC.

Scene 2: There are three vehicles with a close driving distance on the straight four-lane highway.
The lateral distance between the two vehicles is very close and the large vehicle covers the small
vehicle. The other one is farther away from the two vehicles, as shown in Figure 10. At this time,
the radar returns a total of 115 valid sampling points, and their distribution is shown in Figure 11.

Figure 10. The real situation of Scene 2.
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Figure 11. Sampling points of Scene 2.

The comparison of clustering results of various algorithms in this scene is shown in Figure 12.
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Figure 12. The clustering results of each algorithm: (a) DBSCAN; (b) FCM; (c) K-Means; and (d) SDPFC.

In this scene, a large car covers a small car, resulting in fewer sample points for the small car.
The DBSCAN algorithm classifies by density and results in a large number of clusters. The iterative
update of the fuzzy matrix and the cluster center point by the FCM algorithm cannot solve the problem
of distinguishing adjacent targets well. The K-Means algorithm does not classify well for adjacent
sample points. The clustering results obtained by the density peak fuzzy clustering algorithm in
this paper can correspond well to the real scene. Compared with the results of other algorithms,
the conclusion of the new algorithm is better.

Scene 3: There are five vehicles with a relatively short driving distance on the straight four-lane
highway. There are many vehicles blocking each other, as shown in Figure 13. At this point, the radar
returns a total of 202 valid sampling points, and their distribution is shown in Figure 14.

Figure 13. The real situation of Scene 3.
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Figure 14. Sampling points of Scene 3.
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The comparison of clustering results of various algorithms in this scene is shown in Figure 15.
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Figure 15. The clustering results of each algorithm: (a) DBSCAN; (b) FCM; (c) K-Means; and (d) SDPFC.

In this scene, the number of adjacent vehicles is relatively large, and several vehicles are covering
each other, resulting in uneven distribution of sampling points and fewer sampling points for small cars.
The DBSCAN algorithm classifies by density and results in a large number of clusters. The iterative
update of the fuzzy matrix and the cluster center point by the FCM algorithm cannot solve the problem
of distinguishing adjacent targets well. The K-Means algorithm does not classify well for adjacent
sample points. The clustering results obtained by the density peak fuzzy clustering algorithm in
this paper can correspond well to the real scene. Compared with the results of other algorithms,
the conclusion of the new algorithm is better.

Next, in order to compare the clustering accuracy of each algorithm, the accuracy of the clustering
is defined as:

Rate =
K
N
× 100%, (38)

where Rate represents the clustering accuracy rate; K represents the number of sampling points for
correct clustering; N represents the total number of sample points participating in the classification.
The accuracy comparison of each algorithm is shown in Figure 16.

Figure 16. Clustering accuracy histogram.

It can be seen from the figure that, for the three practical experimental scenes in this paper,
the SDPFC algorithm proposed in this paper has the best results, and the average accuracy can reach
more than 95%.
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In order to present the clustering results of the SDPFC algorithm better, in addition to the above
three classic scenes, four scenes with adjacent vehicles are selected. The real situation of the four
scenes are shown in Figure 17. In addition, the clustering results of the SDPFC algorithm are shown in
Figure 18.

(a) (b)

(c) (d)

Figure 17. The real situation of the four scenes: (a) Scene4; (b) Scene5; (c) Scene6; and (d) Scene7.
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Figure 18. The clustering results of each scene: (a) Scene4; (b) Scene5; (c) Scene6; and (d) Scene7.

In order to visually compare the real-time performance of each algorithm, this paper selects ten
different traffic scenes and performs the same experiments on the four algorithms mentioned in this
paper to verify the real-time performance of the algorithm. Select all sampling points in about 0.2 s as
the input data for the experiment in each scene.

As can be seen from Table 1, the SDPFC algorithm proposed in this paper is the fastest of the
four algorithms, and it is about 2.04 times faster than the slowest algorithm. The K-Means algorithm
is ranked second because of its simple calculation method. The slowest running speed is the FCM
algorithm, mainly because of the uncertainty of the initial point in the FCM algorithm, resulting in the
number of iterative updates that have been maintained at a high level.
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Table 1. Time-consuming table for each algorithm.

Time Consuming/s Algorithms

Experiment Number DBSCAN FCM K-Means SDPFC

1 0.0139 0.0358 0.0270 0.0330
2 0.0128 0.0318 0.0296 0.0298
3 0.0141 0.0337 0.0262 0.0322
4 0.0138 0.0325 0.0265 0.0351
5 0.0129 0.0358 0.0254 0.0325
6 0.0132 0.0334 0.0259 0.0329
7 0.0135 0.0315 0.0249 0.0332
8 0.0139 0.0324 0.0266 0.0336
9 0.0134 0.0349 0.0271 0.0332

10 0.0136 0.0338 0.0256 0.0319

Average time consumption/s 0.0135 0.0336 0.0266 0.0327

After comparing the clustering accuracy and running speed of each algorithm in a certain scene,
this paper presents statistical images of the average of the accuracy of various algorithms in several
specific scenes. The purpose is to show the stability of the clustering of these algorithms in the given
scene. It can be seen from Figure 19 that the SDPFC algorithm proposed in this paper has good
adaptability in a certain scene and can maintain high accuracy. In addition, the K-Means algorithm is
more adaptable, but the accuracy is not high. The adaptability of DBSCAN and FCM is relatively poor,
but the accuracy of DBSCAN is significantly higher than that of FCM.
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A
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Figure 19. Comparison of stability of each algorithm.

In order to show the clustering results of the SDPFC algorithm better, a new experiment is
performed. Statistics on the accuracy of clustering adjacent vehicles in 1000 scenes. A vehicle sampling
point collected every 40 milliseconds is defined as a scene. In each scene, there are 2–5 passing vehicles,
and the radar echo signals are processed to obtain 100–300 sampling points. Comparing each scene
with the real image and the clustering result graph, calculate the clustering accuracy according to the
concept proposed by Formula (38). The specific experimental results are shown in Figure 20, where 1
on the abscissa represents the average clustering accuracy of the scene 1 to the scene 100, 2 represents
the average clustering accuracy of the scene 101 to the scene 200, and so on. Finally, according to
statistics, 3627 passing vehicles are processed in 1000 scenes, of which 3537 obtained correct clustering
results. The correct clustering rate is about 97.52%.
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Figure 20. Accuracy of clustering using SDPFC algorithm in 1000 scenes.

Through the experiments in this section, we can conclude that: under the real highway traffic
scene given in this paper, the SDPFC algorithm proposed in this paper can solve the problem of
inaccurate clustering results of adjacent vehicles. The algorithm can complete the operation in a short
time while maintaining high accuracy and has strong adaptability to scene changes.

6. Conclusions

This paper proposes a new quadratic modified clustering algorithm called a Spindle-based
Density Peak Fuzzy Clustering (SDPFC) algorithm, which has several new features. After analyzing
the characteristics of the radar sampling points of the vehicles in the experimental scene, it was found
that each sampling point cluster of the vehicle would have a density peak. Using this feature, the initial
clustering algorithm based on density peak is first used to obtain the number of clusters, that is,
the number of vehicles and the cluster center of each cluster. Next, using the two important pieces of
information just obtained, the clustering result of the first step is corrected by the iterative updating
method of the fuzzy matrix and the spindle, and then the final clustering result is obtained. In this
paper, experimental data are collected from real highway scenes. Three typical experimental scenes
are listed in the paper. The experimental results show that the proposed algorithm can solve the
clustering problem of adjacent vehicles and covered vehicles in some specific scenes of the highway.
The algorithm has high accuracy, high real-time, and strong robustness.
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Appendix A

Appendix A.1

Proposition A1. Formula (25) is continuously differentiable function.

Proof. Taking cluster 1 as an example, if Formula (25) is a continuously differentiable function, then
the existence of the result of Formula (A1) needs to be proven:

lim
∆Bij→0

∆T
∆Bij

= lim
∆Bij→0

f
(
B1j + ∆Bij

)
− f

(
B1j
)

∆Bij
. (A1)
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Substituting Formula (25) into Formula (A1) gives:

lim
∆Bij→0

I
∑

i=1

k
∑

j=1

((
B1j + ∆Bij

)mD(i)2

j

)
−

I
∑

i=1

k
∑

j=1

(
Bm

1jD
(i)2

j

)
∆Bij

. (A2)

Expanding Formula (A2) gives:

lim
∆Bij→0

I
∑

i=1

k
∑

j=1

((
Bm

1j+C1
mBm−1

1j ∆Bij+···+Cq
mBm−q

1j ∆Bq
ij+···+∆Bm

ij

)
D(i)2

j

)
∆Bij

− lim
∆Bij→0

I
∑

i=1

k
∑

j=1

(
Bm

1jD
(i)2

j

)
∆Bij

.

(A3)

Simplifying Formula (A3) gives:

lim
∆Bij→0

I
∑

i=1

k
∑

j=1
C1

m

(
Bm−1

1j D(i)2

j

)
+ · · ·+

I
∑

i=1

k
∑

j=1
Cq

m

(
Bm−q

1j D(i)2

j ∆Bq−1
ij

)
+ · · ·

+
I

∑
i=1

k
∑

j=1

(
∆Bm−1

ij D(i)2

j

)
.

(A4)

It is finally calculated by Formula (A1):

lim
∆Bij→0

∆T
∆Bij

=
I

∑
i=1

k

∑
j=1

C1
m

(
Bm−1

1j D(i)2

j

)
. (A5)

As can be seen from the expression of Formula (A5), in cluster 1, lim
∆Bij→0

∆T
∆Bij

exists, thus proving

that Formula (25) is continuously differentiable.
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