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Abstract: Detecting the location of performance anomalies in complex distributed systems is critical
to ensuring the effective operation of a system, in particular, if short-lived container deployments
are considered, adding challenges to anomaly detection and localization. In this paper, we present
a framework for monitoring, detecting and localizing performance anomalies for container-based
clusters using the hierarchical hidden Markov model (HHMM). The model aims at detecting and
localizing the root cause of anomalies at runtime in order to maximize the system availability and
performance. The model detects response time variations in containers and their hosting cluster
nodes based on their resource utilization and tracks the root causes of variations. To evaluate
the proposed framework, experiments were conducted for container orchestration, with different
performance metrics being used. The results show that HHMMs are able to accurately detect and
localize performance anomalies in a timely fashion.

Keywords: anomaly detection; anomaly identification; anomaly injection; cloud; containers; cluster;
hierarchical hidden Markov model

1. Introduction

Many distributed software systems, such as clouds, allow applications to be deployed and
managed through third-party organizations in order to provide shared, dynamically managed
resources and services [1]. Understanding the behaviour of such systems is difficult as it often
requires to observe larger numbers of components such as nodes and containers over longer periods
of time. Due to the distributed nature, heterogeneity, and scale of many container deployments,
performance anomalies may be experienced leading to system performance degradation and potential
application failures. A performance anomaly arises when a resource behaviour (e.g., CPU utilization,
memory usage) deviates from its expectation. Such a performance anomaly is difficult to detect
because normal performance behaviours are not always established. An unsolved aspect for
resource management for containers is that applications running in containers are not aware of
their resource limits. Thus, if an application attempts to automatically configure itself by allocating
resources based on the total node resources available, it may over-allocate when running in a
resource-constrained container.

In particular, with the recent attention that microservice architectures have received [2,3],
their dynamic management is of particular importance [4,5].

There are many studies regarding detecting anomalies in cloud and edge computing contexts [6,7],
and specifically in containerized environments [8–10]. Some studies looked at detecting an anomaly’s
root cause in clouds at a virtual machine [7,11] or network level [12]. Detecting and localizing anomalies
in clustered container deployments [13] is still recognized as a research gap [8,14].
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We develop a mechanism that identifies the symptoms of an anomaly if its performance differs
from the expected behaviour. We identify anomalous performance once it generates unpredictable
time-varying workload, which puts strains on different resources (e.g., CPU or memory) at different
times. In order to detect anomalous behaviour and to find its root cause in such an environment,
there are two main challenges: (1) What metrics should be monitored? (2) How to accurately detect
and identify the anomalous behaviour in a container-based cluster? Metrics are collected from the
monitored resources of the system components at different abstraction levels [15]: (1) Resource
Utilization as the proportion of the resources in use (CPU, Memory) to the total number of resources
provided per time unit; (2) Response Time as the time taken by a request until the arrival of the
response; (3) Throughput as the average number of requests per second processed by one instance.

In order to understand an observed performance degradation, we introduce a framework for
detecting and localizing performance anomalies in container clusters. A performance anomaly
indicates a deviation from its normal behaviour in a component’s workload. To detect an anomaly and
to localize its root cause, we use a hierarchical hidden Markov model (HHMM) [16], which is a doubly
stochastic process model used for modeling hierarchical structures of data at multiple length/time
scales. The framework consists of two phases. Detection detects workload behaviour of components
based on their observed response time and resource utilization. Identification identifies the cause of
a detected anomalous behaviour on multiple paths, where a path is defined as a link between two
components (e.g., container and node). Once an anomaly is detected, identification follows. In both
phases HHMMs are applied to detect anomalous behaviour, localize the root cause that is responsible
for the observed anomaly, and determine the dispersal of the anomaly within the system.

The evaluation of the proposed framework is based on analyzing datasets extracted from multiple
container systems. Our experiments show that once HHMM is configured properly, they can detect
anomalous behaviour and identify its root-cause with more than 94.3% accuracy.

The paper is organized as follows. An overview of the literature is presented in Section 2.
An introduction to the HHMM is given in Section 3. The proposed framework is introduced in
Section 4. An evaluation to assess the proposed framework is presented in Section 5. We conclude in
Section 6.

2. Related Work

This section presents a review of the models for detecting and localizing anomalies in distributed
environments in general and specific using the HHMM.

Du et al. [8] use different machine learning techniques to detect anomalous behaviour for
microservices with container deployment. Dullmann [10] provides an online performance anomaly
detection approach that detects anomalies in performance data based on discrete time series analysis.
Sorkunlu et al. [17] identify system performance anomalies through analyzing the correlations in the
resource usage data. Wang et al. [9] model the correlation between workload and resource utilization
of applications to characterize the system status. Alcaraz et al. [7] detect anomalous behaviour
in virtual networks using the Random Forest algorithm. The authors evaluate their approach by
injecting anomalies and generating workload that affect the CPU and memory. In [18], the authors
detect anomalous behaviour in cloud applications using the Principal Component Analysis (PCA).
In [19], the authors use crosscutting concern (Aspect-Oriented Programming AOP), to detect anomalies
in web applications under different workloads based on measuring CPU, memory, network and
disk. Kozhirbayev et al. [20] study the performance of container platforms running on top of IaaS.
The authors compare the performance of the Docker, the Flockport (LXC) with their VM environment
in different types of workloads. They made a comparison to explore the performance of CPU,
memory and disk with different benchmarks. The results are based on the metrics measured by
the benchmarking tools.

Peiris et al. [21] analyze the root causes of performance anomalies of CPU usage by combining
the correlation and comparative analysis techniques in distributed environments. The work in [11]
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analyzes workload to detect performance anomalies and categorizes performance anomalies into
three layers: (1) symptoms, externally visible indicators of a performance problem, (2) manifestation,
internal performance indicators or evidences, and (3) root causes, physical factors whose removal
eliminates the manifestations and symptoms of a performance incident.

Moreover, HMMs and its derivations are used to detect anomalies. In [22], HMM techniques
are used for the detection of anomalies and intrusions in a network. In [23], the author detects faults
in real-time embedded systems using a HMM through describing the healthy and faulty states of
a system’s hardware components. In [24], a HMM is used to find which anomaly is part of the
same anomaly injection scenario. In [25,26], we define a HMM-compliant controller architecture for
basic anomaly detection and also address self-healing, but in this paper we give more details about
the work for container-oriented detection and identification using HHMM to be able to trace the
anomaly behaviour.

To move beyond these works, our framework focuses on detecting and identifying anomalous
behaviour in container clusters. We use the response time and resource utilization (CPU and memory)
measurements of components to construct an HHMM. The HHMM observes the response time
variation of nodes and containers and relates it to the workload, which is hidden from the observer.
We adopt the HHMM to study behaviour in such environments and to reflect the structure of our
system. This extends earlier work [27] towards identification and root cause analysis that here builds
on the more generic Hierarchical Hidden Markov Models (HHMM) as the formal model compared to
the earlier HMMs used, thus allowing better root cause analysis in layered (hierarchical) architectures.

3. Hierarchical Hidden Markov Model (HHMM) for Anomaly Detection in Container Clusters

HHMMs are a generalization of the hidden Markov model approach (HMM) that is designed to
model domains with hierarchical structure [16].

3.1. HHMM Basic Structure and Definition

The HMM emit symbols in the process states they are in. HHMMs do not emit observable
symbols directly as they are constructed by one root state composed of a sequence of substates [16].
Each substate may consist of another substates and generates sequences by recursive activation.
The process of recursive activations stops when it reaches a production state. The production state is
the only state that emits output symbols like a HMM. The other states that emit substates instead of
output symbols are called internal states or abstract states. The process that an internal state activates
a substate is termed a vertical transition, while a state transition at the same level is called a horizontal
transition. When a vertical transition is completed, the state which started the recursive action will get
the control and then perform a horizontal transition.

A HHMM is identified by HHMM = < λ, ϕ, π >, where λ is a set of parameters consisting
of state transition probability A; observation probability distribution B; the state space SP at each
level, and the hierarchical parent-child relationship qd

i , qd+1
i ; Σ consists of all possible observations

O. ϕ consists of horizontal ζ and vertical χ transitions between states qd (d specifies the number of
hierarchical levels). π is the initial transition for the states qd. Importantly, the states in the HHMM are
hidden from the observer and only the observation space is visible.

There are three problems that the HHMM needs to address [16]:

• Calculating the likelihood of a sequence of observations: given a HHMM and its parameter set, find the
probability of a sequence of observations to be generated by the model. The first problem can be
used to determine which of the trained model is most likely when a training observation sequence
is given. In our performance analysis case of containerized-cluster environment, given the
previous observations of the containers, the model detects the anomalous behaviour. To achieve
this step, the model is designed to adjust and optimize its parameters.

• Finding the most probable state sequence: given the HHMM, its parameter set, and an observation
sequence, find the state sequence that is most likely to generate the observation (finding out the
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hidden path of anomalous observation). In our case, we apply the model to track the sequence of
anomalous behaviour in the system. At this problem, number of different observations should be
applied to the model to refine its parameters. At this stage, we use the Viterbi algorithm.

• Estimating the parameters of a model: given the structure of the HHMM and its observation
sequences, find the most probable parameter set of the model. The third problem deals with the
model training. In our case, once the model has been thoroughly optimized, we train the model
with historical and runtime data to perform detection and tracking enhancement. The Baum-Welch
algorithm is used to train the model.

To achieve that, the model must be able to: (1) efficiently analyze large amounts of data to detect
potential anomalous observation in a containerized-cluster environment; (2) identify the root-cause of
the captured anomaly; and (3) report the identified anomaly along with its path.

3.2. Customizing HHMM for Anomaly Detection in Container Clusters

In our case, the system in question is hierarchical, composed of nodes. A node consists of one
or more containers. Each container has an application that runs on it. Containers may communicate
within the same node or externally. Thus, we apply the HHMM to describe the behaviours of such
hierarchical systems. Our HHMM is composed of:

• Cluster: which is the root state in the model. It is responsible for controlling nodes and containers,
which are the states. A cluster consists of at least two nodes and multiple containers.

• Nodes, i.e., resources that offer capacity to its containers such as Memory and CPU. The main job
of the node is to perform requests to its underlying substates, which are the containers in our case.
The system may contain one or multiple nodes belongs to one cluster. In our HHMM, nodes are
substates, and they may be internal states, if they do not emit any observation. In case a node
emits an observation, it is considered a production state. In such situation, a production state
cannot have substates as it is considered a leaf in the hierarchy.

• Containers, i.e., lightweight virtualized execution units that can run an application in an isolated
environment. One or multiple containers can run on the same node and share its resources.
As specified in the node, a container is considered an internal state if it does not emit any
observation. Otherwise, it is considered a production state.

To meaningfully represent our system topology, we modify the HHMM annotations. As shown
in Figure 1, the q state is mapped to cluster with hierarchy index j = 1, the internal state qd that emits
substates is mapped to Ni.j to represent nodes, and the production state qd+1

i is mapped to Ci.j to
represent containers that emit observations. The i is the state index (horizontal level index), and j
is the hierarchy index (vertical level index). The observations O are associated to the response time
fluctuation RTOn that are emitted from containers or nodes. The node space SP contains set of nodes
and containers, e.g., N2.1 = {C3.1, C3.2}, N2.2, N2.3 = {C3.3, C3.4}.

Figure 1. Anomaly detection and localization based on HHMM.
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The HHMM vertically calls one of its substates such as N2.1, N2.2 or N2.3 with vertical transition χ.
Since N2.1 is an abstract state, it enters its child HMM substates C3.1 and C3.2. Since C3.2 is a production
state, it emits observations, and may make a horizontal transition ζ from C3.1 to C3.3. Once there
is no another transition, C3.2 transits to the End state, which ends the transition for this substate,
to return the control to the calling state N2.1. Once the control returns to the state N2.1, it makes a
horizontal transition (if possible) to state N2.2, which horizontally transits to state N2.3. State N2.3

has substates C3.3 that transits to C3.4, which may transit back to C3.3 or may transit to the End state.
Once all transitions under this node end, then the control returns to N2.3. State N2.3 may loop around,
transit back to N2.2, or enter its end state, which ends the whole process and returns control to the
cluster. The model can not horizontally transit unless it vertically transited. Furthermore, the internal
states do not need to have the same number of substates. It can be seen that N2.1 calls containers C3.1

and C3.2, while N2.2 has no substates. The edge direction indicates the dependency between states.
This type of hierarchical presentation easily aids in tracing the anomaly to a root cause.

Each state may have workload associated to CPU or memory utilization. Such workload can
be detected through observing the fluctuations in response time, which is emitted by the production
states ’container’ or some of the ’nodes’. Workload in a state not only affects the current state, but it
may affect other levels. However, container workload only affects the container itself. The horizontal
transition between containers reflects the request/reply between the client/server in our system under
test, and the vertical transition refers to the child/parent relationship between containers/nodes.

The HHMM is trained on response time over the hidden CPUs and memory resources assigned
to the components. A trained probabilistic model can be compared against the observed sequences
to detect anomalous behaviour. If the observed sequence and predicted sequence are similar, we can
conclude that we have a model learned on normal behaviour. In that case, the approach will declare
the status of the system ’Anomaly Free’ (no observed anomaly). Learning the model on normal
behaviour aids in estimating the probability of each observed sequence, given the previously observed
sequence. We call the sequence with the lowest estimated probabilities anomalous. In case of an
anomaly, the model traces to the root cause of anomaly and determines its type. At the end, the path
of the identified anomaly and the anomaly type is produced. The trained HHMMs are stored in the
“Basic Configuration” file to be used in the future. The model is trained on observations until parameter
convergence (A, B, ζ, χ, π become fixed). Since the HHMM parameters are trained during runtime on
continuously updated response times of components, we use the sliding window technique [28] to
read the observations with window size = 10–100 observations, which generates multiple windows
with different observations. The obtained observations are used to feed the HHMM.

4. An Anomaly Detection and Identification Framework

Our anomaly management framework consists of two main phases: detection and
identification [25]. The detection phase detects the existence of anomalies in system components.
The identification phase is responsible for processing the output of the detection phase in order
to track the cause of an anomaly and identify the anomaly type through observing variations in
the response time of components. Each phase is accompanied by the Monitor, Analysis, Plan,
and Execute-Knowledge (MAPE-K) control loop:

• Monitor: collects data about components and resources for later analysis. Data is gathered from
an agent that is installed on each node. We use the spearman rank correlation to capture the
existence of anomalous behaviour.

• Analysis: once data is collected, we built HHMMs for the system as shown in Figure 1 to provide
a high level of performance over the entire detection space. At this stage, a HHMM detects the
existence of anomalous behaviour.

• Plan and Execute: when the HHMM detects an anomaly, it tracks its path and identifies its type.
• Knowledge: a repository with different anomaly cases that occur at different levels. Such cases

are used by the plan and execute stage to aid in identifying the type of the detected anomaly.
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4.1. Anomaly Cases

Because of the transient nature and growing scale of containers, it is often difficult to track the
workload of individual containers. Thus, we also analyze the variation of response time for container
and node performance. We define different types of anomaly based on observing our system behaviour
(Figure 1) and exploring the common anomaly cases that are reported [6,29–31]. The following lists
different anomaly cases focusing on workload and response time [25,26]:

Case 1: Low Response Time Observed at Container Level

• Case 1.1 Container Overload (Self-Dependency): a container enters into a self-load loop because it is
heavily loaded with requests or has limited resources. This load results in low container response
time. This case may apply for one or multiple containers with no communication.

• Case 1.2 Container Sibling Overload (Inter-Container Dependency): an overloaded container may
indirectly affect other dependent containers at the same node. For example, C3.2 has an application
that almost consumes its whole resources. When it communicates with C3.1 and is overloaded,
then C3.1 will go into underload because C3.1 and C3.2 share resources of the same node.

• Case 1.3 Container Neighbour Overload (External Container Dependency): happens if one or more
communicating containers at different nodes are overloaded. For example, C3.2 shows low
response time once C3.3 is overloaded as C3.2 depends on C3.3, and C3.3 depends on C3.4 to
complete user requests. Thus, a longer response time occurs for those containers.

Case 2: Low Response Time Observed at Node Level

• Case 2.1 Node Overload (Self-dependency): node overload happens when a node has low capacity,
many jobs waiting to be processed, or network problems occur. For example, N2.1 has limited
capacity, which causes an overload at container level for C3.1 and C3.2.

• Case 2.2 Node Overload (Inter-Node Dependency):

an overloaded node may indirectly affect other nodes in the same cluster. This may cause low
response time observed at node level, which slows the whole operation of a cluster because of
the communication between the two nodes assuming that N2.1 and N2.2 share the resource of
the same cluster ’physical server’. Thus, when N2.1 shows a heavier load, it would affect the
performance of N2.2.

There are different anomalies that may lead to these different cases, such as infrastructure
issues (e.g., service down), hardware issues (e.g., CPU, memory or disk down), kernel issues
(e.g., kernel deadlock, corrupted file system), container runtime issues (e.g., unresponsive runtime),
file configuration issues, or change in cluster management tool versions. We can observe from these
cases that there are two types of anomaly propagation, at node level (N2.1 → N2.2), which happens
due to the collocation relationship between different nodes, and at container level, which occurs due
to application calls at different nodes (N2.1 → N2.2 → N2.3) .

To simplify the anomaly identification, we focus on hardware and runtime issues and we assume
that not all nodes will go down at the same time. We assume to have prior knowledge regarding:
(1) the dependency between containers and nodes; (2) response time, memory utilization and CPU
utilization for containers and nodes.

4.2. Anomaly Detection and Identification Mechanism

4.2.1. Anomaly Monitoring

In order to detect anomalous behaviour, data is collected from the “Managed Component
Pool”. Each node in the pool has an installed agent that is responsible for exposing log files of
containers and nodes to the Real-Time/Historical Data storage component. The metrics include
information about the resources of components at container/node level such as CPU utilization,
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memory usage, response time, number of available running container, number of nodes, and container
application throughput. The aim from collecting data is capturing the system status to study its
resource consumption to be able to assess the overall performance of the system.

Before building the HHMM, we check if there is a performance variation at container/node
level and we verify if it is a symptom of an anomaly. Thus, we use the Spearman’s rank correlation
coefficient to estimate the dissociation between different numbers of user requests and the collected
parameters from the monitored metrics. If there is a decrease in the correlation degree, then the metric
is not associated with the increasing number of requests, which means that the observed variation in
performance is not an anomaly, but may relate to system maintenance. In case the correlation degree
increases, this refers to the existence of anomalies occurring as the impact of dissociation between the
number of user requests and the monitored metric exceeding a certain value. Algorithm 1 defines a
threshold to signal an anomaly occurrence. The degree of dissociation (DD = 60 for CPU utilization;
DD = 20 for memory utilization) can be used as an indicator for performance degradation.

Algorithm 1 Check Performance Degradation

1: Initialization:
UR : array to store user requests in a given interval

M : array to store metric parameters in a given interval

SC : variable to store the value of spearman correlation

DD : variable to store the degree of dissociation
2: Input:

I : array to store interval in minutes

3: Begin
4: UR← getUserRequests(I);
5: x ← 0;
6: while (UR[x] 6= null) do
7: M← getMetricParam(I, UR[x]);
8: x ++;
9: end while

10: SC ← calcSC(UR, M);
11: DD ← getvariance(SC, I);
12: End
13: Output:

return DD

Line 1 initializes the parameters. Line 2 defines the interval as a time window in which the user
requests occur. Lines 4–9 loop to retrieve user requests (line 4) from the repository for all containers
that run the same application in a specific interval. The monitored metrics for the same containers and
their nodes are retrieved for the user requests (line 7). Line 10 calculates the spearman correlation for
the user requests and the measured metric as shown in Equation (1). The URi refers to the ranks of the
UR, and the UR is the mean ranks of the number of user requests processed in an interval. The Mi
refers to the ranks of the monitored metric values (i.e., the sequence of the accumulated response time
per user transaction). M is the mean rank. The result of SC can be interpreted as in [32]: [0.70, 1.0]
which stands for a strong correlation, [0.40, 0.69] which stands for a medium correlation, between [0.0,
0.39] there is no correlation. Line 11 calculates the variance by measuring the difference between
the current interval and the highest old one for both the monitored metric and the user requests.
The product for the estimated variance to obtain one threshold is calculated. Equation (2) shows the
AvgMp which is the average of the monitored metric (e.g., response time). The PSM is the previous
value of the monitored metric in a given interval. The NSM is the new value of the monitored metric
in a given interval. The PSUR is the previous value of the user requests (e.g., user interaction) in a
given interval. The NSUR is the new value of the user requests in a given interval. n is the number of
periods in a given interval (e.g., an interval is made up of 10 periods, each period is 5 min). The SCMAX
is the maximum value of the SC, which is calculated through subtracting the SC observed in a current



Electronics 2020, 9, 64 8 of 24

interval from the maximum value of the previous interval SCMAX as shown in (3). Line 12 returns the
threshold (DD) as an indicator for anomaly occurrence for the chosen metric as shown in (4).

SC =
∑n

i=1((URi −UR)(Mi −M))√
(∑n

i=1(URi −UR)2)(∑n
i=1(Mi −M)2)

(1)

Variance 1 = AvgMp = PSM− (PSM ∗ (1/n) + NSM)/PSUR− (PSUR ∗ (1/n) + NSUR) (2)

Variance 2 = SC− SCMAX (3)

DD =
√
(Variance 1−Variance 2)2 (4)

4.2.2. Anomaly Detection and Identification: Analysis and Execute

We build HHMMs to detect and identify anomalies [25], Figure 2.

Figure 2. Anomaly detection-identification framework.

An algorithm to detect and identify anomalous behaviour is shown in Algorithm 2. Line 1
initializes the parameters. Line 2 represents the inputs for the algorithm. Lines 4–18 represent the
initialization and training of the HHMM using the Generalized Baum-Welch algorithm [16] to train the
HHMM by calculating the probabilities of the model parameters. The output of Baum-Welch is used
in the identification step. In lines 19–21, the Viterbi algorithm is used to find the path of the detected
anomalous states. At this step, we obtained the states, probabilities, and state sequence. Once we
obtain the anomalous states, we list the states chronologically to locate the state that shows the first
presence of the anomaly. For each state, we know the time of its activation, its last activated substate,
and the time at which the control returned to the calling state. By the end of that step, we obtain a
matrix that contains the anomalous states, their scope, probability and transitions. Lines 22–41 iterate
over the result in order to check the anomaly case. The algorithm finishes by returning the anomaly
case and the path of the anomalous state.
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Algorithm 2 Detection-Identification Algorithm

1: Initialization:
Mst : create adjacency matrix to store state probabilities

Vem : create vector to store state emission sequence

Mem : adjacency matrix stores emission probabilities

W : adjacency matrix to store anomalous components, vertical and horizontal

transitions, probability, scope
2: Input:

MIN : Model Iteration Number, initialize = 0

PMIN : Probability of HHMM at iteration MIN

Nrc : Number of nodes, Nrc = {N2.1, · · · , N2.n}, r = horizontal level (row), c = vertical

level (column)

Crc : Number of containers, Crc = {C3.1, · · · , C3.n}, r = horizontal level, c = vertical

level
3: Begin
4: Initialize HHMM:
5: if (MIN ← 0) then
6: initialize HHMM parameters;
7: else
8: initialize HHMM parameters with the last updated values;
9: end if

10: Training HHMM
11: Detection
12: do
13: Run(); . run Baum-Welch algorithm
14: Update(); . update all Baum-Welch parameters
15: Store(); . sotre updated values in Mst, Vem, Mem
16: MIN ++; . increase the model iteration number
17: while (PMIN ≥ PMIN−1)
18: Update(Mst, Mem);
19: Identification
20: W ← LocateRootCause(Mst, Vem, Mem, Nrc, Crc);
21: W ← getMinValue(W);
22: for each r in W[r][c] do
23: for each c in W[r][c] do
24: if (Vtran← f alse AND scope← ”C” AND Htran← true) then
25: case← Container Sibling Overloaded (Inter Container Dependency);
26: else if (Vtran← f alse AND scope← ”C” AND Htran← f alse) then
27: case← Container Overloaded (Self-Dependency);
28: else if (Vtran← true AND scope← ”C” AND Htran← true) then
29: case← Container Neighbor Overloaded (External Container Dependency);
30: else if (Vtran← f alse AND scope← ”N” AND Htran← true) then
31: case← Inter Node Dependency;
32: else
33: case← Node Overload (Self-dependency);
34: end if
35: c ++; . increment c
36: end for
37: sotrePath();
38: r ++; . increment r
39: end for
40: End
41: Output:

case, path
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5. Evaluation

We can monitor, detect and localize anomalous workload in nodes and containers by considering
different performance measurements such as CPU, memory, and throughput metrics. Thus, to assess
the effectiveness of our solution, we investigate different anomaly scenarios using the TPC-W
(http://www.tpc.org/tpcw/), an industry-standard benchmark, and apply the HHMM to detect
and identify the injected anomalies. In this section, we first introduce the experimental setup and
the chosen benchmark in Section 5.1. Then, in Section 5.2, we explain the anomaly injection and
workload settings developed and selected for the experiments. In Section 5.3, we apply the framework
to detect and identify anomalies. Section 5.4 compares our framework with other common anomaly
management solutions. In order to avoid threats to the validity of the work, we also consider the effect
of other monitoring tools as critical components on the results in Section 5.5.

5.1. Experimental Set-Up

The TPC-W benchmark is used for resource provisioning, scalability and capacity planning
for e-commerce websites. The TPC-W emulates an online bookstore that consists of 3 tiers: client
application, web server, and database. The experiment platform is composed of several VMs. Each tier
is installed on a VM. We do not consider the database tier in the anomaly detection and identification
as a powerful VM should be dedicated to the database. The web server is emulated using a client
application which simulates a number of user requests that is increased iteratively. The experiment
environment consists of 3 nodes N2.1, N2.2, N2.3, each equipped with containers. As shown in Figure 2,
N2.1 is the TPC-W client application, N2.2 holds the TPC-W database, and N2.3 the TPC-W server.

Each VM is equipped with Linux OS (Ubuntu 18.04.3 LTS x64), 3 VCPU, 2 GB VRAM, Xen 4.11
(https://xenproject.org/). The virtual experiment is run on a PC equipped with Intel i5 2.7GHz,
Ubuntu 18.04.3 LTS x64, 8 GB RAM and 1 TB storage. The VMs are connected through a 100 Mbps
network. The SignalFX Smart Agent (https://www.signalfx.com/) monitoring tool is used to observe
the runtime performance of components and their resources. The agent is deployed on each VM to
collect and store performance metrics of the system under test. The experiments focus on CPU and
memory utilization metrics, which are gathered from the web server. The Response time is measured
at the client’s end. We further use docker stats command to obtain a live data stream for running
containers, mpstat to know the CPU utilization rate, and vmstat to collect information about memory
usage. Table 1 shows the monitoring metrics collected.

Table 1. Monitoring metrics.

Metric Name Description

CPU Usage CPU utilization for each container and node
CPU Request CPU request in millicores
Resource Saturation The amount of work a CPU/memory cannot serve and waiting in queue
Memory Usage Occupied memory of the container
Memory Request Memory request in bytes
Node CPU Capacity Total CPU capacity of cluster nodes
Node Memory Capacity Total memory capacity of cluster nodes

There are 1511 records in the generated datasets: 650 records in dataset ‘A’ from VM1 and
861 records in dataset ‘B’ from VM3. For each of the datasets, 50% of the records are used as a training
set to train the model, and the rest are used as a test set to validate the model. The TPC-W benchmark
is running on containers. The number of the replica of containers is set to two. The performance
data of the benchmark is gathered from all the containers that ran this benchmark and their hosting
nodes. The collected data is used to train the HHMM model to detect and identify the anomalies in
containers and nodes. The experiment is repeated 10 times, and the model training lasts 150 min for

http://www.tpc.org/tpcw/
https://xenproject.org/
https://www.signalfx.com/
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all the experiments with results varying according to the number of states. Tables 2 and 3 show the
physical system properties and the virtualized environment settings under observation.

To obtain historical data, the TPC-W is run for 300 min. The data used for simulation is created by
a workload generator active at different times. The workload of each container is similar. The workload
is generated by the TPC-W client application. The TPC-W contains its own workload generator (RBE)
that emulates the behaviour of end-users, and reports metrics such as the response time and throughput
of the server. We create a workload that runs for 49 min. Since the workload is always described
by the access behaviour, the container is gradually loaded with [30–100,000] emulated user requests.
The number of emulated user requests is changed periodically.

Table 2. Hardware and software specification used in the experiment.

Components Settings

CPU 2.7GH_z Intel Cores i5
Disk Space 1TB
Memory 8 GB DDR3
Operating System MacOS
Application R
Dataset TPC-W benchmark

Table 3. Configuration of cluster nodes and container.

Components Settings

Number of Nodes 3
Container no. 4
Number of CPUs 3
HD 512 GB
RAM 2 GB
Guest OS Linux
Orchestration Tool Docker and Kubernetes

We use the Heapster (https://github.com/kubernetes-retired/heapster) to group the collected
data and store them in the time series database the InfluxDB (https://www.influxdata.com/).
The gathered data from the monitoring tool and from datasets are stored in “Real-Time/Historical
Data” storage to allow for the future anomaly detection and identification. We use Grafana
(https://grafana.com/grafana/testimonials/) and the Datadog (https://www.datadoghq.com/) to
support online data gathering. As output format for the collected data, we use CSV files to read and
write data that is used to feed offline experimental data.

5.2. Anomaly Injection and Workload Contention Scenarios

To create pressure on the system and generate different workloads, the following shows the
anomaly injection approach and the workloads that are applied at different system levels.

5.2.1. Resource Exhaustion

For simulating realistic anomalies in the system, a script is written to inject different types of
anomalies into the target system, shown in Algorithms 3 and 4. The anomalies types (CPU Hog and
Memory Leak) are taken from real-world scenarios [8,9,33].

https://github.com/kubernetes-retired/heapster
https://www.influxdata.com/
https://grafana.com/grafana/testimonials/
https://www.datadoghq.com/
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Algorithm 3 Anomaly Injection Algorithm at Container Level
1: Input:

N : List of nodes Nk.w, where Nk.w ∈ N

C : List of containers Ci.j, where Ci.j ∈ C

A : List of anomalies Ay, where Ay ∈ A

Aip : Anomaly Injection Period

PT : Pause time
2: Begin
3: for each Nk.w ∈ N do
4: for each Ci.j ∈ C do
5: for each Ay ∈ A do
6: InjectAnomaly(Ay, Ci.j, Aip);
7: Sleep(PT);
8: end for
9: end for

10: end for
11: End
12: Output:

CPUHog, MemoryLeak at Ci.j

Algorithm 4 Anomaly Injection Algorithm at Node Level
1: Input:

N : List of nodes Nk.w, where Nk.w ∈ N

C : List of containers Ci.j, where Ci.j ∈ C

A : List of anomalies Ay, where Ay ∈ A

Aip : Anomaly Injection Period

PT : Pause time
2: Begin
3: for each Nk.w ∈ N do
4: for each Ay ∈ A do
5: InjectAnomaly(Ay, Nk.w, Aip);
6: Sleep(PT);
7: end for
8: end for
9: End

10: Output:
CPUHog, MemoryLeak at Ci.j, Nk.w

CPU Hog: A CPU hog can be due to an unplanned increase in user requests. It causes anomalous
behaviour in a component, e.g., component not responding fast enough or hanging under heavy load.
The CPU injection happens at different containers levels C3.1, C3.2, C3.3, C3.4 and at node level N2.1, N2.3.
We do not consider N2.2 as it is representing the database.

Memory Leak: Here, the usage of memory available in the component is increased over a relatively
short period of time. If all the memory is consumed, then the framework will declare the status of a
component as anomalous. The memory injection happens at C3.1, C3.2, C3.3, C3.4, N2.1, N2.3.



Electronics 2020, 9, 64 13 of 24

5.2.2. Workload Contention

Workload contention occurs when an application imposes heavy workload on system resources,
which results in performance degradation. Workload contention might occur due to limited resources
or increasing the number of requests. In this experiment, the workload contention is applied at
container level. Table 4 shows the configuration parameters that are used to create different workload
contentions. Table 5 summarizes the types of anomaly injections and workload generation.

Table 4. Workload configuration parameters.

Parameter Name Description Value

EB Emulate a client by sending and receiving requests rbe.EBTPCW1Factory
CUST Generate random number of customers 15,000
Ramp-up Time between sending requests 600 s
ITEM Number of items in database 100,000
Number of Requests Number of requests generated per second 30–100,000 request/s

Table 5. Injected anomalies.

Resource Fault Type Fault Description Injection Operation

CPU CPU hog Consume all CPU cycles for a container Employing infinite loops that consumes
all CPU cycle

Memory Memory
leak Exhausts a container memory Injected anomalies to utilize all

memory capacity

Workload Workload
Contention

Generate increasing number of requests
that saturate the component resources

Emulate user requests using Remote
Browser Emulators in TPC-W benchmark

5.3. Detection and Identification of Anomaly Scenarios

Training a model to detect and identify anomalies requires training data. However, the availability
of such data is limited due to the rarity of anomaly occurrences and the complex manual training
process. Consequently, extreme resource contention situations are generated, and different types
of anomalies are injected to work with more realistic scenarios for the experiments, and to collect
performance data for different system conditions to assess the anomaly detection and identification.

The anomalies are simulated using the stress (https://linux.die.net/man/1/stress) tool, which is
used to conduct pressure tests. In each experiment, one type of anomaly is injected. The anomaly
injection varies slightly depending on the anomaly type. The anomaly injection for each component
lasts 2 min. For each anomaly, the experiment is repeated 10 times. The injection period is changed
from one experiment to another. After the injection, datasets with various types of anomalies from
different containers and nodes are created. Such datasets are used to assess the anomaly detection and
identification performance of the proposed framework. Once the datasets are generated, the HHMM
model is retrained on anomalous data. The result of the model is used for the validation.

To address the anomaly cases from Section 4, the injection is done in two steps: at system level
and for each component at a time. Thus, the injection start and end times differ from one component to
another. The following discusses detection and identification of injected anomalies at different levels.

5.3.1. System-Level Injection

The anomaly is injected at N2.1 and N2.3. For the CPU hog, the injection begins at time interval
550 (1 interval = 5 s) for N2.1 and interval 850 for N2.3. The dissociation degree shows an anomaly as
the CPU performance exceeds the threshold (DD = 60). After training the HHMM, the model detects
the anomalous behaviour for N2.1 at the 630 interval time, and for N2.3 at 950 as shown in Figure 3.

https://linux.die.net/man/1/stress
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Figure 3. CPU hog detection using HHMM fo the whole system.

The same situation applies for the memory leak. The injection begins at intervals 700 and 850 for
N2.1 and N2.3, respectively. As depicted in Figure 4, the model detects the anomalous behaviour for
N2.1 and N2.3 at intervals 760 and 920.

Figure 4. Memory leak detection using HHMM for the whole system.

The injection of anomalies at node level affects container that are connected to the anomalous
node. To identify the anomalous path, and to return the anomaly type, the model determines
paths of anomalous behaviour and returns the paths of the most likely anomalous sequence ordered
chronologically based on which one showed anomalous behaviour first. Once we obtain the path,
the algorithm checks the anomaly cases and selects the matching one as shown in Algorithm 2.

5.3.2. Component-Level Injection

The anomalies were injected for each component in the system. Figures 5 and 6 show the injection
period for each component for CPU hog and memory leak anomalies.
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Figure 5. CPU hog detection using HHMM for components.

Figure 6. Memory leak detection using HHMM for components.
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Tables 6 and 7 show the anomaly trigger and detection times for each anomaly type at each
component. The components are ordered chronologically based on their detection time. The tables
show that there are different time intervals between anomaly injection and detection for each
component. As shown in the tables, C3.1 is the first container detected by the model for both the
CPU hog and memory leak. Hence, we inject one component at a time. The reason behind the variation
of the detection period relates to the divergence in the injection time of anomalies. Once the anomaly
is detected, we localize its root cause. C3.1 is the first container detected and identified by the model
for both the CPU hog and memory leak.

For the workload, we generate 100,000 requests at container level. To model the correlation
between the workload and container performance/resource utilization metrics, we estimate
Spearman’s Ranked Correlation between the number of emulated user requests waiting in queue
and the collected parameters from the monitored metrics to verify if such performance variation is
associated with the emulated user requests. As shown in Figure 7 (left), the throughput increases when
the number of requests increases, then it remains constant. This means that the utilization of CPU
and memory reached a bottleneck at 100% and 89% with the increasing number of user requests that
reached 4500 and 105,00 req/s, respectively. On the other hand, the response time keeps increasing
with the increasing number of requests as shown in Figure 7 (right). The results demonstrate that
dynamic workload has a strong impact on the container metrics as the monitored container is unable
to process more than those requests.

Table 6. CPU hog detection using HHMM.

Components Injection Time (Interval) Detection Time (Interval) Detection Period (Interval)

C3.1 100 140 40
C3.2 250 340 90
C3.3 400 460 60
C3.4 550 620 70
N2.1 700 760 60
N2.3 850 950 100

Table 7. Memory leak detection using HHMM.

Components Injection Time (Interval) Detection Time (Interval) Detection Period (Interval)

C3.1 100 140 40
C3.2 250 320 70
C3.3 400 490 90
C3.4 550 650 100
N2.1 700 760 60
N2.3 850 950 100

Figure 7. Workload–throughput (left) and response time (right) over No. of user requests.

We notice that a linear relationship between the number of user requests and resource utilization
before resource contention in each user transaction behaviour pattern. We calculate the correlation
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between the monitored metric and the number of user requests. We obtain a strong correlation of
0.4202 between the two variables, which confirms that the number of requests influences performance.

5.4. A Comparative Evaluation of Anomaly Detection and Identification

We evaluate the HHMM detection and identification in comparison to other approaches.

5.4.1. The Assessment of Anomaly Detection

The model performance is compared against other anomaly detection techniques like the dynamic
bayesian network (DBN) and the hierarchical temporal memory (HTM). To evaluate the effectiveness
of anomaly detection, five common measures [34] in anomaly detection are used:

• Precision is the ratio of correctly detected anomaly to the sum of correctly and incorrectly detected
anomalies. High precision indicates the model correctly detects anomalous behaviour.

Precision =
No. o f success f ul detections

No. o f total alarms
(5)

• Recall measures the completeness of correctly detected anomalies to the total number of
detected anomalies that are actually defective. Higher recall indicates that fewer anomaly cases
are undetected.

Recall =
No. o f success f ul detections

No. o f total anomalies
(6)

• F1-score measures the detection accuracy. It considers both precision and recall of the detection to
compute the F1-score with values from [0–1]. The higher the value, the better the result.

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

• False Alarm Rate (FAR) is the number of normal components, which have been detected as
anomalous (values in [0–1]). A lower FAR value indicates the model effectively detects anomalies.

FAR =
FP

TN + FP
(8)

The True Positive (TP) means the detection/identification of anomalies is correct. Similarly,
False Positive (FP) means the detection/identification of anomalies is incorrect as the model
detects/identifies the normal behaviour as anomalous. False Negative (FN) means the model cannot
detect/identify some anomalies, and thus does not produce the correct detection/identification as
it interprets the anomaly behaviour as normal behaviour. True Negative (TN) means the model can
correctly detect and identify normal behaviour as normal.

The model is trained on the datasets in Table 8. The HHMM, the DBN and the HTM are trained on
3 nodes that are needed to deploy the TPC-W benchmark. The results show that both the HHMM and
the HTM achieve good results on datasets A and B. While the results of the DBN worsened on dataset
B and C, it gave satisfying results on dataset A. For dataset C, the algorithm performance significantly
decreased. The results show that the HHMM and the HTM model detect anomalous behaviour with
good results compared to the DBN on small and moderate datasets.
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Table 8. Validation results of three datasets.

Datasets Metrics HHMM DBN HTM

A = 650

Precision 0.95 0.94 0.95
Recall 0.96 0.96 0.95
F1-score 0.95 0.95 0.95
FAR 0.19 0.21 0.28

B = 861

Precision 0.96 0.91 0.95
Recall 0.94 0.84 0.91
F1-score 0.95 0.87 0.93
FAR 0.27 0.46 0.31

C = 1511

Precision 0.87 0.64 0.87
Recall 0.93 0.83 0.94
F1-score 0.90 0.72 0.90
FAR 0.31 0.47 0.33

Moreover, we train the models on different numbers of nodes with anomaly observation sequences
of length 100. We inject one type of anomaly (e.g., CPU hog). Here, we run one iteration for each
model. As shown in Figure 8, the training time for the HHMM, the DBN and the HTM are increased
as we increase the number of nodes for training the models. For example, with one node, the training
time for the HHMM is 32 s, for DBN is 47 s, and for HTM is 38 s. With 4 nodes, the training time for
the HHMM, the DBN and the HTM increase to 91, 105 and 101 s respectively. However, the training
time slightly increases with 5, 6 and 7 nodes. For each node, we measure the accuracy of the detection
as shown in Figure 9. The accuracy achieved in the HHMM is 95%, whereas for the DBN and the HTM,
the accuracy increased to 89% and 90% respectively.

Figure 8. Comparative training time of HHMM, DBN and HTM.

Figure 9. Comparative detection accuracy of HHMM, DBN and HTM.



Electronics 2020, 9, 64 19 of 24

5.4.2. The Assessment of Anomaly Identification

In order to identify the location and reason of anomalous behaviour, different anomalies are
injected one at a time at different system levels. Also, various workloads with different configurations
are generated at container level. The performance data of the components under test differ from one
experiment to another. Consequently, we use the Euclidean distance to measure the similarity between
the sequences generated from the components. The component with the furthest distance from others
is considered anomalous. We consider the anomaly root cause identification successful if any of
the injected anomalies is related to the same resource (e.g., CPU, memory) as the injected anomaly.
Otherwise, we consider the anomaly root-cause identification a failure, if the value of Accuracy of
Identification (AI) is high.

• Accuracy of Identification (AI): measures the completeness of the correctly identified anomalies
with respect to the total number of anomalies in a given dataset. The higher the value, the more
correct the identification made by the model.

• Number of Correctly Identified Anomaly (CIA): It is the percentage of correct identified anomalies
(NCIA) out of the total set of identifications, which is the number of correct Identification (NCIA)
+ the number of incorrect Identifications (NICI)). A higher value indicates the model is correctly
identified anomalous component.

CIA =
NCIA

NCIA + NICI
(9)

• Number of Incorrectly Identified Anomaly (IIA): is the percentage of identified components that
represent an anomaly, but are misidentified as normal by the model. A lower value indicates that
the model correctly identified anomalous components.

I IA =
FN

FN + TP
(10)

• False Alarm Rate (FAR): is the number of normal identified components, which have been
misclassified as anomalous by the model.

FAR =
FP

TN + FP
(11)

As shown in Table 9, the HHMM and the HTM achieve promising results for the identification of
anomaly, while the result of the DBN for the CIA decreased with approximately 7% compared to the
HHMM and 6% to the HTM. Both the HHMM and the HTM show higher identification accuracy as
they are able to identify temporal anomalies in the dataset. The result confirms that the HHMM is able
to link observed failure to its hidden workload.

Table 9. Assessment of identification.

Metrics HHMM DBN HTM

AI 0.94 0.84 0.94
CIA 94.73% 87.67% 93.94%
IIA 4.56% 12.33% 6.07%
FAR 0.12 0.26 0.17

We also compare the accuracy of each algorithm in correctly identifying the root cause with
the number of samples (the number of detected anomalies in a dataset). As shown in Figure 10,
the root cause is identified correctly by the HHMM with an accuracy of around 98%. The HHMM
gives satisfying results on different samples. For the HTM, its accuracy fluctuates with the increasing
numbers of samples, reaching 97% with 100 samples. It should be noted that the HHMM achieves
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optimal results with 90 and 100 samples, while the DBN and the HTM achieve optimal results with
70–90 and 90 samples only, respectively.

Figure 10. Accuracy of anomaly root cause identification.

5.5. Comparison with Other Monitoring Tools

In order to further validate the model, we conduct another experiment, shown in Table 10,
by comparing the HHMM detection and identification with the Zabbix (https://www.zabbix.com/)
and the Dynatrace (https://www.dynatrace.com/) monitoring tools to avoid threats to validity arising
from the tool selection. The validation focuses on measuring Detection and Identification Latency
(DIL) achieved using each of the monitoring tools. The DIL refers to the difference between the time
of injection and the moment when the anomaly is identified in seconds. We focus on the anomaly
behaviour of CPU hog and memory leak. The detection and identification of the anomaly behaviours
achieved after the injection of anomaly with few seconds. After a few seconds (e.g., 25 s) from the CPU
hog injection, the number of unprocessed user requests increases from 34 to 110 requests with lowest
response time = 357 ms. For the Memory leak, the number of unprocessed user requests increases from
21 to 78 requests with lowest response time = 509 ms. Table 10 shows that our proposed framework
provides the shortest detection latency for both factors compared to other monitoring tools.

Table 10. Anomaly detection and identification latency (DIL).

Anomaly Behaviour Zabbix Dynatrace Framework

CPU Hog 410 408 398
Memory Leak 520 522 515

5.6. Discussion

The experimental results show the effectiveness of our mechanism. However, some potential
limitations shall be discussed here.

While at cluster level, we restrict architectures to 3 nodes, inside each node the number of
containers is not restricted and these can be added freely. Thus, the mechanism to expand is built in.

In other works [35–38], we have implemented and experimentally evaluated 8-node cluster
architectures, with 3 types of containers (orchestration, service provider, service consumer) in different
architectural settings. Our observation from these experiments was that taking into account specific
architecture configuration will not result in sufficiently generic results. Thus, in our case analysis
here, we have focused on client-server type dependencies between container resources to determine
anomalies and their root causes.

We used 150 min as the training time for the experiments. While some reductions is possible,
in some real-time environments, this limits the applicability. We add this concern as future work.

https://www.zabbix.com/
https://www.dynatrace.com/
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6. Conclusions and Future Work

Monitoring of containers and nodes hosted in clusters, i.e., managed distributed systems,
opens many challenges in terms of reliability and performance management at run-time. This paper
explores the use of HHMMs to detect and identify anomalous behaviour found in container and node
workloads. We focus on measuring response time and resource utilization of containers and nodes to
detect anomalous behaviour and to identify their root cause.

For the evaluation, we derive workload variations of containers and nodes over different time
scales in the context of the HHMM. The conducted experiments have demonstrated the effectiveness
and efficiency of the proposed framework in tracing anomalous behaviours to their root causes within
components over different workload intensity periods.

In the future, we plan to complement the framework by providing recovery actions to be applied
to different types of identified anomalies. So far, the framework only focuses on some common
performance and load-related anomalies. In the future, we will include more anomaly scenarios for
different scenarios and architectures [2,36], and we will handle more metrics to capture more cases,
but still maintaining accuracy.

An essential step was to link observable anomalies for the use to underlying root causes at the
resource level. The next step would be to link anomalies not only to direct service-level failures,
but also to a more semantic level [39–41], involving the wider objectives and goals of a user when
using the application in question, i.e., to fulfill a specific task. A challenging example here would be
educational technology systems [42–46] that we have been developing in the past, since the failure to
attain more abstract goals might be linked to anomalies in the system performance.
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The following abbreviations are used in this manuscript:

HMM Hidden Markov Model
HHMM Hierarchical Hidden Markov Model
MAPE-K Monitor Analysis Plan Execute - Knowledge
DD Dissociation Degree
DBN Dynamic Bayesian Network
HTM Hierarchical Temporal Memory
IIA Incorrect Identified Anomaly
CIA Correct Identified Anomaly
NCIA Number of Correct Identification Anomaly
NICI Number of Incorrect Identification
FAR False Alarm Rate
DIL Detection and Identification Latency
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