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Abstract: Motor imagery (MI) from human brain signals can diagnose or aid specific physical
activities for rehabilitation, recreation, device control, and technology assistance. It is a dynamic state
in learning and practicing movement tracking when a person mentally imitates physical activity.
Recently, it has been determined that a brain–computer interface (BCI) can support this kind of
neurological rehabilitation or mental practice of action. In this context, MI data have been captured
via non-invasive electroencephalogram (EEGs), and EEG-based BCIs are expected to become clinically
and recreationally ground-breaking technology. However, determining a set of efficient and relevant
features for the classification step was a challenge. In this paper, we specifically focus on feature
extraction, feature selection, and classification strategies based on MI-EEG data. In an MI-based BCI
domain, covariance metrics can play important roles in extracting discriminatory features from EEG
datasets. To explore efficient and discriminatory features for the enhancement of MI classification,
we introduced a median absolute deviation (MAD) strategy that calculates the average sample
covariance matrices (SCMs) to select optimal accurate reference metrics in a tangent space mapping
(TSM)-based MI-EEG. Furthermore, all data from SCM were projected using TSM according to
the reference matrix that represents the featured vector. To increase performance, we reduced the
dimensions and selected an optimum number of features using principal component analysis (PCA)
along with an analysis of variance (ANOVA) that could classify MI tasks. Then, the selected features
were used to develop linear discriminant analysis (LDA) training for classification. The benchmark
datasets were considered for the evaluation and the results show that it provides better accuracy than
more sophisticated methods.

Keywords: brain–computer interface; electroencephalogram (EEG); motor imagery; Riemannian
geometry; median absolute deviation; linear discriminant analysis

1. Introduction

Motor imagery (MI) from human brain signals is an important and challenging technology that can
be used to diagnose diseases or help with performing certain physical tasks, including rehabilitation,
recreation, device control, and technology assistance [1–3]. Using a brain–computer interface (BCI),
brain signals can be captured by non-invasive electroencephalograms (EEGs), analyzed, and translated
into commands that perform desired actions related to the output device. The challenging aspect
of BCI is processing signals for classification. It is necessary to determine the control signal from a
brain’s activity for the application of BCI tasks. The human brain has different areas and functions
and is divided into two hemispheres, right and left. The left side of the body is controlled by the right
hemisphere and associated with creativity, spatial orientation, imagination, emotion, and multitasking.
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The right side of the body is controlled by the left hemisphere and performs logical tasks with scientific
and mathematical thinking. However, it belongs to the four lobes of frontal, parietal, temporal,
and occipital. The frontal lobes control behavior, action, and problem-solving ability. The parietal lobes
are charged with interpreting reality. The occipital lobe is responsible for receiving information from
the eyes and then distributing this information to other parts of the brain. Finally, it is the responsibility
of the temporal lobe to keep the memories, and it enables listening and speaking. To see this type of
brain activity in the human brain, the EEG is one way for the BCI system that does not require surgery
to use—only some inexpensive equipment. Therefore, the BCI system is used to translate EEGs into
the corresponding control signals.

During different movements of the imagination, a MI-BCI uses the characteristics of the central
beta and mu rhythm that can be observed in the sensorimotor area [4]. It is used to investigate
imagery of voluntary movements in various parts of the body, such as fingers, tongue, and foot [5].
The results of the action imagery involve in a systematic way engaging sections of the primary
motor cortex, and enable specific representations of certain parts in the non-motor region. However,
finding appropriate features and signal processing techniques is of great concern due to noise and
interference. We focused on classifying motor imagery tasks such as controlling the tongue and
controlling the foot by extracting effective features from an EEG-based MI dataset. The important
features were revealed for MI functions that can be used to recover and rehabilitate a user’s
motor function.

This paper proposes a robust estimate of the average use of the covariance matrix of an EEG
signal, which performs better than the state-of-the-art methods. We propose a median absolute
deviation (MAD) method for selecting the centrality of the EEG covariance matrix. Using average
points, all covariance matrix data from sample covariance matrices (SCMs) were mapped using TSM.
Moreover, we selected optimal feature dimensions using PCA to increase performance for classifying
MI tasks via linear discriminant analysis (LDA).

This paper continues as follows. Section 2 discusses the background work of MI-BCI-based
applications and classification methods. Section 3 defines the basic structures of our proposed motor
imagery classification system. We describe the process of calculating average points, the reference
matrix, feature extraction and selection, and finally, classification steps. In Section 4, we explain
experimental datasets and evolutionary results, and there is a brief discussion of the results and
process. Section 5 summarizes this work.

2. Background

Many researchers have proposed different methods for the application and classification of an
MI-BCI based on spatiotemporal and time-frequency analyses. An adaptive autoregressive (AAR)
approach with LDA was proposed to classify dual responses consistent with left and right aspects [6].
A common spatial pattern (CSP) was applied to decode motor imagery for improving classification
accuracy [7–12]. However, the performance evaluation of CSP was influenced by the frequency band
of the EEG segments and the time window. Nicholas et al. proposed to exclude some effective features
from non-invasive EEG signals, i.e., visually-evoked potential, P300 response, slow cortical potentials,
and sensorimotor rhythm [13]. However, the features of the non-invasive BCI are limited in terms of
speed, reliability, and accuracy. The CSP method was applied for extracting the correct frequency band
from the individual power incident with event-related synchronization (ERS) patterns [14]. In this
case, the narrowband frequency sub-band method was developed to select subject-specific frequency
bands to evaluate the effective performance of the BCI [15–17]. These methods can effectively explain
MI activities, but it is reasonable to utilize a binary classification, which limits the applications of
MI-based BCI.

Furthermore, Riemannian geometry can be used to identify the actual purpose of brain activity
due to the narrow EEG signal. In [18], the authors employed the concept of a covariance matrix in
the Riemannian manifold to process radar signals. The Riemannian distance of a symmetric positive
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definite matrix was applied to motor imagery-based applications in the BCI [19]. In Reference [20],
the Riemannian-based kernel was used to extract features from the MI-based BCI using the Romanian
geometry method, i.e., TSM. The TSM was used to map all sample covariance matrices as averages
onto a linear tangent space. However, the main challenge for the Riemannian manifold and TSM is
to calculate the SCM reference point due to the high outlier. In Reference [21], the authors proposed
various mean and medium methods for calculating the SCM’s reference matrix. In Reference [22],
the authors employed a mean absolute deviation technique to improve the effectiveness of TSM.
A system using Riemannian geometry was developed to store more data variants of PCA for symmetric
positive specific (SPD) matrices [23]. However, a higher variance of EEG signals does not make the
method effective. The outliers of the EEG data and test conditions are a major concern for the precise
centralization of the tangent space.

3. Proposed Methodology

The proposed method uses multi-channel EEG signals for MI classification. The fourth-order
Butterworth filtering technique was used to reduce noise from the input signal. Then, we calculated
the SCM and obtained reference metrics from SCMs using the MAD technique. The TSM refers to
Riemannian geometry yields to extract the feature vector using the reference matrix. To select the
discriminative features, we applied PCA including ANOVA. Finally, the MI tasks were classified by
using LDA for a BCI application. Figure 1 depicts the block diagram of our proposed system.

Figure 1. The basic block diagram of a motor imagery (MI) classification system.

3.1. Use of Covariance Matrices in BCI

In this work, the SCMs were computed in the ith trials via the following equation (Equation (1)).

Pi =
1

t− 1
XiXT

i ∈ Rn×n (1)
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where the dataset contains sample points t and has n channels of MI-based EEG signals, and the dataset
can be written as Rn×n. The SCM was applied to create a spatial filter for extracting EEG features [24].
To apply TSM, we have considered the Riemannian manifold. The Riemannian manifold contains
the SCM that perceived the Riemannian space. The entire n× n symmetric covariance matrices space
is denoted by S(n) = {S ∈ M(n), S ∧ T = S} in the square real matrices’ space of M(n) and the
set of entire n× n symmetric positive-definite matrices by P(n) = {P ∈ S(n), uT Pu > 0, ∀u ∈ Rn}.
Therefore, we define P(m) = {P ∈ S(m)|uT Pu > 0, ∀u ∈ <m, u 6= 0} of a set of all m × m real
symmetric matrices, once the SCM represents the positive definite and symmetric matrices in the space
of the Riemannian manifold M of dimension m(m+1)

2 . An SPD matrix is always diagonal, with a strictly
positive eigenvalue [25]. Finally, all sets of n× n invertible matrices are in S(n) space, where a tangent
space is laying with an m = n(n+1)

2 dimensional. The tangent space is a derivative of matrix point Pg

calculated by averaging the manifold lies in a vector space at TP at Pg point.

3.2. Reference Matrices Calculation from Covariance Matrices

To apply TSM to the covariance matrix, it was necessary to calculate the centre point of the
covariance matrix. Based on the central point, all data points could be mapped from non-Euclidean
space (covariance data) to linear space (or a tangent space). The efficiency of the TSM mapping method
was strongly dependant on the central points of the covariance matrix. We calculated different types of
the mean and median for selecting the centrality of covariance matrices via Equations (2) and (3).

PMEAN = arg min
P∈P(M)

n

∑
i=1

d2
E(P, Pi) (2)

PMED = arg min
P∈S(M)

n

∑
i=1

d(P, Pi) (3)

where P1, . . . , Pn defines covariance matrices and distance function is denoted by d(., .) in space P(M),
over the distance function dE(., .). Table 1 lists the functions of the state-of-the-art methods [26,27].

Table 1. The different functions for calculating the centrality of covariance matrices.

Functions Equation

Euclidean distance dE(A, B) = ‖A− B‖F

Riemannian geodesic distance dR(A, B) = ‖log(A−
1
2 BA−

1
2 ‖F

Log Euclidean distance dL(A, B) = ‖log(A−
1
2 BA−

1
2 ‖F

Harmonic mean dH(A, B) = ‖A−1 − B−1‖F
Resolvent mean PRESMEAN(µ) = (∑I

i=1(Pi + µ−1 I)−1µ−1

Euclidean geometric median P(k+1)
med∗ = (∑n

i=1
Pi

dE(Pk+1
med∗ ,Pi

)(∑n
i=1

1
dE(Pk+1

med∗ ,Pi
)−1

Riemannian geometric median P(k+1)
med∗ = Re(P(k)

med′
V(k))

Log-Euclidean geometric median P(k+1)
med∗ = Re(P(k)

med′
U(k))

In this work, we propose the MAD to calculate the central points of the covariance matrix and the
procedures of action of the MAD as conveyed below:

Step 1: Sorted data values in ascending order. Replace the same or repeated varieties with different
varieties as necessary within the given knowledge set.

Step 2: If the number of observations is odd, calculate the median of the given data by dividing it
by two; otherwise, it express the two midmost numbers as normal.

Step 3: Calculate the deviation of each value from the median by subtracting every median value.
Step 4: Then, calculate the absolute value of each deviation.
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Step 5: Select all perfect deviations in ascending order and calculate the median of these deviations
according to step 2. These median values are known as MAD.

3.3. Feature Extraction, Feature Selection, and Classification

3.3.1. Feature Extraction

We extracted features from the input signal that could be used as a basis for differentiating MI
tasks. For this, a set of trials was collected for each section of the MI signal, and the SCM for each trial
was calculated using Equation (4).

Si = upper(log(P−
1
2

G PiP
− 1

2
G ) (4)

Here m-dimensional vector Si is the normalised tangent space of covariance matrices.
Therefore, all covariance metrics are transmitted to Euclidean space using TSM. After mapping
via TSM, we obtained a feature space S which was a set of m = n(n+1)

2 dimension vectors [22].
The algorithm of the TSM working procedure is provided in Algorithm 1.

Algorithm 1: Tangent space mapping (TSM).
Input: SPD matrices set I with Pi ∈ P(n)
Output: a set of I vector si

1: Compute Riemannian mean of the whole set, PG = G(Pi, i = 1...I)
2: for i = 1 to I do
3: Si = upper(log(P−

1
2

G LogPG (Pi)P−
1
2

G )

4: end for
5: return si

3.3.2. Feature Selection

In order to reduce the calculation time and increase the accuracy, several important features were
selected and transferred to the classification model. To regulate the dimension space by comparing
it with the number of trials in each class, the vector V can be orthogonalized using a singular value
decomposition (SVD), as shown in Equation (5).

S = U ∧VT (5)

Here S ∈ Rd∗n, U ∈ Rd∗d, and V ∈ Rn∗n are all from an orthogonal matrix and the ∧Rd∗n has
a diagonal matrix that belongs to the singular values of S. Therefore, the tangent space S can be
estimated by Equation (6) using the orthogonal matrix U which refers to the PCA [24]. We applied
PCA to tangent spaces, which reduced the dimensions of the feature vectors. Therefore, we applied the
one-way ANOVA method to select efficient features from reducing vectors. All components applied to
the PCA were ranked according to their p-values, and the minimum number of components was set
using the weighted false discovery rate (FDR) with the expected ratio of false rejection for all rejections.
However, we calculated the p-value for each trial/row by F scores and determined the threshold value
p < 0.8 based on the FDR function.

S0 = UTS (6)
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3.3.3. Classification

The effective feature vector obtained from the EEG trial is presented in the corresponding task
classification. Identifying a set of observation classes based on the training set data with available
class labels was a major concern. However, LDA has been frequently adopted in recent studies for
MI classification [28,29]. LDA is an effective statistical technique used for EEG data classification.
The main purpose of the LDA is to create a predictive model for a group member to separate data,
representing different classes, using hyperplanes [30]. This predictive model has a linear discriminate
function that maximizes the ratio between class variations in a dataset. The LDA efficiently deals with
two-tier training data using these variance allowances. In this paper, we separated the feature data
into two classes—the foot and tongue; and the LDA was used to assign hyperplanes to separate the
feature data representing the two classes [31]. Figure 2 shows the example of the projections of two
classes of LDA. The algorithm projects all feature data to a new location using the Equation (7).

yi = WTx (7)

where x and W are the numbers of class labels and projection vectors, respectively. However, the vector
projected (X − 1) classes into a new space and all linear projections employed the following cost
function of the Equation (8), where m and S are defined as the mean and variance of the feature vectors.

j(w) =
(m1 −m2)

2

(S2
1 + S2

2)
(8)

Figure 2. The example of LDA projections.

4. Experimental Dataset, Results, and Discussion

4.1. Dataset Descriptions

We have evaluated the effectiveness of our proposed method based on the publicly accessible
BCI-EEG datasets, such as the BCI Competition IV benchmark dataset IIa (BCI IV-IIa), and the BCI
Competition III benchmark dataset IIIa (BCI III-IIIa).
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• BCI III-IIIa (binary-class)

BCI III-IIIa recorded the MI-EEG signals of task movements using the left and right hands, both
feet, and the tongue [32]. Data were collected from 60 channels and each class has 60 trials. The signal
was discretised at 250 Hz and filtered between 1 Hz and 50 Hz. Evidence of a data point in this
direction was recorded from a total of three people performing MI tasks, and several runs (at least six)
were performed in each class, including 40 trials. All data were concatenated in a single unit and
stored in a general data format (GDF).

• BCI IV- IIa (Two-classes)

This dataset contains nine labelled EEG signals similar to A01T–A09T, respectively, where nine
subjects participated [33]. There were four different imaginings of MI activity, i.e., using the left and
right hands, both feet, and the tongue. For this, two sessions (at least six runs per session) were
recorded for each subject. A total of 288 trials were recorded per session with 48 trials for each run and
12 for four possible classes. For the purpose of using this dataset, we have considered data from five
(A01T, A03T, A07T, A08T, A09T) subjects for feature extraction and classification steps.

4.2. Experimental Evaluation, Results, and Discussion

The proposed method was implemented with BCI IV-IIa and BCI III-IIIa to classify the MI activity.
We have considered a binary classification process to differentiate the effectiveness of MI for the
left hand and feet movement. After preprocessing, a feature vector was extracted using TSM and
the MI task was classified by LDA. To obtain an efficient feature, we calculated the central point of
the covariance matrix. For the experiment, we calculated the average covariance matrix using our
proposed method. Figure 3 shows the comparison of the average recognition accuracies of all datasets
using our proposed method against more sophisticated methods.

Figure 3. The recognition accuracy of our proposed method along with those of other methods using
all datasets.
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Table 2 lists the accuracy of the classification of the tangent space mapping with linear discriminant
analysis (TSMLDA) with different central points of the sample of the covariance matrix with LDA for
BCI III-IIIa. The average accuracies of our proposed method for each subject were 93.33%, 95.83%,
and 75%, respectively. The average accuracy of all subjects was 88.05%, which was better than the
other methods. The accuracies of the feet and tongue MI tasks for each subject are listed in Table 3.
From these experimental results, we found that the maximum average accuracy for "K6B" was 95.83%.

Table 2. The classification accuracy (%) of TSMLDA for BCI III-IIIa.

Method K3b K6b L1b Average

Arithmetic mean AMEAN 91.11 91.66 73.33 85.37
Riemannian geometric mean RGMEAN 90 95 68.33 84.44

Log Euclidean mean L− EMEAN 88.88 93.33 66.66 82.96
Harmonic mean HMEAN 91.11 91.66 70 84.26
Resolvent mean RMEAN 91.11 95 71.66 85.92

Euclidean geometric median E− GMED 91.11 93.33 68.33 84.26
Riemannian geometric median RGMED 82.22 95 68.33 81.85

Log-Euclidean geometric median LE− GMED 88.88 93.33 65 82.4
MAD PMAD (Proposed) 93.33 95.83 75 88.05

Table 3. The label wise accuracy (%) of each subject for foot and tongue MI tasks.

Subject Feet Tongue Average

K3b 97.77 88.88 93.33
K6b 95.83 95.83 95.83
L1b 66.66 83.33 75.00

Table 4 illustrates the observations of the differences between the feet and tongue trials. The results
showed that our proposed method calculated more efficient average points from the SCM and achieved
a better performance. The results of the final average classification were determined for 280 trials for
each condition. The average accuracy was found to be 90.33% using our proposed method. Table 5 lists
the label wise accuracy of each subject where the highest accuracy is shown 95.83% for the ‘A08’ subject.

Table 4. The classification accuracy (%) of TSMLDA for BCI IV-IIa.

Method A01T A03T A07T A08T A09T Average

Arithmetic mean AMEAN 84.02 85.41 89.58 92.36 76.38 85.55
Riemannian geometric mean RGMEAN 82.63 87.5 88.19 93.75 73.61 85.14

Log Euclidean mean L− EMEAN 86.8 86.8 89.58 93.75 75 86.39
Harmonic mean HMEAN 83.33 84.02 89.58 93.05 81.25 86.25
Resolvent mean RMEAN 84.02 88.88 89.58 93.75 82.63 87.77

Euclidean geometric median E− GMED 79.86 86.11 90.72 93.05 79.16 85.78
Riemannian geometric median RGMED 73.61 52.08 88.88 57.63 54.86 65.41

Log-Euclidean geometric median LE− GMED 84.72 85.41 89.58 93.05 74.3 85.41
MAD PMAD (Proposed) 87.5 89.17 91.67 95.83 87.5 90.33

Table 5. The label-wise accuracies (%) of five subjects of BCI IV-IIa.

Subject Feet Tongue Average

A01 91.66 83.33 87.5
A03 83.33 95 89.17
A07 100 83.33 91.67
A08 91.66 100 95.83
A09 91.66 83.33 87.5
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These results show that the classification effectiveness of our proposed method is comparatively
better than other methods. The significance of our average calculation techniques surpassed the other
techniques, as shown in Figure 2. In Reference [34], the authors employed BCI-based EEG datasets
for two-class problems, with different forms of CSP experiments, including CSP [17], SBCSP [18],
FBCSP [20], and the CSP-TSM method. However, the statistical mean (arithmetic mean) of the TSM
method was reported for comparing CSP, TSM, and CSP-TSM. In our experiment, TSM methods
were applied to partial sets of classes (we considered two-class problems) with BCI III-IIIa and IV-IIa.
The classification performances of TSM with MAD were 3.14% and 5.4% higher than those of TSM with
other reference matrices for BCI III-IIIa and IV-IIa, respectively (see Tables 2 and 4). Table 6 lists the
accuracy of the proposed TSM using the MAD method as compared to the sophisticated methods based
on BCI III-IIIa. These results show that the proposed method increased the performance by 6.94%,
0.42%, 6.39%, 5.09%, 3.8%, and 4.53% compared to SRCSP, MDRM, HOREV-MDRM, WOLA-CSP,
and TSGSP, respectively.

Table 6. The comparison of performance accuracy (%) with sophisticated methods (based on BCI III-IIIa).

Methods K3b K6b L1b Average

SRCSP [11] 96.67 53.33 93.33 81.11
TSGSP [12] 99.2 67.2 96.5 87.63
MDRM [19] 96.66 60 88.33 81.66
HOREV MDRM [23] 95.56 68.33 85 82.96
WOLA CSP [35] 97.77 61.66 93.33 84.25
CSP [11] 95.56 61.67 93.33 83.52
Proposed method 93.33 95.83 75.00 88.05

Table 7 lists the accuracy of the proposed TSM using the MAD method as compared to the
sophisticated method based on BCI IV-IIa. These results show that the proposed method increased the
performance by 12.85%, 5.75%, 3.62%, 0.05%, and 6.13% compared to CSP+LDA, TLCSP1, FBCSP with
LR, WOLA-CSP, and TSLDA, respectively. As a result, we can state that the use of the MAD-based
average method can increase the accuracy of the MI-based BCI classification, which was evaluated by
the proposed method.

Table 7. The comparison of performance accuracy (%) with sophisticated methods (based on BCI III-IIIa).

Methods A01 A03 A07 A08 A09 Average

CSP+LDA [19] 78.3 82.2 81 68.5 77.4 77.48
TLCSP1 [36] 90.28 93.75 62.5 90.97 85.42 84.58
FBCSP with LR [17] 88.26 83.88 89.17 88.93 83.33 86.71
WOLA CSP [35] 86.81 94.44 78.47 97.91 93.75 90.28
TSLDA [19] 80.5 87.5 82.1 84.8 86.1 84.2
Proposed method 87.50 89.17 91.67 95.83 87.50 90.33

5. Conclusions

This paper showed significant improvements in the steps needed to classify MI activity using
the average framework MAD. We considered the binary class to classify MI tasks for tongue and feet
movement. Two benchmark datasets were studied in this work. We have proposed a MAD strategy to
address the issue of the noise and nonstationary aspects of EEG signals concerned with the tangent
space on the map. Moreover, we compared it to more sophisticated methods and applied the optimal
number of feature dimensions to the classification steps. We have proposed TSMLDA as a classifier to
categorize the activity of MI. The experimental results achieved the average recognition accuracies for
MI tasks of 88.05% for BCI III-IIIa, and 90.33% of BCI IV-IIa. The summary of these results is that the
proposed method performed much more accurately than the sophisticated method.
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