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Abstract: In this work, we present a convolutional neural network (CNN) named CGFA-CNN
for blind image quality assessment (BIQA). A unique two-stage strategy is utilized which firstly
identifies the distortion type in an image using Sub-Network I and then quantifies this distortion
using Sub-Network II. Different from most deep neural networks, we extract hierarchical features
as descriptors to enhance the image representation and design a feature aggregation layer in
an end-to-end training manner applying Fisher encoding to visual vocabularies modeled by
Gaussian mixture models (GMMs). Considering the authentic distortions and synthetic distortions,
the hierarchical feature contains the characteristics of a CNN trained on the self-built dataset and
a CNN trained on ImageNet. We evaluated our algorithm on four publicly available databases,
and the results demonstrate that our CGFA-CNN has superior performance over other methods both
on synthetic and authentic databases.

Keywords: blind image quality assessment; deep neutral networks; feature aggregation

1. Introduction

Digital pictures may occur different distortions in the procedure of acquisition, transmission,
and compression, leading to an unsatisfactory perceived visual quality or a certain level of annoyance.
Thus, it is crucial to predict the quality of digital pictures in many applications, such as compression,
communication, printing, display, analysis, registration, restoration, and enhancement [1–3]. Generally,
image quality assessment approaches can be classified into three kinds according to the additional
information needed. Specifically, full-reference image quality assessment (FR-IQA) [4–7] and
reduced-reference image quality assessment (RR-IQA) [8–10] need full and partial information of
reference images, respectively, while blind image quality assessment (BIQA) [11–14] performs quality
measure without any information from the reference image. Thus, BIQA methods are more attractive
in many practical applications because the reference image usually is not available or hard to derive.

Early studies mainly focused on one or more specific distortion types, such as Gaussian
blur [15], blockiness from JPEG compression [16], or ringing arising from JPEG2000 compression [17].
However, images may be affected by unknown distortion in many practical scenarios. In contrast,
general BIQA methods aim to work well for arbitrary distortion, which can be classified into two
categories according to the features extracted, i.e., Natural Scene Statistics (NSS)-based methods and
training-based methods.

NSS-based methods [18] assume that the natural image with non-distorted obeys certain
perceptually relevant statistical laws that are violated by the presence of common image distortions,
and they attempt to describe an image utilizing its scene statistics from different domains. For example,
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BIRSQUE [19] derives features from the locally normalized luminance coefficients in the spatial
domain. M3 [20] utilizes the joint local contrast features from the gradient magnitude (GM) map and
the Laplacian of Gaussian (LOG) response. Later, a perceptually motivated and feature-driven model
is deployed in FRIQUEE [21], in which a large collection of features defined in various complementary,
perceptually relevant color and transform-domain spaces are drawn from among the most successful
BIQA models produced to date.

However, knowledge-driven feature extraction and data-driven quality prediction are separated
in the above methods. It has been demonstrated that training-based methods outperform NSS-based
methods by a large margin because a fully data-driven BIQA solution becomes possible. For example,
CORNIA [22] constructs a codebook in an unsupervised manner, using raw image patches as local
descriptors and using soft-assignment for encoding. Considering that the feature set generally adopted
in previous methods are from zero-order statistics and insufficient for BIQA, HOSA [23] constructs
a much smaller codebook using K-means clustering [24] and introducing higher-order statistics.
In contrast, the above methods capture spatially normalized coefficients and codebook-based features
which are learned automatically from beginning to end by using CNNs. For example, TCSN [25]
aims to learn the complicated relationship between visual appearance and perceived quality via
a two-stream convolutional neural network. DIQA [26] defines two separated CNN branches to learn
objective distortion and human visual sensitivity, respectively.

In this work, we propose an end-to-end BIQA based on classification guidance and feature
aggregation, which is accomplished by two sub-networks with shared features in the early layers.
Due to the lack of training data, we construct a large-scale dataset by means of synthesizing distortions
and pre-train Sub-Network I to identify an image into a specific distortion type from a set of pre-defined
categories. We find the proposed method will be much harder to achieve high accuracies on authentic
images if only it is exposed to synthetic distortions during training. Then, we extract hierarchical
features from the shared layers of two-subnetworks and another CNN (VGG-16 [27]) pre-trained on
ImageNet [28], in which pictures occur as a natural consequence of photography and a unified feature
group is formed.

Sub-Network II takes the hierarchical features and the classification information as inputs to
predict the perceptual quality. The combination of two sub-networks enables the learning framework
to have the probability of favorable quality perception and proper parameter initialization in
an end-to-end training manner. We design a feature aggregation layer that could convert arbitrary
input seizes to a fixed-length representation. Then, a fully connected layer is exploited as a linear
regression model to map the high-dimensional features into the quality scores. This allows the
proposed CGFA-CNN to accept an image of any size as the input, thus there is no need to perform
any transformation of images (including cropping, scaling, etc.), which would affect perceptual
quality scores.

The paper is structured as follows. In Section 2, previous work on CNN-based BIQA related to
our work is briefly reviewed. In Section 3, details of the proposed method are described. In Section 4,
experimental results on the public IQA databases and the corresponding analysis are presented.
In Section 5, the work of this paper is concluded.

2. Related Work

In this section, we provide a brief survey about the major solutions to the lack of training data in
BIQA and a review of recent studies related to our work.

Due to the number of parameters to be trained on CNN is usually very large, the training set
needs to contain sufficient data to avoid over-fitting. However, the number of samples and image
contents in the public quality-annotated image databases are rather limited, which cannot meet the
need for end-to-end training of a deep network. Currently, there are two main methods to tackle
this challenge.
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The first method is to train the model based on image patches. For example, deepIQA [29]
randomly samples image patches from the entire image as inputs and predicts the quality score on
local regions by assigning the subjective mean score (MOS) of the pristine image to all patches within
it. Although taking small patches as inputs for data augmentation is superior to using the whole image
in a given dataset, this method still suffers from limitations because local image quality with context
varies across spatial locations even when the distortion is homogeneous. To resolve this problem,
BIECON [30] makes use of the existing FR-IQA algorithms to assign quality labels for sampled image
patches, but the performance of such a network depends highly on that of FR-IQA models. Other
methods such as dipIQ [31] attempting to generate discriminable image pairs by involving FR-IQA
models may suffer from similar problems.

The second method is to pre-train a network with large-scale datasets in other fields. For each
pre-trained architecture, two types of back-end training strategies are available: replacing the last layer
of the pre-trained CNN model with the regression layer and fine-tuning it with the IQA database
to conduct image quality prediction or using SVR to regress the extracted features through the
pre-trained networks onto subjective scores. For instance, DeepBIQ [32] reports on the use of different
features extracted from pre-trained CNNs for different image classification tasks via ImageNet [28]
and Places365 [33] as a generic image description. Kim et al. [34] selected the well-known deep CNN
models AlexNet [35] and ResNet50 [36] as the architectures of the baseline models, which have been
pre-trained for the task of image classification on ImageNet [28]. These methods directly inheriting
the weights from the pre-trained models for general image classification tasks have a defect of low
relevance to BIQA but unnecessary complexity.

To better address the training data shortage problem, MEON [37] proposes a cascaded multi-task
framework, which firstly trains a distortion type identification network by large-scale pre-defined
samples. Then, a quality prediction network is trained subsequently, taking advantage of distortion
information obtained from the first stage. Furthermore, DB-CNN [38] not only constructs a pre-training
set based on Waterloo Exploration Database [39] and PASCAL VOC [40] for synthetic distortions,
but also uses ImageNet [28] to pre-train another CNN for authentic distortions. Motivated by the
previous studies on MEON [37] and DB-CNN [38], we construct a pre-training set based on Waterloo
Exploration Database [39] and PASCAL VOC [40] for synthetic distortions. Besides, both distortion
type and distortion level are considered at the same time, which results in better quality-aware
initializations and distortion information.

Although previous DNN-based BIQA methods have achieved significant performance, all of these
methods usually comprise convolutional layers and pooling layers for feature extraction and employ
fully connected layers for regression, which would suffer three limitations. First, such techniques as
averaging or maximum pooling are too simple to be accurate for long sequences. Second, a fully
connected layer is destructive to the high-dimensional disorder and spatial invariance of the local
feature. Third, such CNNs typically require a fixed image size. To feed into the network, images have to
be resized or cropped to a fixed size, and either scaling or cropping would cause the perceptual difference
with the assigned quality labels. To tackle these challenges, we explore more sophisticated pooling
techniques based on clustering approaches such as Bag-of-visual-words (BOW) [41], Vector of Locally
aggregated Descriptors (VLAD) [42] and Fisher Vectors [43]. Studies have shown that integrating VLAD
as a differentiable module in a neural network can significantly improve the aggregated representation
for the task of place recognition [44] and video classification [45]. Our proposed feature aggregation
layer acts as a pooling layer on top of the convolutional layers, which converts arbitrary input seizes to
a fixed-length representation. Afterward, using a fully connected layer for regression does not require
any preprocessing of the input image.

3. The Proposed Method

The framework CGFA-CNN is illustrated in Figure 1. Sub-Network I aims to classify an image
into a specific distortion type and initialize the shared layers for a further learning process, which is
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firstly pre-trained on a self-built dataset. Sub-Network II predicts the perceptual quality of the same
image, which is fine-tuned with the IQA databases and takes advantage of distortion information
obtained from Sub-Network I. The feature aggregation layer (FV layer) and classification-guided
gating unit (CGU) are described in Sections 3.3 and 3.4.
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Figure 1. Illustration of CGFA-CNN configurations for BIQA, highlighting the feature aggregation
layer (denoted as FV layer) and classification-guided gating unit (denoted as CGU). Features are
extracted from the distorted image by Sub-Network I.

3.1. Distortion Type Identification

3.1.1. Construction of the Pre-Training Dataset

Due to the deficiency of the available quality-annotated samples, we firstly construct a large-scale
dataset based on Waterloo Database [39] and PASCAL VOC Database [40]. The former contains
4744 images and can be loosely categorized into seven classes. The latter contains 17,125 images
covering 20 categories. In this paper, we merge the two databases and obtain 21,869 pristine images
with various contents. Then, nine types of distortion are introduced: JPEG compression, JPEG2000
compression, Gaussian blur, white Gaussian noise, contrast stretching, pink noise, image quantization
with color dithering, over-exposure, and under-exposure. We synthesize each image with five distortion
levels following Ma et al. [39] except for over-exposure and under-exposure, where only three levels
are generated according to Ma et al. [46]. The constructed dataset consists of 896,629 images, which are
organized into 41 subcategories according to the distortion type and degradation level. We label these
images by the subcategory they belong to.

3.1.2. Sub-Network I Architecture

Inspired by the VGG-16 network architecture [27], we design a similar structure subject to
some modifications identifying the distortion type of the input image. Details are given in Table 1.
The tailored VGG-16 network comprises a stack of convolutions (Conv) for feature extraction,
one maximum pooling (MaxPool) for feature fusion, and three fully connected layers (FC) for
feature regression. All hidden layers are equipped with the Rectified Linear Unit (ReLU) [35] and

Batch Normalization (BN) [47]. We denote the input mini-batch training data by
{(

X(n), p(n)
)}N

n=i
,
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where X(n) is the nth input image and p(n) is a multi-class indicator vector of the ground truth distortion
type. We append the soft-max layer at the end and define the soft-max function as

p̂(n)i (X(n); W) =
exp

(
y(n)i (X(n); W)

)
∑C

j=1 exp
(

y(n)i (X(n); W)
) , (1)

where p̂(n) =
[

p̂(n)1 , · · · , p̂(n)C

]T
is a C-dimensional probability vector of the nth input in a mini-batch,

indicating the probability of each distortion type. Model parameters of Sub-Network I are collectively
denoted as W. A cross-entropy loss is used to train this sub-network

`s({X(n)}; W) = −
N

∑
n=1

C

∑
i=1

p(n)i log p̂(n)i (X(n); W). (2)

Notably, in the fine-tuning phase, except for the shared layers, the rest of Sub-Network I only
participates in the forward propagation and the parameters are fixed.

Table 1. Architecture of Sub-Network I.

Layer Name Type Patch Size Stride Output Size

Conv 1-1 Conv + ReLU + BN 3× 3× 48 1 H ×W × 48

Conv 2-1 Conv + ReLU + BN 3× 3× 48 2 H
2 ×

W
2 × 48

Conv 2-2 Conv + ReLU + BN 3× 3× 64 1 H
2 ×

W
2 × 64

Conv 3-1 Conv + ReLU + BN 3× 3× 64 2 H
4 ×

W
4 × 64

Conv 3-2 Conv + ReLU + BN 3× 3× 64 1 H
4 ×

W
4 × 64

Conv 4-1 Conv + ReLU + BN 3× 3× 64 2 H
8 ×

W
8 × 64

Conv 4-2 Conv + ReLU + BN 3× 3× 128 1 H
8 ×

W
8 × 128

Conv 5-1 Conv + ReLU + BN 3× 3× 128 2 H
16 ×

W
16 × 128

Conv 5-2 Conv + ReLU + BN 3× 3× 128 1 H
16 ×

W
16 × 128

Pool MaxPool 1× 1× 128 1 1× 1× 128

FC-1 FC + ReLU 1× 1× 256 1 1× 1× 256

FC-2 FC + ReLU 1× 1× 256 1 1× 1× 256

FC-3 FC 1× 1× 41 1 1× 1× 41

Classifier Soft-max 1× 1× 41 1 1× 1× 41

3.2. Feature Extraction and Fusion

In Figure 2, we can see that the representation of different distortion types varies in each
convolution. Therefore, only using features extracted from the last convolution is not enough to predict
the quality of an image. Inspired by the idea of combining the complementary features and hierarchical
feature extraction strategy in our previous work [48], we resort to extracting features from low-level,
middle-level and high-level convolutional layers as descriptors by rescaling and concatenating them.
We design Sub-Network I to identify a given image’s distortion type pre-trained on a synthesized
dataset. We find this takes advantage of synthetic images but fails to handle those authentically
distorted. More details can be found in Section 4.5. Then, we model synthetic and authentic distortions
by two separated CNNs and fuse the two feature sets into a unified representation for final quality
prediction. The tailored VGG-16 pre-trained on ImageNet that contains many realistic natural images
of different perceptual quality is added to extract relevant features for authentic images. In the
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proposed CGFA-CNN index, we take a raw image of H ×W × 3 as input and predict its perceptual
quality. Then, the fused feature group acquired is with the size of H

16 ×
W
16 × D. Here, D is the channel

of hierarchical features. Sub-Network II takes the fused feature group and the estimated probability
vector p̂(n) as inputs.

         Reference image                        Conv 2-2     Conv 3-2                Conv 4-2                Conv 5-2

       JPEG2000 Compression                        Conv 2-2     Conv 3-2                Conv 4-2                Conv 5-2

           Gaussion noise                        Conv 2-2     Conv 3-2                Conv 4-2                Conv 5-2

Figure 2. A comparison of several distortion types identified by Sub-Network I.

3.3. Feature Aggregation Layer and Encoding

In this paper, we design a feature aggregation layer that employs the Fisher Vectors (FV) [43]
to perform the feature aggregation and encoding procedures. Because GMM [49] and FV are
non-differentiable and fail to achieve theoretically valid backpropagation, we define a FV layer to yield
a quality-aware feature vector f . The implementation is shown in Figure 3.
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Figure 3. The configurations of the proposed FV layer. Convolution kernel size is 1× 1.

As illustrated in Figure 1, the fused feature group is a H
16 ×

W
16 × D map, which can be considered

as a set of D-dimensional descriptors extracted at H
16 ×

W
16 spatial locations. Then, we utilize GMM to

obtain the cluster centers C of K components and encoding vector f of the image descriptors-X.

3.3.1. GMM Clustering

A Gaussian mixture model p(x|θ) is a mixture of K multivariate Gaussian distributions [49],
which can be formulated as

p(x|θ) =
K

∑
k=1

p(x|µk, ∑k)πk, (3)

p(x|µk, ∑k) =
e−

1
2 (x−µk)

T ∑−1
k (x−µk)√

(2π)D det ∑k

, (4)

θ = (π1, µ1, ∑1, · · · , πK, µK, ∑K), (5)
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where θ is the vector of parameters of the model. For each Gaussian component, πk is the prior
probability value, µk is the means, and ∑K is the diagonal covariance matrices. The parameters
are learned from a training set of descriptors x1, . . . , xN . The GMM defines the assignments
qki(k = 1, · · · , K, i = 1, · · · , N) of the N descriptors to the K Gaussian components

qki =
p(xi|µk, ∑k)πk

∑K
j=1 p(xi|µj, ∑j)πj

, k = 1, · · · , K. (6)

3.3.2. Fisher Encoding

Fisher encoding captures both the first- and second-order differences between the image
descriptors and the centers of a GMM. The construction of the encoding begins by learning a GMM
model θ. For each k = 1, · · · , K, define the vectors

uk =
1

N
√

πk

N

∑
i=1

qki

− 1
2

∑
k
(xi − µk), (7)

vk =
1

N
√

2πk

N

∑
i=1

qki[(xi − µk)
−1

∑
k
(xi − µk)− 1]. (8)

The Fisher encoding of the set of local descriptors is then given by the concatenation of µk and vk
for all K components, giving an encoding of size 2× D× K

fFisher = [uT
1 , · · ·uT

K, vT
1 , · · · , vT

K]
T . (9)

To integrate Fisher vector as a differentiable module in a neural network, we write the descriptor
xi hard assignment to the cluster k as a soft assignment

ak(xi) =
e−α‖xi−ck‖2

∑K
j=1 e−α‖xi−cj‖2 . (10)

Then, we can write the FV representation as

FV1j,k =
N

∑
i=1

ak(xi)

(
xi(j)− ck(j)

σk(j)

)
, (11)

FV2j,k =
N

∑
i=1

ak(xi)

((
xi(j)− ck(j)

σk(j)

)2

− 1

)
, (12)

where FV1 and FV2 are capturing the first- and second-order statistics, respectively. xi(j) is the jth
dimensions of the ith descriptor and ck(j) is the kth cluster centers. ck and σk (k ∈ [1, K]) are the
learnable clusters and the clusters’ diagonal covariance. We define α as positive ranging between 0
and 1.

Let ωk = 2αck and bk = −α‖ck‖2; Equation (10) can then be written as

ak(xi) =
eωT

k xi+bk

∑K
j=1 eωT

j xi+bj
. (13)

where {ωk}, {bk}, and {ck} are sets of trainable parameters for each cluster k.
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3.3.3. Beyond the FV Aggregation

The source of discontinuities in the traditional Bag-of-visual-words (BOW) [41] and Vector of
Locally aggregated Descriptors (VLAD) [42] are the hard assignments qki of descriptors x to cluster
centers ck. To make this operation differentiable, we replace it with the descriptor xi hard assignment
to the cluster as a soft assignment and reuse the same soft assignment established in Equation (12)
to obtain differentiable representation. We denote them as VLAD layer and BOW layer, respectively.
The differentiable BOW representation and VLAD representation can be written as

BOWk =
N

∑
i=1

ak(xi), (14)

VLADj,k =
N

∑
i=1

ak(xi) (xi(j)− ck(j)) , (15)

where ak(xi) denotes the membership of the descriptor xi to cluster k. BOW is the histogram
of the number of image descriptors assigned to each visual word. Therefore, it produces
a K-dimensional vector, while VLAD is a simplified non-probabilistic version of the FV and produces
a D× K-dimensional vector.

The soft assignment ak(xi) can be regarded as a two-step process: (i) Perform a 1× 1 convolution
with a set of K filters ωk and bias bi. Then, the output produced is ωT

k xi + bk. (ii) Follow a soft-max
function to obtain soft assignment of the descriptor xi to the cluster k. Notably, for BOW encoding,
there is no need to store the sum of residuals for each visual word, which is the difference vector
between the descriptor and its corresponding cluster center.

The advantage of the BOW aggregation is that it aggregates the descriptor into a more compact
representation, and fewer parameters are trained in a discriminative manner only including {ωk}
and {bk}. The drawback is that significantly more clusters are needed to obtain a rich representation.
The VLAD computes the first-order residuals between the descriptors and the cluster centers, making
the richness of representation relatively sufficient, and parameters to be learned are moderate, including
{ωk}, {bk} and {ck}. In contrast, the FV aggregation concatenates both the first- and second-order
aggregated residuals, but too many parameters need to be learned, including {ωk}, {bk}, {ck} and {σk}.

As discussed Section 4.5, we also experimented with averaging and maximum pooling of
the image descriptor-X. The results show that FV proves itself to be superior to the reference
BOW and VLAD approach. Additionally, simply using averaging or maximum pooling results in
poor performance.

3.4. Classification-Guided Gating Unit and Quality Prediction

We pre-trained Sub-Network I to identify the distortion type of the input, and Sub-Network II
takes the estimated probability vector p̂ from Sub-Network I as partial input. To introduce this prior
information of the classification, a Classification-guided Gating Unit (CGU) is utilized to emphasize
informative features and suppress less useful ones. The CGU combines p̂ and f to produce a score
vector f̂

f̂ = p̂ · σ (W · fFisher + b) , (16)

where σ is a linear mapping and (W, b) are the learnable parameters. Then, a linear mapping is
followed to yield an overall quality score q. To increase nonlinearity, two fully connected layers are
applied as the linear mapping.

For Sub-Network II, the L1 function is used as the empirical loss

` =
1
N

N

∑
i=1
‖qi − q̂i‖, (17)
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where qi is the MOS of the ith image in a mini-batch and q̂i is the predicted quality score by CGFA-CNN.

4. Experimental Results and Discussions

4.1. Database Description and Experimental Protocol

(1) IQA databases: These experiments were confirmed on three singly distorted synthetic
IQA databases, namely LIVE [50], CSIQ [51], and TID2013 [52], and an authentic LIVE Challenge
database [53]. LIVE contains five distortion types—JPEG compression (JPEG), JPEG-2000 compression
(JP2K), White noise (GN), Gaussian blurring (GB), and Fast-fading error (FF)—at 7–8 degradation
levels. CSIQ contains six distortion types—JPEG compression (JPEG), JPEG-2000 compression (JP2K),
global contrast decrements (GC), additive pink Gaussian noise (PN), additive white Gaussian noise
(WN), and Gaussian blurring (GB)—at 3–5 degradation levels. TID2013 contains 24 sceptic distortion
types: additive Gaussian noise, additive noise in color components, spatially correlated noise, masked
noise, high-frequency noise, impulse noise, quantization noise, Gaussian blur, image denoising,
JPEG compression, JPEG2000 compression, JPEG transmission errors, non-eccentricity pattern errors,
local bock-wise distortions, mean shift, contrast change, change of color saturation, multiplicative
Gaussian noise, comfort noise, lossy compression of noisy images, color quantization with dither,
chromatic aberrations, sparse sampling and reconstruction, which are denoted as #01–#24, respectively.

(2) Evaluation Criteria: Two evaluation criteria are adopted as follows to benchmark BIQA models:

• Spearman’s rank-order correlation coefficient (SRCC) is a nonparametric measure

SRCC = 1−
6 ∑i d2

i
I (I2 − 1)

, (18)

where I is the test image number and di is the rank difference between the MOS and the model
prediction of the ith image.

• Pearson linear correlation coefficient (PLCC) is a nonparametric measure of the linear correlation

PLCC =
∑i (qi − qm) (q̂i − q̂m)√

∑i (qi − qm)
2
√

∑i (q̂i − q̂m)
2

, (19)

where qi and q̂i stand for the MOS and the model prediction of the ith image, respectively.

For synthetic databases LIVE, CSIQ and TID2013, we divided the distorted images into two splits
of non-overlapping content—80% of which were used as fine-tuning samples and the other 20% were
left as testing samples. For the LIVE Challenge database, the distorted images were divided into two
groups—80% for training and 20% for testing. This random process was repeated ten times, and the
average SRCC and PLCC are reported as the final results. Besides, the three synthetic databases were
selected for cross-database experiments, using one database as the training sets while the other as
the testing.

We compared the proposed CGFA-CNN against several state-of-the-art BIQA methods, including
three based on NSS (BRISQUE [19], M3 [20], and FRIQUEE [21]), two based on manual feature learning
(CORNIA [22] and HOSA [23]), and eight based on CNN (BIECON [30], dipIQ [31], deepIQA [29],
ResNet50+ft [34], MEON [48], DIQA [26], TSCN [25], and DB-CNN [38]). Due to the source codes of
some methods are not available to the public, we only copy the metrics from the corresponding papers.

4.2. Experimental Settings

Parameters in Sub-Network I were initialized by He’s method [54], and Adam was adopted as
optimizer with the default parameters with a mini-batch of 64. The learning rate was initialized as
a decay logarithmically from

[
10−4, 10−6

]
in 30 epochs. The construction details of the pre-training

dataset are described in Section 3.1. The datasets were randomly divided into two subsets, 80% for
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training and 20% for testing. All images were firstly scaled to 256× 256× 3 and then cropped to
224× 224× 3 as inputs. The top-1 and top-5 errors were 3.842% and 0.026%, respectively.

In the fine-tuning phase, the shared layers were directly initialized with the parameters of
Sub-Network I. Adam was used as optimizer with the default parameters for 20 epochs and
the learning rate was set to 10−5. Except for the LIVE database, images were input without any
pre-processing during training with a mini-batch of 8. Since the LIVE database contains images in
different size, images were randomly cropped to 320× 320 during training in a mini-batch, whose
quality annotated were assigned from the corresponding image. All of the images were input without
any preprocessing during testing. We implemented all of our models using PyTorch 0.4.1 deep
learning framework and the numerical calculations presented in this paper were performed on the
supercomputing system at the Supercomputing Center of Wuhan University. We will release the code
at https://github.com/Cwp1107/CGFA-CNN.

4.3. Consistency Experiment

We investigated the effectiveness of CGFA-CNN on LIVE, TID2013, CSIQ and LIVE Challenge
databases and the results are presented in Table 2. The results of each specific distortion type on LIVE,
CSIQ, and TID2013 databases are reported in Tables 3–5. The top three SRCC and PLCC results are
highlighted in red, green, and blue, respectively.

Table 2. Demographic prediction performance comparison by two evaluation
metrics. The top three SRCC and PLCC results are highlighted in red, green, and
blue, respectively.

Method
LIVE CSIQ TID2013 LIVE Challenge

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [19] 0.940 0.945 0.777 0.817 0.573 0.651 0.603 0.641

M3 [20] 0.950 0.954 0.804 0.835 0.679 0.705 0.595 0.620

FRIQUEE [21] 0.948 0.955 0.844 0.889 0.668 0.705 0.694 0.710

CORNIA [22] 0.943 0.946 0.730 0.800 0.550 0.613 0.618 0.665

BIECON [30] 0.958 0.960 0.815 0.823 0.717 0.762 0.595 0.613

deepIQA [29] 0.960 0.972 — — 0.803 0.821 0.671 0.680

ResNet50+ft [34] 0.950 0.954 0.876 0.905 0.712 0.756 0.819 0.849

DIQA [26] 0.975 0.977 0.884 0.915 0.825 0.850 0.703 0.704

TSCN [25] 0.969 0.972 — — — — — —

DB-CNN [38] 0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.869

CGFA-CNN 0.971 0.973 0.953 0.965 0.841 0.858 0.837 0.846

Based on the results in Table 2, we have the following observations. First, DIQA [26] achieves
state-of-the-art accuracies which surpasses CGFA-CNN by about 0.004 in SRCC and PLCC, and most
methods take great advantages in indexes on LIVE. However, their results on CSIQ and TID2013 are
rather diverse. Second, CGFA-CNN achieves comparable accuracies on LIVE Challenge compared
with DB-CNN [38] and ResNet50+ft [34], which are pre-trained on ImageNet [28] databases.
This suggests that CNNs pre-trained on ImageNet [28] could extract relevant features for authentically
distorted images.

https://github.com/Cwp1107/CGFA-CNN
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Table 3. Average SRCC and PLCC results of individual distortion types across ten sessions on LIVE
database. The top three SRCC and PLCC results are highlighted in red, green, and blue, respectively.

SRCC JPEG JP2K WN GB FF

BRISQUE [19] 0.965 0.929 0.982 0.964 0.828

M3 [20] 0.966 0.930 0.986 0.935 0.902

FRIQUEE [21] 0.947 0.919 0.983 0.937 0.884

CORNIA [22] 0.947 0.924 0.958 0.951 0.921

HOSA [23] 0.954 0.935 0.975 0.954 0.954

dipIQ [31] 0.969 0.956 0.975 0.940 —

DIQA [26] 0.961 0.976 0.988 0.962 0.912

TCSN [25] 0.966 0.950 0.979 0.963 0.911

DB-CNN [38] 0.972 0.955 0.980 0.935 0.930

CGFA-CNN 0.973 0.975 0.986 0.968 0.912

PLCC JPEG JP2K WN GB FF

BRISQUE [19] 0.971 0.940 0.989 0.965 0.894

M3 [20] 0.977 0.945 0.992 0.947 0.920

FRIQUEE [21] 0.955 0.935 0.991 0.949 0.943

CORNIA [22] 0.962 0.944 0.974 0.961 0.943

HOSA [23] 0.967 0.949 0.983 0.967 0.967

dipIQ [31] 0.980 0.964 0.983 0.948 —

DIQA [26] — — — — —

TCSN [25] 0.966 0.963 0.995 0.950 0.949

DB-CNN [38] 0.986 0.967 0.988 0.956 0.961

CGFA-CNN 0.972 0.976 0.981 0.974 0.947

Performance on individual distortion types on LIVE, CSIQ, and TID2013 are shown in
Tables 3–5. On LIVE, we also find that CGFA-CNN is superior to other methods in most distortions,
except Fast-fading error, which is not introduced into the pre-training dataset because there is no
open-source or detailed description of it. On CSIQ, CGFA-CNN has obvious advantages compared
with other methods, especially in contrast change and pink noise. On TID2013, CGFA-CNN achieves
state-of-the-art performance in 10 of the 24 distortions and the whole effect standout accuracies
other methods. In addition, we find that CGFA-CNN performs well when the distortion shares
similar artifacts with the distortion synthesized in the pre-training dataset. For example, additive
Gaussian noise, additive noise in color components, and high-frequency noise are all grainy noise;
quantization noise and image color quantization with dither exhibit similar appearances; and Gaussian
blur, image denoising, and sparse sampling and reconstruction all introduce blur effects on the image.
Therefore, although the pre-training dataset constructed in this paper does not cover all distortion
types, CGFA-CNN still achieves impressive gains in performance.
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Table 4. Average SRCC and PLCC results of individual distortion types across ten sessions on CSIQ
database. The top three SRCC and PLCC results are highlighted in red, green, and blue, respectively.

SRCC JPEG JP2K WN GB PN CC

BRISQUE [19] 0.806 0.840 0.732 0.820 0.378 0.804

M3 [20] 0.740 0.911 0.741 0.868 0.663 0.770

FRIQUEE [21] 0.869 0.846 0.748 0.870 0.753 0.838

CORNIA [22] 0.513 0.831 0.664 0.836 0.493 0.462

HOSA [23] 0.733 0.818 0.604 0.841 0.500 0.716

dipIQ [31] 0.936 0.944 0.904 0.932 — —

MEON [48] 0.948 0.898 0.951 0.918 — —

DIQA [26] 0.835 0.931 0.927 0.893 0.870 0.718

DB-CNN [38] 0.940 0.953 0.948 0.947 0.940 0.870

CGFA-CNN 0.950 0.939 0.956 0.941 0.952 0.897

PLCC JPEG JP2K WN GB PN CC

BRISQUE [19] 0.828 0.887 0.742 0.891 0.496 0.835

M3 [20] 0.768 0.928 0.728 0.917 0.717 0.787

FRIQUEE [21] 0.885 0.883 0.778 0.905 0.769 0.864

CORNIA [22] 0.563 0.883 0.778 0.905 0.632 0.543

HOSA [23] 0.759 0.899 0.656 0.912 0.601 0.744

dipIQ [31] 0.975 0.959 0.927 0.958 — —

MEON [48] 0.979 0.925 0.958 0.846 — —

DIQA [26] — — — — — —

DB-CNN [38] 0.982 0.971 0.956 0.969 0.950 0.895

CGFA-CNN 0.972 0.953 0.969 0.955 0.942 0.893

Table 5. Average SRCC results of individual distortion types across ten sessions on TID2013 database.
The top three SRCC results are highlighted in red, green, and blue, respectively.

Method #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12

BRISQUE [19] 0.852 0.709 0.491 0.575 0.753 0.630 0.798 0.813 0.586 0.852 0.893 0.315

M3 [20] 0.748 0.591 0.769 0.491 0.875 0.693 0.833 0.878 0.721 0.823 0.872 0.400

FRIQUEE [21] 0.730 0.573 0.866 0.345 0.345 0.847 0.730 0.764 0.881 0.839 0.813 0.498

CORNIA [22] 0.756 0.750 0.7i 27 0.726 0.769 0.767 0.016 0.921 0.832 0.874 0.910 0.686

HOSA [23] 0.833 0.551 0.842 0.468 0.897 0.809 0.815 0.883 0.854 0.891 0.730 0.710

MEON [48] 0.813 0.722 0.926 0.728 0.911 0.901 0.888 0.887 0.797 0.860 0.891 0.746

DIQA [26] 0.915 0.755 0.878 0.734 0.939 0.843 0.858 0.920 0.788 0.892 0.912 0.861

DB-CNN [38] 0.790 0.700 0.826 0.646 0.879 0.708 0.825 0.859 0.865 0.894 0.916 0.772

CGFA-CNN 0.812 0.804 0.851 0.845 0.910 0.794 0.867 0.933 0.866 0.914 0.922 0.763

Method #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24

BRISQUE [19] 0.359 0.145 0.224 0.124 0.040 0.109 0.724 0.008 0.685 0.764 0.616 0.784

M3 [20] 0.731 0.190 0.318 0.119 0.224 -0.121 0.701 0.202 0.664 0.886 0.648 0.915

FRIQUEE [21] 0.660 0.076 0.032 0.254 0.585 0.589 0.704 0.318 0.641 0.768 0.737 0.891

CORNIA [22] 0.805 0.286 0.219 0.065 0.182 0.081 0.644 0.534 0.862 0.272 0.792 0.862

MEON [48] 0.716 0.116 0.500 0.177 0.252 0.684 0.849 0.406 0.772 0.857 0.779 0.855

DIQA [26] 0.812 0.659 0.407 0.299 0.687 -0.151 0.904 0.655 0.930 0.936 0.756 0.909

DB-CNN [38] 0.773 0.270 0.444 0.646 0.548 0.631 0.711 0.752 0.860 0.833 0.732 0.902

CGFA-CNN 0.757 0.335 0.649 0.441 0.573 0.657 0.819 0.785 0.897 0.940 0.711 0.938
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4.4. Cross-Database Experiment

To analyze the generalization ability of the proposed method, we trained CGFA-CNN on one
full database and evaluated it on another database. Specifically, a model was trained on CSIQ and
evaluated on either LIVE or TID2013. The results are reported in Table 6. It can be concluded that
CGFA-CNN can easily be generalized to distortions that have not been seen during training.

Table 6. SRCC comparison on cross-database. The top three SRCC
results are highlighted in red, green, and blue, respectively.

Method
CSIQ TID2013

LIVE TID2013 LIVE CSIQ

BRISQUE [19] 0.847 0.454 0.790 0.590

M3 [20] 0.797 0.328 0.873 0.605

FRIQUEE [21] 0.879 0.463 0.755 0.635

CORNIA [22] 0.853 0.312 0.846 0.672

HOSA [23] 0.773 0.329 0.594 0.462

DB-CNN [38] 0.877 0.540 0.891 0.807

CGFA-CNN 0.891 0.533 0.898 0.774

4.5. Comparison among Different Experimental Settings

In this section, we first work with the performance of different feature aggregation layers
investigated in this paper and number of GMM components K. Experiments were conducted on
LIVE and the results are shown in Figure 4. We observe that SRCC gradually increases and eventually
keeps stability as K increases. Besides, CGFA-CNN FV, CGFA-CNN VLAD, and CGFA-CNN BOW
attain highly competitive prediction accuracy when K is set to 32, 64 and 1024, respectively. By contrast,
CGFA-CNN FV is superior to CGFA-CNN VLAD and CGFA-CNN BOW.
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0.95

0.96

0.97

0.98

2 4 8 16 32 64 128 256 512 1024 2048 4096
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O

C
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The number of cluster centers-K

FV VLAD BOW

Figure 4. Relationship between the SRCC on LIVE of different feature aggregation layer and the
number of K.

Additionally, we report ablation studies to evaluate the design rationality of CGFA-CNN and
the following comparative set of experiments were conducted: (1) to evaluate the effectiveness of
the proposed FV layer, we used the maximum pooling (denoted as CGFA-CNN (MaxPool)) and
average pooling (denoted as CGFA-CNN (AvgPool)) instead; (2) to examine the validity of the CGU
described in this work, we predicted the quality score directly by regressing the output feature vector
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without CGU (denoted as CGFA-CNN (w/o CGU)); (3) to verify the necessity of the hierarchical
feature extraction, we extracted features only from high-level (Conv 5-2 of shared layers and Conv
4-3 of VGG-16) convolutional layers as descriptors (denoted as CGFA-CNN (single feature)); (4) to
discuss the optimal settings of for feature aggregation layer, we set the BOW with K = 1024 (denoted
as CGFA-CNN (BOW layer (K = 1024))), VLAD with K = 64 (denoted as CGFA-CNN (VLAD layer
(K = 1024))), and FV with K = 32 (denoted as CGFA-CNN (proposed)); and (5) to demonstrate the
prediction accuracies on authentic distortions by involving VGG-16, we only included Sub-Network I
pre-trained on self-built dataset to extract features (denoted as CGFA-CNN (w/o VGG-16)). The results
are demonstrated in Table 7. We empirically found that the proposed CGFA-CNN could achieve
state-of-the-art prediction accuracies on both synthetic and authentic distortion image quality databases.
Besides, CGFA-CNN (w/o VGG-16) can only deliver promising performance on synthetic databases
and its results on LIVE Challenge are inferior to CGFA-CNN (proposed), suggesting that authentic
distortions cannot be fully fitted by synthetic distortions.

Table 7. SRCC with different settings.

Method LIVE CSIQ TID2013 LIVE Challenge

CGFA-CNN (MaxPool) 0.915 0.893 0.778 0.766

CGFA-CNN (AvgPool) 0.909 0.876 0.755 0.761

CGFA-CNN (w/o CGU) 0.948 0.919 0.783 0.799

CGFA-CNN (single feature) 0.931 0.890 0.757 0.765

CGFA-CNN (BOW layer (K = 1024)) 0.955 0.936 0.808 0.791

CGFA-CNN (VLAD layer (K = 64)) 0.966 0.945 0.819 0.810

CGFA-CNN (w/o VGG-16) 0.970 0.950 0.836 0.672

CGFA-CNN (proposed) 0.973 0.953 0.841 0.837

5. Conclusions

In this work, we propose an end-to-end learning framework for BIQA based on classification
guidance and feature aggregation, which is named as CGFA-CNN. In the fine-tuning phase, except for
the shared convolutional layers, the rest of Sub-Network I only participates in the forward propagation,
and the parameters are fixed. The fused feature group is aggregated and encoded by the FV layer to
obtain a fisher vector. Then, the fisher vector is corrected by the CGU to obtain a quality-ware feature,
which is mapped to a quality score by the regression model. In the test phase, only forward propagation
is required to obtain the quality score. The results on the four publicly IQA databases demonstrate
that the proposed method indeed benefited image quality assessment. However, CGFA-CNN is not
a unified learning framework because it takes two steps to pre-train and fine-tune. The promising
future direction is to optimize CGFA-CNN for both distortion identification and quality prediction
at the same time. For example, we think that the autoencoder method could be designed to perform
k-mean clustering. A VAE framework can be introduced to decode. This approach can replace the
two-stage procedure. We also look forward to designing a potential objective function that could in
principle reduce the necessity to rely on external procedures.

CGFA-CNN is versatile and extensible. For example, more distortion types and levels can
be added to the pre-training dataset, and it could fuse with other approaches to achieve a new
backbone network.
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