A Blind Calibration Model for I/Q Imbalances of Wideband Zero-IF Receivers
Abstract
:1. Introduction
2. I/Q Imbalance Analysis
3. I/Q Imbalance Calibration Model
3.1. Data Preprocessing
3.2. I/Q Imbalance Estimation
- Among the calibration points on 0 – fs/2 (0 – N/2), the top N1 points with the largest amplitude value |X(k)| of the calibration points are chosen as the signal points .
- The symmetrical calibration points on fs/2 – fs (N/2 – N) are also signal points.
- Except for the signal points, the other calibration points are noise points.
- The symmetry points of the 0 point and the N/2 point are themselves.
- Separating the frequency-independent imbalance parameter φ and the frequency-dependent imbalance parameter θ(k) in Equation (9).
- When calculating M(k) and θ(k), reduce the error caused by useless noise points.
- Separating the calibration points can reduce the filter length (reduce from N to 2N1) and resource consumption.
3.3. I/Q Imbalance Compensation
4. Simulations
- Case 1: hI = [0.98, 0.03], hQ = [1, −0.005].
- Case 2: hI = [0.01, 1, 0.01], hQ = [0.01, 1, 0.2].
5. Experiments
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meshram, S.; Kolhare, N. The advent software defined radio: FM receiver with RTL SDR and GNU radio. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27 November 2019; pp. 230–235. [Google Scholar]
- Wicaksono, A.; Mauludiyanto, A.; Hendrantoro, G. An HF digital communication system based on software-defined radio. In Proceedings of the 2020 International Conference on Smart Technology and Applications (ICoSTA), Surabaya, Indonesia, 20 February 2020; pp. 1–5. [Google Scholar]
- Gao, Y.; Jiang, W. Wideband photonic RF transceiver with zero-if architecture. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; pp. 1–4. [Google Scholar]
- Mabrouk, K.; Huyart, B.; Neveux, G. 3-D aspect in the five-port technique for zero-IF receivers and a new blind calibration method. IEEE Trans. Microw. Theory Tech. 2008, 56, 1389–1396. [Google Scholar] [CrossRef]
- McLaurin, D.J. A highly reconfigurable 65nm CMOS RF-to-bits transceiver for full-band multicarrier TDD/FDD 2G/3G/4G/5G macro basestations. In Proceedings of the 2018 IEEE International Solid–State Circuits Conference–(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 162–164. [Google Scholar]
- DeWitt, J.J. Modelling Estimation and Compensation of Imbalances in Quadrature Transceivers. Ph.D. Thesis, Cape Town University of Stellenbosch, Stellenbosch, South Africa, 2011. [Google Scholar]
- Chia-Ling, L. Impacts of I/Q imbalance on QPSK-OFDM-QAM detection. IEEE Trans. Consum. Electron. 1998, 44, 984–989. [Google Scholar] [CrossRef]
- Faulkner, M.; Mattsson, T.; Yates, W. Automatic adjustment of quadrature modulators. Electron. Lett. 1991, 27, 214–216. [Google Scholar] [CrossRef]
- Valkama, M.; Renfors, M.; Koivunen, V. Compensation of frequency-selective I/Q imbalances in wideband receivers: Models and algorithms. In Proceedings of the 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC’01). Workshop Proceedings (Cat. No.01EX471), Taiwan, China, 20–23 March 2001; pp. 42–45. [Google Scholar]
- Li, W.; Zhang, Y.; Huang, L.; Cosma, J.; Maple, C.; Xiong, J. Self-IQ-demodulation based compensation scheme of frequency-dependent IQ imbalance for wideband direct-conversion transmitters. IEEE Trans. Broadcast. 2015, 61, 666–673. [Google Scholar] [CrossRef]
- Lei Zhigang, L.; Xiantao, C.; Shaoqian, L. Golay sequence based time-domain compensation of frequency-dependent I/Q imbalance. China Commun. 2014, 11, 1–11. [Google Scholar]
- Lin, H.; Zhu, X.; Yamashita, K. Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance. IEEE Trans. Commun. 2010, 58, 448–452. [Google Scholar] [CrossRef]
- Xing, G.; Shen, M.; Liu, H. Frequency offset and I/Q imbalance compensation for direct-conversion receivers. IEEE Trans. Wireless Commun. 2005, 4, 673–680. [Google Scholar] [CrossRef]
- Tarighat, A.; Bagheri, R.; Sayed, A.H. Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans. Signal Process. 2005, 53, 3257–3268. [Google Scholar] [CrossRef] [Green Version]
- Sung, K.Y.; Chao, C.C. Estimation and compensation of I/Q imbalance in OFDM direct-conversion receivers. IEEE J. Sel. Topics Signal Process. 2009, 3, 438–453. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.B.; Li, C.X.; Zhang, R.S. Two-dimensional decomposition LUT correction for I/Q imbalance in reconfigurable wideband receivers. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- De Witt, J.J.; Van Rooyen, G. A blind I/Q imbalance compensation technique for direct-conversion digital radio transceivers. IEEE Trans. Veh. Technol. 2009, 58, 2077–2082. [Google Scholar] [CrossRef]
- Lin, H.; Thaiupathump, T.; Kassam, S.A. Blind separation of complex I/Q independent sources with phase recovery. IEEE Signal Process. Lett. 2005, 12, 419–422. [Google Scholar] [CrossRef]
- Valkama, M.; Renfors, M.; Koivunen, V. Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Trans. Signal Process. 2001, 49, 2335–2344. [Google Scholar] [CrossRef]
- Zekkari, C.; Djendi, M.; Guessoum, A. Efficient adaptive filtering algorithm for IQ imbalance compensation Tx/Rx systems. IET Signal Process. 2018, 12, 566–573. [Google Scholar] [CrossRef]
- Ellingson, S.W. Correcting IQ Imbalance in Direct Conversion Receivers; Virginia Polytechnic Institute and State University: Virginia, VA, USA, 2003; pp. 25–32. [Google Scholar]
- Rykaczewski, P.; Jondral, F. Blind I/Q imbalance compensation in multipath environments. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 29–32. [Google Scholar]
- Anttila, L.; Valkama, M. Blind signal estimation in widely-linear signal models with fourth-order circularity: Algorithms and application to receiver I/Q calibration. IEEE Signal Process. Lett. 2013, 20, 221–224. [Google Scholar] [CrossRef]
- Anttila, L.; Valkama, M.; Renfors, M. Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 2008, 57, 2099–2113. [Google Scholar] [CrossRef]
- Valkama, M.; Renfors, M.; Koivunen, V. Blind signal estimation in conjugate signal models with application to I/Q imbalance compensation. IEEE Signal Process. Lett. 2005, 12, 733–736. [Google Scholar] [CrossRef]
- Nam, W.; Roh, H.; Lee, J.; Kang, I. Blind adaptive I/Q imbalance compensation algorithms for direct-conversion receivers. IEEE Signal Process. Lett. 2012, 19, 475–478. [Google Scholar] [CrossRef]
- Song, P.; Zhang, N.; Zhang, H.; Gong, F. Blind estimation algorithms for I/Q imbalance in direct down-conversion receivers. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018. [Google Scholar]
- Petit, M.; Springer, A. Analysis of a properness-based blind adaptive I/Q filter mismatch compensation. IEEE Trans. Wirel. Commun. 2016, 15, 781–793. [Google Scholar] [CrossRef]
- Tsai, Y.; Yen, C.; Wang, X. Blind frequency-dependent I/Q imbalance compensation for direct-conversion receivers. IEEE Trans. Wirel. Commun. 2010, 9, 1976–1986. [Google Scholar] [CrossRef]
- Wei, A.; Brian, R.; Richard, P.S. Real-time I/Q Imbalance Correction for Wide-Band RF Receiver. U.S. Patent 10,050,744 B2, 14 August 2018. [Google Scholar]
- Wei, A.; Yosef, S. System and Methods for Narrowband Signal Quadrature Error Correction. U.S. Patent 9,306,782 B2, 5 April 2019. [Google Scholar]
- Lin, H.; Yamashita, K. Time domain blind I/Q imbalance compensation based on real-valued filter. IEEE Trans. Wirel. Commun. 2012, 11, 4342–4350. [Google Scholar] [CrossRef]
- Inamori, M.; Bostamam, A.M.; Sanada, Y.; Minami, H. IQ imbalance compensation scheme in the presence of frequency offset and dynamic DC offset for a direct conversion receiver. IEEE Trans. Wirel. Commun. 2009, 8, 2214–2220. [Google Scholar] [CrossRef]
- Alan, V.; Oppenheim Alan, S.; Willsky, S.; Hamid, N. Signals and Systems, 2nd ed; Publishing House of Electronics Industry: Bejing, China, 2013; p. 238. [Google Scholar]
- Hsu, C.; Cheng, R.; Sheen, W. Joint least squares estimation of frequency, DC offset, I-Q imbalance, and channel in MIMO receivers. IEEE Trans. Veh. Technol. 2009, 58, 2201–2213. [Google Scholar] [CrossRef]
- Wang, E.; Nian, G.; Wang, K. Euler’s formula in computing hyper-complex fourier transform. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; pp. 755–759. [Google Scholar]
- Ingle, V.K.; Proakis, J.G. Digital Signal Processing Using MATLAB; Xi’an Jiaotong University Press: Xi’an, China, 2018; p. 1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Wang, Z.; Mo, J.; Wang, C.; Liu, J.; Yu, F. A Blind Calibration Model for I/Q Imbalances of Wideband Zero-IF Receivers. Electronics 2020, 9, 1868. https://doi.org/10.3390/electronics9111868
Peng X, Wang Z, Mo J, Wang C, Liu J, Yu F. A Blind Calibration Model for I/Q Imbalances of Wideband Zero-IF Receivers. Electronics. 2020; 9(11):1868. https://doi.org/10.3390/electronics9111868
Chicago/Turabian StylePeng, Xiaoye, Zhiyu Wang, Jiongjiong Mo, Chenge Wang, Jiarui Liu, and Faxin Yu. 2020. "A Blind Calibration Model for I/Q Imbalances of Wideband Zero-IF Receivers" Electronics 9, no. 11: 1868. https://doi.org/10.3390/electronics9111868
APA StylePeng, X., Wang, Z., Mo, J., Wang, C., Liu, J., & Yu, F. (2020). A Blind Calibration Model for I/Q Imbalances of Wideband Zero-IF Receivers. Electronics, 9(11), 1868. https://doi.org/10.3390/electronics9111868