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Abstract: Currently, deploying fixed terrestrial infrastructures is not cost-effective in temporary
circumstances, such as natural disasters, hotspots, and so on. Thus, we consider a system of
caching-based UAV-assisted communications between multiple ground users (GUs) and a local
station (LS). Specifically, a UAV is exploited to cache data from the LS and then serve GUs’ requests to
handle the issue of unavailable or damaged links from the LS to the GUs. The UAV can harvest solar
energy for its operation. We investigate joint cache scheduling and power allocation schemes by using
the non-orthogonal multiple access (NOMA) technique to maximize the long-term downlink rate.
Two scenarios for the network are taken into account. In the first, the harvested energy distribution
of the GUs is assumed to be known, and we propose a partially observable Markov decision process
framework such that the UAV can allocate optimal transmission power for each GU based on proper
content caching over each flight period. In the second scenario where the UAV does not know the
environment’s dynamics in advance, an actor-critic-based scheme is proposed to achieve a solution
by learning with a dynamic environment. Afterwards, the simulation results verify the effectiveness
of the proposed methods, compared to baseline approaches.

Keywords: unmanned aerial vehicle; content caching; non-orthogonal multiple access;
power allocation; reinforcement learning; energy harvesting

1. Introduction

Lately, wireless communication has been evolving not only for high throughput, but also
for ultra-reliability, efficient energy consumption, and to support highly diversified applications
with heterogeneous requirements for quality of service (QoS) [1]. To this end, extensive research
efforts have mainly been devoted to fixed terrestrial infrastructures such as ground base stations
(BSs), access points, and relays, which generally restrict their capability to cost-effectively meet
the ever-increasing multifarious traffic demand. In order to address this problem, there is a great
deal of growing interest in providing wireless connectivity from the sky under various airborne
platforms, such as unmanned aerial vehicles (UAVs) [2], balloons [3], and helikites [4]. Currently,
UAV’s classification has a broad diversity. It was classified according to the basis of weight, altitude,
and range, wings and rotors, and their application [5]. By leveraging low-altitude UAVs (i.e., less than
about one kilometer above the ground [5]), the wireless communication system can provide swift
deployment and high flexibility in mobility [2]. UAVs can be used as a flying base station to handle
short-term, erratic traffic demand in hotspots, such as a concerts and sports events, or through data
offloading for congestion mitigation [6,7]. In other words, the UAV can provide additional aid as
either a stand-alone aerial BS [4,8], or it can serve as a part of a heterogeneous network in a multi-tier

Electronics 2020, 9, 1961; doi:10.3390/electronics9111961 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5084-3044
https://orcid.org/0000-0003-3648-6527
https://orcid.org/0000-0003-0909-3269
https://orcid.org/0000-0001-7476-8782
http://www.mdpi.com/2079-9292/9/11/1961?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111961
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1961 2 of 28

airborne cellular network [6]. It is conceivable that thanks to UAV-enabled wireless communication,
QoS can be enhanced in terms of better channel conditions, guaranteeing line-of-sight (LOS) links,
faster deployment, and better maneuverability. Moreover, it can be applied in many practical scenarios,
such as public safety communications [9], Internet of Things (IoT) communications [10], and massive
machine-type communications [11]. For natural disaster scenarios, the authors in [12] investigated
the UAV-enabled method to search for survivors after disasters, while the deployment tool for the
emergency networks was proposed by using the UAVs in a realistic disaster scenario in [13]. With the
above apparent advantages, it is foreseen that UAV-enabled communications will promisingly play a
more important role in future wireless communication systems.

1.1. Related Works

In recent years, the reputation of non-orthogonal multiple access (NOMA) has risen intensively as
a promising solution to critical issues in next-generation wireless systems [14]. By allowing multiple
devices to operate with the same frequency, time, or code resources, the NOMA technique has
exhibited improved spectral efficiency and balanced and fair access, compared to orthogonal multiple
access (OMA) approaches [15,16]. It should be noted that the NOMA method is typically based on
superposition coding (SC) at the transmitters and successive interference cancellation (SIC) at the
receivers. Many research efforts have paid attention to combinations of NOMA and UAV-enabled
wireless communications technologies [17–20]. In [17], the authors proposed multiple access mode
selection (NOMA/OMA) based on conditions for a better outage probability in a UAV-enabled
downlink wireless network. Sohail et al. [18] investigated a power allocation approach to maximize
the sum rate of the network by reducing the energy expense of the UAV, and numerical results were
obtained by simulating various deployment environments, such as rural, urban, and dense-urban.
In [19], an efficient joint placement and power allocation method for a single UAV providing data
services as a base station for multiple ground users was investigated to improve the total data rate of
the UAV-assisted NOMA network. Besides, the authors in [20] introduced a comprehensive framework
for UAV base station cooperation in UAV-assisted NOMA networks, where the UAV and BS cooperate
with each other to serve ground users simultaneously. As a result, by jointly relying on the UAV
trajectory and NOMA precoding optimization, the proposed scheme demonstrated large throughput
in the system. In [21], the authors proposed the UAV-aided scheme to guarantee secure transmission
for the ground receivers. In the following, we discuss solutions among research efforts dealing with
issues of UAV communication systems.

1.1.1. UAV Communications Using Data Caching

During the past few decades, the driving forces behind traffic development have shifted from
connection-centric communication demand (e.g., text messages and smart phones) to content-centric
communication demand (e.g., popular music or video streaming). Although small base stations
are densely employed to accommodate the ever-increasing traffic demand, a heavy traffic burden is
still imposed on the backhaul links. One potential solution is to properly cache popular content at
the network edge (i.e., UAVs, D2D devices, or relays) to serve the same requests of users without
duplicate transmissions via the backhaul links. More explicitly, in UAV-assisted edge caching,
UAVs generally cache the content via a limited wireless backhaul link and then distribute it to ground
users. In this regard, many contributions to caching in UAV-assisted communication systems have been
made [22–26]. In [22], UAVs were dispatched to store enhancement layer segments of video beforehand
and then provided the transmissions to users who requested the videos. Chen et al. [23] proposed
appropriate content caching during off-peak times in a cloud radio access network, which is based
on the user’s behavior prediction. In [24], an effective liquid state machine learning approach was
investigated to predict the content-request distribution of users in Long-Term Evolution-Unlicensed
(LTE-U) UAV transmissions systems while having only limited information on the network states.
The proposed algorithm also enables UAVs to optimally allocate the bandwidth over licensed and
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unlicensed bands and to satisfy the queue stability requirements of each user. In addition, local content
caching at the ground users (GUs) was also studied [25,26]. In particular, the authors in [25] proposed
a solution to deal with the endurance issue at the UAV in which the ground users cooperatively cache
files delivered by the UAV. Then, the files are retrieved either from its local cache or neighbor cache.
Meanwhile, a joint UAV-trajectory and time-scheduling approach was proposed in [26] to maximize
the secrecy rate in UAV-relaying systems.

1.1.2. UAV Communications Using Energy Harvesting

From the standpoint of wireless communication, UAV-enabled communication system
operations are quite energy consuming owing to the support of the UAV’s propulsion in the air,
the communications with users, and application-based purposes. Therefore, UAVs usually have
very limited endurance due to energy constraints. To address this issue, several methods have been
introduced to alleviate UAVs energy consumption by, for example, reducing the UAV’s weight [27]
and planning energy-efficient UAV flight paths [28,29]. The authors in [28] investigated a path
planning algorithm that minimizes energy consumption while satisfying coverage and resolution.
Meanwhile, an efficient approach was proposed to maximize the UAV’s energy efficiency under
the constraints on the trajectory [29]. However, the energy supply for the UAVs is still basically
unsustainable due to the limited battery capacity. Thus, the fundamental UAV endurance problem
remains unresolved. Currently, energy harvesting of radio frequency (RF) signals has attracted
increasing interest in UAV communications for the purpose of prolonging network lifetime or
maximizing system throughput [30–32]. In [30], the authors designed a power splitting-based relaying
scheme for a UAV capable of energy harvesting (EH) and information forwarding to optimize the
network throughput. Similarly, in order to save energy in the UAV’s battery and to enhance flight
endurance, Yang et al. [31] applied EH technology to the UAV for collecting RF energy from the
ground base station, and an outage probability analysis in terms of urban environment parameters
was derived. Apart from RF-powered UAV communication systems, other energy resources for
UAV’s operation have also been applied by using solar power [32–35] or laser power [36]. In [32],
the UAV was equipped with solar panels to convert the harvested solar energy to electrical energy
with the aim of enabling long endurance flights. The authors in [33] proposed the optimal trajectory
planning to maximize the harvested solar energy. However, the design did not consider the impact
of harvested solar energy for communications. Sun et al. [34] investigated the resource allocation for
multi-channel solar-powered UAV systems to maximize the throughput. Nevertheless, their constant
aerodynamic power consumption model may not be applied to the realistic scenarios since the
aerodynamic power consumption significantly depends on the UAV’s flight velocity. Moreover,
to satisfy the QoS requirements of the users, the authors in [35] proposed joint trajectory and resource
allocation algorithms to maximize the system sum throughput. However, the designs for UAV
communication systems in [34,35] may lead to the high mass and size overheads of the solar-powered
UAVs. Furthermore, using the OMA technique can result in a low spectrum efficiency of the massive
access scenarios.

1.2. Motivations and Contributions

To the best of our knowledge, in most existing works on EH-powered wireless communication
systems, information about the energy harvesting arrival is assumed to be known. Thus, it is not
always available for designing appropriate solutions to the real wireless UAV communication issues.
Moreover, the consumption models for the propulsion energy of the UAVs are quite sophisticated and
critically depend on many factors such as the UAV’s trajectory, velocity, and acceleration [29,34,35].
This can increase the complexity of developing contemporary schemes. On the other hand, establishing
the schemes using only harvested energy for both wireless communications and flight operations
might not optimize EH-powered UAV communication performance if the UAV carries a high energy
consumption aerial base station or if the harvested energy arrival rate is small [34–37]. By combining



Electronics 2020, 9, 1961 4 of 28

all these issues, devising a method to optimize the service performance of the EH-powered UAV to
multiple ground users is still a very challenging task, especially in unexpected circumstances such as
temporary disaster areas or complex terrains.

Motivated by the above analysis, in this paper, we propose two joint caching and power allocation
schemes for solar-powered, UAV-enabled NOMA communication systems under two scenarios. In the
first scenario, the system has the prior knowledge of the harvested energy distribution of the UAV.
On the other hand, in the second scenario, we consider the case that the system does not know the
harvested energy distribution of the UAV. The GUs require the number of data items stored in the
local station. Nevertheless, there are no available direct links between the local station and the GUs
due to unexpected or emergency circumstances such as natural disasters, obstacles, and long-distance
transmissions. The deployment of terrestrial infrastructure can be infeasible and challenging owing
to sophisticated environments, as well as high operational costs. Thus, the UAV is employed to
cache part of the content from the local station and deliver data to the GUs. In this work, the UAV
can harvest solar energy from the ambient environment. However, the solar panel equipped on the
UAV cannot sufficiently provide long-term operation due to its large mass, high mobility energy,
and communication energy. To address this problem, the battery is fully recharged at the local station
(LS) by the grid power whenever the UAV returns to the station.

There are two portions in the battery: mobility capacity used for flight operation and transmission
capacity used for data transmissions. Mobility capacity representing the space needed for flight energy
occupies a large portion of the battery. Therefore, the remaining space required for data transmissions
(i.e., transmission capacity) in the battery is significantly limited. The amount of initial energy for data
transmissions in the battery is not enough for providing the higher data rate to the GUs in the long
term. It is supposed that the UAV always harvests the energy during its flight. Hence, during the
serving time of each round, the UAV can leverage harvested solar energy to transmit data to the GUs.
The mobility energy is assumed to be preserved enough in each round; thus, the harvested energy used
for data transmission has a higher priority during the serving time. This means the harvested energy
is used for replenishing the transmission capacity before it is used to charge the mobility capacity
during the serving time. Besides, the battery is always recharged by the harvested energy during the
non-serving time to reduce the grid power consumption required for charging and additional charging
time when the UAV is at the LS. In other words, the harvested energy is stored in the on-board battery,
which can be used not only for providing data transmission services to GUs during the serving time
(i.e., the duration time that the UAV flies around the circular trajectory), but also for recharging the
battery for its flight operation during the non-serving time (the time when the UAV approaches the LS
and the time when the UAV goes to the serving area). Therefore, it is worth applying solar harvesting
to the UAV-based communication system.

Instead of using conventional orthogonal multiple access (OMA) (e.g., TDMA, FDMA, CDMA),
which causes low spectrum efficiency, the NOMA technique is applied to enhance the data rate of
the UAV system in which the UAV can simultaneously transmit data to the GUs. In this paper,
there are three phases of the UAV’s operation: (1) performing the caching update process and then
approaching the serving area, (2) flying along the circular trajectory while doing the communication
process, and (3) returning to the LS for re-caching the files and recharging the battery, as shown
in Figure 1a. The caching update process is implemented at the local station in which the UAV
pre-caches part of the content from the local station and replenishes the battery for the next round.
Then, it approaches its serving area to start flying along the predefined circular trajectory where the
GUs can be served. Next, the communication process of the UAV will be executed in which the UAV
can transmit data based on the content requests of the GUs during the UAV’s flight following the
predefined circular trajectory. After finishing a circular trajectory flight period, the communication
process will temporarily be terminated, and the UAV needs to go back to the LS for re-caching the
content and battery recharging. These processes will repeat until the UAV satisfies the GU’s requests.
In this paper, using solar harvesting for the UAV will help relieve the burden of grid power-based
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energy consumption. Furthermore, finding the proper solution for the solar-powered UAV to provide
the energy-efficient communications is still a challenging task under the limited energy harvesting
technology. This can make the solar-powered UAV system more applicable to the real wireless system
scenarios. In a nutshell, the main contributions can be summarized as follows.

• Firstly, we study a model of a cache-enabled downlink UAV communication network.
Ground users request data items stored in the library of a local station, but direct links are
not available. Thus, the solar-powered UAV is employed to cache content from the local station
and then approach distant users to execute data transmissions using NOMA technology. However,
the UAV is equipped with both limited battery capacity and cache capacity. Therefore, we aim to
efficiently allocate the harvested energy to the GUs for the long-term operation.

• Secondly, we formulate the problem of the sum data rate maximization as the framework
of a partially observable Markov decision process (POMDP). An iteration-based dynamic
programming approach is proposed to obtain the optimal policy for the UAV in order to maximize
the system data rate under the assumption that the UAV has prior environment information.
With this method, the UAV can efficiently cache the content from the local station at the beginning
of each flight period and allocate an appropriate portion of transmission power for the GUs
throughout every time slot under energy and cache constraints.

• Thirdly, we present another approach using an actor-critic-based reinforcement learning algorithm
to deal with the problem in the scenario where the UAV does not have information on environment
dynamics in advance. With the actor-critic-based method, the UAV can interact with the
environment and gradually learn the optimal policy as time goes on, based on trial-and-error
without prior environment knowledge.

• Lastly, extensive numerical results are provided to validate the proposed algorithm’s performance
through various network parameters. We show that, with joint caching and power allocation,
the two proposed schemes are superior to the benchmark schemes where the UAV greedily
utilizes transmission power without long-term considerations.
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Figure 1. (a) The considered network with one UAV (unmanned aerial vehicles) and multiple ground
users (GUs). (b) The time-frame structure.
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The remainder of this paper is organized as follows. The model for the EH-powered UAV
downlink communication system is presented in Section 2. Next, we describe the proposed
POMDP-based joint cache scheduling and power allocation scheme in Section 3, and the proposed
actor-critic-based learning framework is presented in Section 4. The discussions on the simulation
results are elaborated in Section 5. Finally, we conclude this work in Section 6.

2. System Model

We consider a caching-based UAV-enabled downlink wireless transmission system adopting
non-orthogonal multiple access and content caching technologies where a UAV, F, is employed as a
mobile base station to serve a group of I ground users, denoted by I = {1, 2, ..., I}. We assume GUs do
not have direct links to the local station (LS) where all content that the GUs requests is stored. This kind
of network scenario can be a practical instance in suburban environments where the deployment
of communication infrastructures is still restricted or in urban environments where damage of the
infrastructures may happen due to natural disasters. Thus, the remote users may not get services from
a local station. For that reason, the UAV is dispatched to obtain cached contents from the LS, and it
then flies along a predefined trajectory to transmit the requested data to GUs. In the existing works,
given the user distribution in the network, many effective methods have been used to optimize the
UAV’s placement and UAV’s trajectory [19,20]. Besides, the approach to maximize the coverage area of
the UAVs was well studied in [8]. Therefore, in this paper, we do not optimize the flight trajectory and
coverage region of the UAV in the network. Instead, we aim to maximize the long-term throughput
based on the predefined trajectory. For that reason, we assume that the circular trajectory of the UAV’s
flight is known based on the locations of the GUs, and the coverage region of F is large enough to
guarantee the connection to all GUs by following the predefined circular trajectory with a reasonable
radius and altitude. This means that the GUs are still in the UAV’s coverage during the UAV’s circular
flight such that the GUs always get the data delivery from F. It is noteworthy that the system still can
be well applied for other flight trajectories of the UAV. Our main goal is to allocate the appropriate
transmission power to the GUs and schedule data caching of the UAV under a predefined trajectory to
obtain the maximal long-term data rate of the system.

Each data transmission is executed in every time slot t, and meanwhile, each caching action is
executed at the beginning of a flight period, which is determined as a round in which the UAV flies to
the serving area and then flies along its predefined circular trajectory and returns to the LS. However,
due to a limited cache capacity, it can only periodically cache part of the content from the LS at the
beginning of every flight period. The GUs are assumed to have a fixed power supply, whereas the UAV
has a limited-capacity battery. Hence, UAV F is equipped with an energy harvester to scavenge solar
energy from the ambient environment to replenish its battery. We assume the UAV works in an ideal
environment without any environment factors (e.g., wind). Suppose that the UAV continuously flies
at a constant velocity, vF, in a circular trajectory with radius rF, at altitude hF, and the UAV position
repeats every TF (seconds). Thus, the flight length for the circular trajectory is defined as TF = 2πrF

vF
,

and the number of time slots discretized in each circular trajectory length is determined as NF = TF
T ,

where T is the time slot duration. Note that the UAV’s location is assumed to be unchanged during
each time slot when T is chosen sufficiently small in the system [35].

Without loss of generality, we consider three-dimensional (3D) Cartesian coordinates (x, y, z)
where (x, y, 0) represents the ground plane and z is the altitude. The location of GUi is denoted as
pi = (xi, yi, 0) , i ∈ I. In fact, when disasters occur, the network infrastructure may be corrupted.
However, the GUs can still position their location easily thanks to a GPS decoder, which is integrated
into most mobile devices currently. Thus, the GUs can report their locations to the UAV such that
the UAV can calculate the flight trajectory to serve the GUs’ requests. For the devices without GPS,
the UAV can still estimate the GUs locations based on the received signal strength indicator (RSSI),
which is well studied in the literature [38,39]. Furthermore, when the locations of the users are known,
determining the flight trajectory of the UAV was proposed in [20]. In this paper, we do not focus on
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an approach to obtain the GUs’ locations and the UAV’s trajectory. Instead, we mainly focus on the
power allocation with data caching at the UAV to maximize the long-term data rate of the system.
Therefore, it is assumed that the GUs’ locations and the UAV’s trajectory are known in advance.
Herein, we establish the formulation for the circular trajectory of the UAV in the serving area, which is
defined as the region where the GUs are located. The 3D setup of the considered network consisting
of the LS, the UAV, and multiple GUs is illustrated in Figure 1a. Point O′, located at pO′ = (0, 0, hF),
is the center of the circular trajectory with radius rF, in which F flies. Let ω denote the angle of the
circle of F’s location with respect to the x-axis. The location of F at time slot t can be determined as
pF(t) = (xF(t), yF(t), zF (t)) = (rF cos ω (t) , rF sin ω (t) , hF). The time frame structure of the system is
illustrated in Figure 1b. The time frame is divided into four phases: GUs’ requests (tre), UAV’s decision
(tde), data transmission (ttr), and information update (tup). At the start of a time slot, the GUs will
send data item requests to F. Then, a decision will be determined at F by allocating the transmission
power to the GUs based on the current state of the system. Subsequently, data transmission will
be conducted according to the assigned power portions for the GUs in the data transmission phase.
Finally, the system will update its state at the end of the time slot.

2.1. Channel and Transmission Models

According to the above network setup, the time-dependent distance between F and GUi can be
calculated as:

dFUi (t) = ‖pF(t)− pi‖, (1)

where ‖.‖ denotes the Euclidean norm operation. In practice, the air-to-ground wireless channels from
the UAV to GUs are normally dominated by LOS links, where the quality of the channel only depends
on communication distance [40]. Moreover, UAV-assisted information dissemination is more necessary
in rural regions than in urban regions [2]. In rural regions, building density is very low, and thus,
the probability of non-line-of-sight links is also low. Therefore, in this paper, wireless channels from F
to the GUs are assumed to follow a free-space path loss model. As a consequence, channel power gain
from F to GUi at time slot t can be expressed as [41]:

hFUi (t) = β0d−α
FUi

(t) =
β0

‖pF(t)− pi‖α , (2)

where β0 represents the channel power gain at the reference distance, d0 = 1 m, which depends on the
carrier frequency, antenna gain, etc.; and α is the path loss exponent. Suppose that F has access to the
flight control and location information of the GUs for power allocation. Besides, it is worth noting that
the channel gain between F and the GUs varies over period TF due to the movement of F. Given the
location of F at time slot t, the channels of the GUs are sorted in F to apply NOMA.

Typically, a NOMA scheme enables a base station to serve multiple users simultaneously over the
same frequency band. The power portions for users are assigned in an inversely proportional manner
based on their channel conditions, in which the low channel gain user requires a higher allocated
transmission power, and vice versa. We assume that each GU’s channel gain is placed in an ascending
manner in time slot t.

According to the downlink NOMA principle, UAV F will transmit a combined signal, sF(t), to all
GUs with the assigned power portions in time slot t. Specifically, with the content requests of the GUs
in time slot t, the transmitted signal by UAV F can be written as:

sF(t) =
I

∑
i=1

√
λi(t)PF(t)si(t), (3)
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where si (t) is the normalized information for GUi in time slot t with E
[
|si|2

]
= 1; PF(t) = etr(t)

ttr

represents the total transmission power that F uses to transmit data to the GUs, in which etr(t) is
the amount of transmission energy used by F in the time slot; and λi(t) denotes the power portion

allocated for GUi in time slot t (s.t.
I

∑
i=1

λi = 1). The received signal at GUi in time slot t can be given by:

yUi (t) =
√

hFUi (t)
I

∑
i=1

√
λi(t)PF(t)si(t) + ni, (4)

where ni is the zero-mean additive Gaussian noise with variance σ2 at GUi. Let us denote the
descending order vector of power portions, as o(t) = [o(1), o(2), ..., o(I)] |o(n) ∈ I . The GU with the
highest power portion (with index o(1)), treats all signals of other GUs as interference and directly
decodes its own information without using SIC. Nevertheless, other GUs need to employ the SIC
process where they first decode signals that are stronger (i.e., the GUs with a higher assigned portion)
than their own desired signals. Then, those signals will be subtracted from the received signal, and this
process will continue until the GUs’ own signals are decoded. In other words, each GU will decode
its own information by treating other GUs’ signals (with smaller power portions) as interference.
As explained above, assume that all the signals of GUo(l), for l < n, have been perfectly decoded
by GUo(n). Thus, the signal-to-interference-plus-noise ratio (SINR) at GUo(n) for decoding its own
information is given as:

γGUo(n)
(t) =

λo(n)(t)PF(t)hFUo(n)
(t)

hFUo(n)
(t)∑I

j=n+1 λo(j)(t)PF(t) + σ2
. (5)

Consequently, the achievable rate at GUo(n) in (b/s/Hz) to decode its own information in time slot t
can be calculated as:

RGUo(n)
(t) =

ttr

T
log2

(
1 + γGUo(n)

(t)
)

. (6)

Additionally, the SINR at GUo(n′) to decode the information of GUo(n), for n < n′, can be expressed as:

γ
o(n′)
GUo(n)

(t) =
λo(n)(t)PF(t)hFUo(n′)

(t)

hFUo(n′)
(t)∑I

j=n+1 λo(j)(t)PF(t) + σ2
, (7)

Similarly, the achievable rate at GUo(n′) in (b/s/Hz) to decode the information of GUo(n) for n < n′ in
time slot t can be calculated as:

Ro(n′)
GUo(n)

(t) =
ttr

T
log2

(
1 + γ

o(n′)
GUo(n)

(t)
)

. (8)

Finally, the sum rate of the system in time slot t can be expressed as follows:

R(t) =
I

∑
i=1

RGUi (t) =
I

∑
n=1

RGUo(n)
(t), (9)

where RGUi (t) represents the achievable rate at GUi in time slot t subject to o(n) = i ∈ I.
More specifically, for a better understanding, let us take an example with I = 2: if hFU1 (t) >

hFU2 (t), then λ1(t) < λ2(t) and o(t) = [2, 1]. At GU1, by using SIC, it first decodes s2(t) and then
cancels it out from (4) to decode its own signal, s1(t). Meanwhile, at GU2, s2(t) is directly decoded
without performing SIC. As a result, the achievable data rates at GU1 and GU2 can be respectively
calculated by:
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RGU1(t) =
ttr

T
log2

(
1 +

λ1(t)PFhFU1 (t)
σ2

)
(10)

and:

RGU2(t) =
ttr

T
log2

(
1 +

λ2(t)PFhFU2 (t)
λ1(t)PFhFU2 (t) + σ2

)
. (11)

Eventually, the sum rate of the system in time slot t can be given as follows:

R(t) = RGU1(t) + RGU2(t). (12)

2.2. Data Request Behavior of the Ground Users

In this paper, library K in the LS contains K different finite data items for the requests of GUs.
Data items are essentially an abstraction of application data, which might range from database records,
web pages, ftp files, etc. We consider the content requests of the GUs to be unrelated to each other.
Let us assume that the probability that each GU accesses the same data item in the two consecutive
time slots is pretty high, but accesses to the other data item are smaller. That is realistic since the users
tend to frequently access the same data source of their interest for a long duration. Thus, we model the
request of each GU as a discrete-time Markov chain where the state transition probability of GUi for
two adjacent time slots is illustrated in Figure 2a. Pmm,i and Pm̃m̃,i (where Pmm,i = Pm̃m̃,i |m̃ ∈ K\ {m})
represent the probabilities that GUi requests the same data item, m, or another data item, m̃, respectively,
in two adjacent time slots. Pmm̃,i and Pm̃m,i (where Pmm̃,i = Pm̃m,i) are the probabilities that GUi requests
different items in two adjacent time slots. It is assumed that if the request of GUi in time slot t is item
m, then the probability that GUi requests item m̃ in time slot t + 1 can be computed as:

Pmm̃,i =
1− Pmm,i

K− 1
, (13)

where K is the total number of data items in library K. It is worth noting that when GUi requests an
item that is not among the cached data items in the UAV, it cannot receive that requested data from the
UAV, and thus, no transmission power will be allocated for GUi in this time slot, i.e., λi(t) = 0.
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Figure 2. (a) The request model of GUi. (b) An example of caching and serving procedures by the UAV,
where NF = 30, CF = 5, I = 3, and K = 10.
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2.3. Content Caching Model of UAV

This paper adopts a traditional caching technique for UAV F for serving the requests of the GUs
in the network. Since the number of data items that can be cached by F is restricted to a caching
capacity, CF, the UAV needs to cache new data items from K after each flight period j to replace
the old cached items. With periodical caching, performance can be enhanced according to the GUs’
requests. In this paper, the non-serving time that includes the duration for the UAV to cache the items,
approach the serving area, and return to the LS is approximately unchanged and will not affect the
data rate maximization during the serving time. Therefore, the non-serving time can be ignored in
the paper, and the term flight period can be referred to as the circular trajectory period of the UAV
henceforth. Let cj =

[
cj,1, cj,2, ..., cj,CF

]
denote the cache content vector of UAV F in period j. Based on

the data request behavior of the GUs, the cache content vector, cj, where the data items are cached in
period j is divided into two parts: the request-based cache vector, creq

j , and the random cache vector,

cran
j , and can be expressed as cj =

[
creq

j , cran
j

]
, s.t.

∣∣cj
∣∣ = CF. The former consists of the items cached

based on the latest requests of the GUs, while the latter is determined by randomly caching items
from the library, except for the items in the request-based cache. In particular, at the start of new flight
period j, F will cache the same data items based on the latest items requested by the GUs (i.e., the items
requested at the last time slot of previous period j− 1), and the rest of the space in cj is fulfilled by
randomly selecting another items from library K in the LS, such that each item cached in cj is unique
in the current period. The reason for this caching model is because the probability that GUi requests
the same item is assumed to be much greater than that of GUs requesting a different item between two
adjacent time slots, i.e., Pmm,i � Pmm̃,i, as presented in the previous subsection.

We use q(t) = [q1(t), q2(t), ..., qI(t)] to denote the item request vector of the GUs, where qi(t) ∈
{1, 2, ..., K} represents the item request of GUi at the start of time slot t, and meanwhile, NF denotes
the total number of time slots in each circular trajectory period. If the GUs request data items different
from each other in the last time slot of period j, i.e., qi (jNF) 6= qĩ (jNF), the request-based cache vector,
creq

j+1, and the random cache vector, cran
j+1, for the next period, j + 1, can be respectively determined

as follows:

creq
j+1,i = qi (jNF) |i ∈ {1, 2, ..., I} , (14)

and:

cran
j+1,i |i ∈ {1, 2, ..., CF − I} is randomly cached

in K\
{

creq
j+1,1, creq

j+1,2, ..., creq
j+1,I

}
,

(15)

where creq
j+1,i ∈ {1, 2, ..., K} is the cached item ith of creq

j+1. It is worth noting that if there are similar
requested items among the GUs’ requests in the last time slot of period j, then UAV F will only cache
these same items one time in creq

j+1 for use in the next period, j + 1, to save cache space in cj+1.
An example of the caching process by UAV F can be illustrated in Figure 2b with NF = 30, CF = 5,

I = 3, and K = 10. In time slot t = 30, which belongs to period j = 1, the requests of the GUs
are q1(30) = 5, q2(30) = 8, and q3(30) = 3, and then, creq

2 = [5, 8, 3] and cran
2 = [7, 2]. In time slot

t = 60 with j = 2, the requests of GU1 = GU2 = 6 are duplicates, and the request of GU3 = 4; thus,
creq

3 = [6, 4] and cran
3 = [2, 3, 1].

2.4. Energy Harvesting Model of the UAV

In this paper, UAV F is assumed to have a limited-capacity battery, EBat, and it is equipped with an
energy harvesting circuit to harvest solar energy for its operation. UAV F can simultaneously harvest
solar energy and perform other operations such as forward movement, climbing up and down, and data
transmissions. In this work, we aim at efficiently using the harvested solar energy in the UAV in order
to allocate proper transmission power to the GUs during the serving duration. Since the amount of
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flight energy consumed for a round trip of the UAV can be approximately estimated, for simplicity,
the energy portion for the mobility of the UAV is not shown in the formulation. Thus, we only
consider the battery capacity portion required for the data transmission (i.e., transmission capacity),
and it is also denoted as EBat for our simplified formulation purposes. If EBat is full during the
serving time (i.e., the maximum value of the transmission capacity portion is achieved), the rest of
the amount of harvested energy will be stored in the mobility capacity portion that is used for the
UAV’s flight. Herein, the amount of energy harvested by F in time slot t, denoted as Eh(t), is finite,
where Eh(t) ∈

{
Eh

1 , Eh
2 , ..., Eh

ξ

}
; 0 ≤ Eh

z < EBat, and z ∈ {1, 2, ..., ξ} and is assumed to follow a Poisson
distribution [42]. The authors in [42] carried out empirical measurements for the modeling of a
solar-powered wireless sensor node in time-slotted operation and showed that the stored energy
characteristics depend on many factors such as the time slot duration, light intensity, power level,
and the deployment environment. As a result, the Poisson distribution model achieved a near fit for
the collected measurements. The probability distribution of the energy harvested by F can be given by:

Ph(z) = Pr
[

Eh(t) = Eh
z

]
=

(
Eh,avg

)z
exp(−Eh,avg)

z!
, (16)

where Eh,avg represents the mean energy harvested by F. For tractability in the simulation, the amount
of harvested energy can be approximated, and the maximum harvested energy can be determined
according to network parameters such that the cumulative distribution function is close enough to one.

2.5. Sum Rate Maximization Formulation

In this paper, we aim to optimize the transmission power allocated to the GUs and the content
caching by UAV F such that the sum cumulative data rate of ground users can be maximized in a
long-term operation. Thus, the problem formulation can be expressed as follows:

max
λi(t),PF(t),cj

(
∞
∑

k=t

I
∑

i=1
RGUi (k)

)
s.t.

I
∑

i=1
λi(t) = 1, (a)

0 ≤ PF(t) ≤ Pmax
F , (b)

cj,i 6= cj,
_
i |i ∈ {1, 2, ..., CF} , (c)

(17)

where cj is the cache content vector of UAV F in flight period j; Pmax
F represents the upper bound of

the transmission power that F can use to transmit data to the GUs. Constraint (a) specifies that the
UAV totally assigns its transmission power, PF(t), to GUs that request items from the UAV’s cache in
time slot t. Constraint (b) guarantees that the total transmission power for GUs in each time slot is no
greater than the maximum transmission power that the UAV can use without causing it to be inactive
owing to an energy shortage. Finally, Constraint (c) ensures that every cached item is unique in the
cache content vector for period j, where cj,i represents the ith item of cache content vector cj.

It is worth noting that although maximizing the energy utilization in the current time slot can
optimize the temporal data rate of the system, it may cause inactivity upon data transmission in the
subsequent time slots due to an energy shortage in F. Consequently, it can significantly degrade the
long-term sum rate of the network. Furthermore, dynamic data requests of the GUs will also affect
the performance of the system, since the caching constraint on F is taken into account. Therefore,
according to the system state, finding an optimal policy for joint cache scheduling and power allocation
in F to obtain the maximum long-term sum rate of the system is the main goal of this study.
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3. Proposed Solution Using the POMDP Framework

In this section, we propose a joint optimal cache scheduling and power allocation scheme using
a POMDP framework for F over the long run, based on prior information for the harvested energy
distribution and the request model for the GUs. To be more specific, after receiving the requests by the
GUs, F will allocate the optimal transmission power for each GU in order to obtain the maximized
long-term sum data rate for the system. The problem of sum data rate maximization is first formulated
as the framework of a partially observable Markov decision process where the effect of the decision in
the current time slot on the subsequent time slots is taken into account [43]. Subsequently, the optimal
policy can be obtained by adopting the approach of value iteration-based dynamic programming [44].

3.1. Markov Decision Process

The Markov decision process (MDP) is generally defined as a tuple 〈S,A,P, ϕ〉, where S, A, and P
are the state space, action space, and state transition probability space, respectively; ϕ : S×A 7→ R
represents the reward function. We define the system state as s(t) =

(
erm(t), ω(t), θ(t), tin(t), cj

)
∈ S,

where erm(t) is the remaining energy in F; 0 ≤ ω(t) ≤ 2π is the angle of the circle for F’s location
with respect to the x-axis; θ(t) = [θ1(t), θ2(t), ..., θI(t)] is the belief vector, with θi(t) as the belief
(probability) that the requested content of GUi will be in the current cache content vector, cj, in time
slot t; tin(t) ∈ {1, 2, ..., NF} is the index of time slot t in terms of flight period j. Note that cj will
only be updated based on the requests of the GUs at the end of time slot t when tin(t) = NF in
each flight period, and meanwhile, s(t) is always updated based on the selected action by F and
the amount of harvested energy at the end of each time slot. The set of actions can be denoted as
A =

{
a1, a2, ..., a|A|

}
, where aυ =

[
etr

υ , λ1,υ, λ2,υ, ..., λI,υ
]
|υ ∈ {1, 2, ..., |A|} is the action υ in A; where etr

υ

(0 ≤ etr
min ≤ etr

υ ≤ etr
max) is the transmission energy in UAV F, and 0 ≤ λi,υ ≤ 1 is the power portion

assigned for GUi. The notations etr
min and etr

max represent the minimum and maximum transmission
energy in the UAV. We further define the reward for the system as the sum data rate of the network.
Thus, given state s(t) and action a(t), the corresponding reward, denoted by R (s(t), a(t)), is computed
by using Equation (9).

The operation of UAV F can be expressed as follows. At a given time instant t, F employs action
a(t) based on the system state and the content requests of the GUs, and then, the reward for the system,
R (s(t), a(t)), will be achieved at the end of the time slot. Action a(t) causes the system to transit from
state s(t) to a new state, s(t + 1). Thus, the state of the system will be updated for the next operation
when the data transmission in time slot t is finished.

In this paper, we aim to find the optimal transmission power allocation policy based on the cache
scheduling discussed in Section 2.3 for UAV F in each slot t in order to maximize the accumulated
reward from the time slot to the time horizon. In addition, transmission power is determined by using

transmission energy etr and transmission data duration ttr, i.e., PF(t) =
etr(t)

ttr
. Therefore, according to

the above MDP formulation, Equation (17) can be rewritten as follows:

aopt(t) = arg max
a(t)∈A

{
∞

∑
k=t

βk−tR (s(k), a(k)) |s(t)
}

, (18)

where 0 ≤ β ≤ 1 is the discount factor, which indicates the effect of the current action on the future
rewards. According to the dynamic item requests of the GUs, the observation is defined as the probable
case that shows whether the item requests of the GUs are in cached items of F in a given time slot and
will be discussed in the next subsection.
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3.2. Observation Description

This section introduces possible observations, the respective rewards, and the ways to update the
system state for the next time slot according to the selected action of a given time slot. Let us consider a
network with two GUs (I = 2) connecting to UAV F to acquire data according to their requests. At the
given state, s(t), the requests of the GUs are q1(t) and q2(t), and the UAV executes action a(t). It is
obvious to note that for all possible observations, the angle of UAV F in the next time slot is updated as
ω(t + 1) = ωnext(t), where ωnext(t) denotes the next angle of the UAV in its predefined circular flight
trajectory. In the following, we present a way to update other information regarding the remaining
energy, the belief vector, the transition probability, the time slot index, and the cache content vector in
each observation for this particular circumstance. These can be respectively described as follows.

3.2.1. Observation 1 (O1)

The requests of both GU1 and GU2 are in the cached items in cj of UAV F. The probability that
the event happens can be calculated as:

Pr [O1] = θ1(t)θ2(t). (19)

The reward can be obtained as follows:

R(s(t), a(t) |O1 ) =
2

∑
i=1

RGUi = RGU1 + RGU2 , (20)

where RGUi can be obtained by using Equation (6). The belief vector can be updated as follows:

θ(t + 1) = [Pmm,1 + τ1, Pmm,2 + τ2] , (21)

where τi =
(

1−Pmm,i
K−1

)
(CF − 1) |i ∈ {1, 2, ..., I} . Next, the remaining energy in F for the next time slot is:

erm(t + 1) ={
min

(
erm(t)− etr(t) + Eh(t), EBat

)
EBat

if tin(t) < NF
otherwise

(22)

with transition probability:

Pr [erm(t + 1) |erm(t) ] ={
Pr
[

Eh(t) = Eh
z

]
1

if tin(t) < NF
otherwise

,
(23)

where Pr
[

Eh(t) = Eh
z

]
can be calculated as in Equation (16). To explain Equations (22) and (23) with

the case of tin(t) = NF, the remaining energy (i.e., the energy in transmission capacity) at F is always
full because UAV F finishes one circular trajectory and returns to the LS for recharging its battery.
The index of the next time slot in terms of flight period j can be updated as:

tin(t + 1) =

{
tin(t) + 1

1
if tin(t) < NF
otherwise

. (24)

Finally, the cache content vector can be updated by:

cj =

{
cj[

creq
j+1, cran

j+1

] if tin(t) < NF
otherwise

, (25)
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where creq
j+1 and cran

j+1 can be determined with Equations (14) and (15), respectively. It is important to
note that the UAV will only update the cache content vector when it is in the last time slot of period j.

3.2.2. Observation 2 (O2)

The request of GU1 is in the cached items in cj, but that of GU2 is not in cj of UAV F. The probability
that the event happens can be calculated as:

Pr [O2] = θ1(t) (1− θ2(t)) . (26)

The reward can be obtained as follows:

R(s(t), a(t) |O2 ) = RGU1 , (27)

where RGU1 can be calculated with Equation (6). The belief vector can be updated as follows:

θ(t + 1) ={ [
Pmm,1 + τ1,

(
1−Pmm,2

K−1

)
CF

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2] otherwise
,

(28)

where τi is calculated in a way similar to Equation (21). The remaining energy, the transition
probability, the index of the time slot, and the cache content vector can be updated with
Equations (22)–(25), respectively.

3.2.3. Observation 3 (O3)

The request of GU1 is not in the cached items in cj, but that of GU2 is in cj. The probability that
the event occurs can be calculated as:

Pr [O3] = (1− θ1(t)) θ2(t) . (29)

The reward can be obtained as follows:

R(s(t), a(t) |O3 ) = RGU2 , (30)

where RGU2 can be computed with Equation (6). The belief vector can be updated as follows:

θ(t + 1) ={ [(
1−Pmm,1

K−1

)
CF, Pmm,2 + τ2

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2 ] otherwise
,

(31)

where τi is calculated as it is in Equation (21). The remaining energy, the transition probability, the index
of the time slot, and the cache content vector can be updated with Equations (22)–(25), respectively.

3.2.4. Observation 4 (O4)

The requests of both GU1 and GU2 are not in the cached items in cj of UAV F. The UAV will stay
silent; and hence, there is no reward in this case, i.e., R(s(t), a(t) |O4 ) = 0. The probability that the
event occurs can be calculated as:

Pr [O4] = (1− θ1(t)) (1− θ2(t)) . (32)
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The belief vector can be updated as follows:

θ(t + 1) ={ [(
1−Pmm,1

K−1

)
CF,

(
1−Pmm,2

K−1

)
CF

]
if tin(t) < NF

[Pmm,1 + τ1, Pmm,2 + τ2 ] otherwise
.

(33)

The remaining energy in F for the next time slot is:

erm(t + 1) ={
min

(
erm(t) + Eh(t), EBat

)
EBat

if tin(t) < NF
otherwise

(34)

with the transition probability being the same as Equation (23). Similarly, the index of the time slot
and the cache content vector can be updated with Equations (24) and (25), respectively.

3.3. Value Iteration-Based Dynamic Programming Solution

According to the POMDP principle, the value function is defined as the maximum value of the
cumulative discounted system reward that starts from the current time slot to the infinite time horizon,
and it is used to select the optimal action for the UAV. Thus, given a state s(t), the value function can
be given as follows:

Vs(t) = max
a(t)∈A


∞
∑

k=t
βk−t × ∑

Om

Pr [Om]

× ∑
erm(k+1)

Pr [erm(k + 1) |erm(k), Om ]

×R (s(k), a(k)) |s(t)

 , (35)

where Pr [Om] represents the probability that the observation Om occurs; Pr [erm(k + 1) |erm(k), Om ]

is the probability that the remaining energy of the UAV will transfer from erm(k) to erm(k + 1) with
corresponding observation Om; R (s(k), a(k)) indicates the reward of the system when it takes the
action a(k) at the state s(t).

The value function in Equation (35) can be obtained by using value iteration-based dynamic
programming [44]. Owing to the dynamic item requests of the GUs and the harvested energy,
the expected reward for the possible actions in the current time slot will be considered in each
time slot. Accordingly, the optimal decision of the UAV in time slot t can be obtained as follows:

aopt(t) = arg max
a(t)∈A


Rim (s(t), a(t))
+ ∑

t+1
Pr [erm(t + 1) |erm(t) ]Vs(t+1)︸ ︷︷ ︸

expected reward of action a(t) at state s(t)


, (36)

where Rim (s(t), a(t)) is the expected immediate reward for the system based on action a(t), which can
be obtained by Equation (9). The term ∑

t+1
Pr [erm(t + 1) |erm(t) ]Vs(t+1) is the expected future reward

from action a(t) in time slot t+ 1, where Vs(t+1) can be achieved by solving the problem in Equation (35).
For the above setup, the MDP problem in Equation (18) can be transferred to Equation (36), and the
optimal policy for long-term data rate maximization can be obtained by using the POMDP framework.
The flowchart of the proposed POMDP-based approach is given Figure 3. For further details,
the procedure of the slot-by-slot operation of the system when using this scheme is presented in
Algorithm 1.
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Algorithm 1 Operation of the UAV when using the proposed POMDP-based scheme to obtain the
maximum long-term data rate in N time slots.

1: Input: dFUi , K, σ2, T, Tre, Tde, Tup, CF, EBat, Eh,avg, etr
min, etr

max, Pmm, Pmm̃, hF, rF, TF, α, β0, β.
2: Output: Optimal action aopt(t).
3: Define S, A, and P.
4: Apply iteration-based dynamic programming to obtain the value function for every possible state

of S in Equation (35).
5: for t = t0 // Start from time slot t = t0
6: Define the current system state, s(t).
7: Receive the requests of GUs, q(t).
8: if no request by GUs is in cj
9: Stay silent.

10: else
11: Calculate Rim (s(t), a(t)) using Equation (9).
12: Calculate the corresponding expected future reward of each action a(t) using

Equations (16) and (35).
13: Determine aopt(t) using Equation (36).
14: if Action is “stay silent” (i.e., etr(t) = 0)
15: Stay silent.
16: else
17: if only one GU’s request is in cj
18: Transmit data to that GU.
19: else
20: Transmit data to GUs by using NOMA.
21: end if
22: Obtain the immediate reward for the system.
23: end if
24: end if
25: Update cj when tin(t) = NF with Equations (14) and (15).
26: Update system state s(t + 1).
27: end for// The number of considered time slots N.
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Figure 3. The flowchart of the proposed partially observable Markov decision process (POMDP)-based
scheme. TD, temporal difference.

4. Proposed Solution Using the Actor-Critic Learning Framework

In the previous section, we elaborated on the POMDP-based solution to the joint cache scheduling
and power allocation problem of the UAV-enabled communication system where prior knowledge
of the energy harvesting distribution of the GUs is assumed to be known. Nevertheless, it is hard to
identify an evolution model in some network scenarios due to the complexity of network dynamics;
hence, acquiring prior information regarding the arrival of harvested energy of a user may be
impractical in some circumstances. Moreover, the value iteration programming technique requires
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a large number of formulations and much computational overhead. For this reason, we formulate
and propose a kind of model-free reinforcement learning (namely, an actor-critic-based method)
to deal with the MDP problem assuming there is no prior information on the energy harvesting
distribution. Although applying the actor-critic learning approach may lead the system to a locally
optimal policy [45], it helps the system learn information about the dynamic wireless environment by
interacting directly with the environment to generate a policy without having information on essential
network models a priori. Hence, this model-free learning approach can benefit from less formulation
and fewer computational effort, compared to the POMDP-based algorithm.

Subsequently, we present the classic actor-critic learning-based scheme to obtain the solution to
the MDP problem described in the previous section.

4.1. Actor-Critic Framework Formulation

Generally, the actor-critic framework is composed of three main components: an actor, a critic,
and the environment. The actor is responsible for taking an action according to a policy; meanwhile,
the critic evaluates the quality of the action and adjusts the policy through temporal difference (TD) [46].
The generalized actor-critic framework is illustrated in Figure 4.
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Figure 4. The schematic of the classic actor-critic learning framework.

The value function for the actor-critic-based framework in this paper is the total discounted
reward from the current time slot, and it can be modified according to policy Ω during the training
phase, which can be obtained as follows [47]:

Vs = R (s, Ω (s)) + β ∑
s′∈S

Pr
[
s′ |s, Ω (s)

]
Vs′ , (37)

where Pr [s′ |s, Ω (s) ] represents the transition probability that the system will transfer to state s′ after
taking an action based on policy Ω (s) in state s. Similar to the POMDP-based scheme, in this paper,
the actor-critic framework is in charge of determining the optimal policy, Ω∗(s), and thus, the problem
in Equation (18) can be rewritten as:

Ω∗(s) = arg max
a∈A

{
R (s, a) + β ∑

s′∈S
Pr
[
s′ |s, a

]
Vs′

}
. (38)

In time slot t, the UAV selects and then executes an action, a(t), based on the current state, s(t),
and the current policy, Ω, which is determined by applying a Gibbs soft-max function [47] as follows:

Ω (a(t) |s(t) ) = Pr [a(t) ∈ A |s(t) ] = eΘ(a(t)|s(t) )

∑
a∈A

eΘ(a|s(t) ) , (39)

where Θ (a(t) |s(t) ) is the tendency of the UAV to select action a(t) when the system is in state s(t).
Note that this parameter can be adjusted over time such that the UAV can select the best action for
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each state when the training phase finishes. After the action is executed, the system will transit to a
new state, s(t + 1), with transition probability:

Pr
[
s′ ∈ S |s(t), a(t)

]
=

{
1 if s′ = s(t + 1)
0 otherwise

(40)

and the corresponding immediate reward, R (s(t), a(t)), will be obtained as expressed in Equation (9).
By applying Equation (40) to Equation (38), it obviously implies that the actor-critic-based scheme does
not need to have information on the energy arrival distribution in advance, since it actually explores
the next state, s(t + 1), at the end of time slot t after performing action a(t). As a result, at the end of
the time slot, the critic component will evaluate the quality of the action performed by the UAV by
using the TD error. In other words, determining the value function’s difference from current state s(t)
at the end of each time step will help the UAV gradually find the maximum value function that maps
state s(t) to optimal action aopt(t). Consequently, the TD error in time slot t, which is referred to as the
difference between the left and right sides of the Bellman equation [47], is computed as follows:

∆(t) = R (s(t), a(t)) + βVs(t+1) −Vs(t). (41)

Then, the value function for state s(t) will be updated by:

Vs(t) = Vs(t) + αc∆(t), (42)

where αc denotes the critic step size. Furthermore, the actor component will modify the policy
according to the tendency as:

Θ (a(t) |s(t) ) = Θ (a(t) |s(t) ) + αa∆(t), (43)

where αa represents the actor step size. According to Equations (42) and (43), the training stage will be
terminated as convergence occurs, and the convergence rate will significantly depend on the values
of both αc and αa. Therefore, the optimal value of these parameters can be adjusted by following
empirical designs on various applications.

4.2. Actor-Critic Training Description

The details of the training process for the proposed actor-critic-based scheme, presented in
Algorithm 2, can be summarily expressed as follows. At the start of time slot t, the UAV will execute
action a(t) based on current state s(t) and the item requests of the GUs, q(t). The UAV has to stay
silent when none of requests of GUs are in the content cached in the UAV, or it will transmit the
corresponding data to the GUs when at least one GU’s request is in cj. The corresponding immediate
reward, R (s(t), a(t)), and the information of the next state, s(t + 1), will be gained based on the
observations presented in Section 3.2. The UAV then modifies its parameters, such as ∆(t), Vs(t),
Θ (a(t) |s(t) ), and Ω (a(t) |s(t) ), at the end of each time slot. In addition, it is worth noting that the
UAV will only re-cache the LS items into cj when it finishes a flight period. Unlike the proposed
POMDP-based scheme, where the optimal policy is obtained based on an offline formulation that
requires energy harvesting distribution information, the proposed actor-critic-based scheme determines
the policy from a practical learning process, and thus, it can converge to the locally optimal policy [45].
In other words, by applying the actor-critic solution, we do not need to know the energy harvesting
distribution in advance for the transition probability calculation in order to achieve the optimal policy,
as in the POMDP-based solution. As a result, it can make this scheme more practical in various
network scenarios where no prior knowledge regarding the environment dynamics is known.
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Algorithm 2 The detailed training process of the UAV using the proposed actor-critic-based scheme.

1: Input: dFUi , K, σ2, T, Tre, Tde, Tup, CF, EBat, etr
min, etr

max, Pmm, Pmm̃, hF, rF, TF, α, β0, β.
2: Output: Optimal policy Ω∗(s).
3: Define S and A.
4: Define the total number of time slots for training, Nt.
5: Initialize Θ (a |s ), Vs, and Ω (s) where a(t) ∈ A, s ∈ S.
6: repeat
7: Define the current system state, s(t).
8: Receive the requests of GUs, q(t).
9: if no request by the GUs is in cj

10: Stay silent.
11: else
12: Choose an action a(t) ∈ A according to Ω (s(t)).
13: if Action is “stay silent” (i.e., etr(t) = 0)
14: Stay silent.
15: else
16: if only one GU’s request is in cj
17: Transmit data to that GU.
18: else
19: Transmit data to GUs by using NOMA.
20: end if
21: Obtain the immediate reward for the system.
22: end if
23: end if
24: Calculate TD error, ∆(t), using Equation (41).
25: Adjust value function, Vs(t), using Equation (42).
26: Update tendency, Θ (a(t) |s(t) ), using Equation (43).
27: Update the policy, Ω (a(t) |s(t) ), using Equation (39).
28: Update cj when tin(t) = NF with Equations (14) and (15).
29: Update system state, s(t + 1).
30: until // the training converges or t = Nt.

For the comparison of complexity between the two proposed methods, the main computational
difference between the two approaches is that the POMDP-based scheme needs to find the value
function for the state-space through an offline approach. This leads to higher computational complexity
when using Algorithm 1. Specifically, the complexity for each iteration in the POMDP scheme can be
computed as O

(
|A| |S|2

∣∣∣Oobs
∣∣∣ |P|), where

∣∣∣Oobs
∣∣∣ is the number of possible observations. Let us define

that the computational complexity for the UAV in each state during the training in Algorithm 2 is O(1).
Thus, the total complexity of Algorithm 2 depends on the system state and action spaces and can be
calculated as O (|A| |S|). Furthermore, the convergence rate of the actor-critic scheme is considerably
dependent on the actor and critic step sizes. As a consequence, these values should be carefully chosen
according to other system parameters. We further provide the summary of the most used symbols and
notations in Table 1 to make the paper more readable.
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Table 1. Summary of symbols and notations.

Description Symbol Description Symbol

Number of training time slots Nt Channel power gain from the UAV to GUi at time t hFUi (t)
Number of data items K Distance from the UAV to GUi at time t dFUi (t)
Time slot duration T Location of GUi pi
Request sending time tre Center point of the circular trajectory pO′

Action decision time tde Location of the UAV at time t pF(t)
Updating time tup Angle of the circle of the UAV’s location with respect to the x-axis ω
Caching capacity CF Transmitted signal by the UAV at time t sF(t)
Battery capacity EBat Received signal at GUi at time t yUi (t)
Minimum transmission energy etr

min Data rate at GUi at time t RGUi (t)
Maximum transmission energy etr

max Sum rate of the system at time t R(t)
Mean harvested energy Eh,avg Cache content vector cj
Transition probability: from item m to item m Pmm Request-based cache vector creq

j
Transition probability: from item m to others Pmm̃ Random cache vector cran

j
Altitude of the UAV hF Item request of GUi at time t qi(t)
Flight radius of the UAV rF Total transmission power used by the UAV at time t PF(t)
Flight period TF Noise variance σ2

Actor step size αa Channel power gain at the reference distance β0
Critic step size αc Path loss exponent α
Discount factor β Belief vector at time t θ(t)

5. Simulation Results

In this section, we present the numerical simulation results regarding the performance of the
two proposed schemes and those of other benchmark schemes based on the Myopicmethod [48]:
a Myopic-NOMA scheme, a Myopic-NOMA-RCscheme, and a Myopic-OMA scheme. The term
“Myopic” represents the solution in which the optimal decision is made only for the current time slot
without considering the future evolution. In the Myopic-NOMA scheme, the UAV always transmits
data with optimal transmission power to the GUs by using NOMA whenever more than two GUs’
requests are in the cached content of the UAV. Similarly, in the Myopic-NOMA-RC scheme, the UAV
randomly caches items from the LS and always transmits data to the GUs with the optimal transmission
power by using NOMA. Lastly, in the Myopic-OMA scheme, OMA data transmission is always
used with the optimal transmission power. In particular, with this scheme, the data transmission
phase is divided into Ioma equal sub-slots, where Ioma(t) is the number of involved GUs for the data
transmissions in time slot t, and the UAV will transmit the corresponding data to each GU through
each sub-slot. Therefore, the sum data rate of the Myopic-OMA scheme in time slot t can be calculated

with ROMA(t) =
Ioma(t)

∑
i=1

ttr
Ioma(t)T

log2

(
1 +

λi PF(t)hFUi
(t)

σ2

)
. Nevertheless, these benchmark schemes only

consider the current time slot for maximizing the sum rate. Thus, their optimal policy is made by using
the maximum level of transmission energy available in the battery in the current time slot, which can
lower system performance in a long operation owing to an energy shortage for data transmissions
in subsequent time slots. Meanwhile, the proposed schemes consider not only the current reward,
but also the future reward, which was thoroughly presented in Sections 3 and 4. Thus, in the following,
we can verify the effectiveness of the two proposed schemes under changes in network parameters.
Table 2 shows the parameter setup, and the network topology with I = 3 is illustrated in Figure 5.
Unless otherwise stated, the transmission energy in the UAV is divided into five equal levels ranging
from 0 ≤ LV1 ≤ LV2 ≤ ... ≤ LV5 ≤ EBat, and there are eight levels in the UAV’s battery, from zero
to EBat. The span of power portion λ is 0.025. In this paper, the simulation results were achieved by
averaging N = 2× 105 time slots. Besides, the harvested energy was stochastically generated in each
slot by a Poisson distribution with the mean value of harvested energy Eh,avg = 75 µJ. During the
serving time, there might be no energy for data transmissions by the UAV, which is referred to as energy
shortage. In that case, it has to stay silent and wait for upcoming harvested energy in subsequent time
slots to transmit data to the GUs.
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Table 2. Simulation parameters.

Parameter Notation Value

Number of training time slots Nt 2× 105

Number of data items K 300 items
Time slot duration T 200 ms
Request sending time tre 1 ms
Action decision time tde 1 ms
Updating time tup 1 ms
Caching capacity CF 120 items
Battery capacity EBat 300 µJ
Minimum transmission energy etr

min 50 µJ
Maximum transmission energy etr

max 250 µJ
Mean harvested energy Eh,avg 75 µJ
Transition probability: from item m to item m Pmm 0.8
Transition probability: from item m to others Pmm̃ 0.2
Altitude of the UAV hF 40 m
Flight radius of the UAV rF 10 m
Flight period TF 8 s
Actor step size αa 0.1
Critic step size αc 0.1
Path loss exponent α 3
Channel power gain at the reference distance β0 −40 dB
Noise variance σ2 −120 dBm
Discount factor β 0.95

We first examine the convergence rate of the actor-critic-based scheme during the training process
under various values of λc and λa for the mean value of harvested energy, Eh,avg = 75 µJ, based on
the achievable sum rate calculated every 1000 time steps, as shown in Figure 6. Besides, the optimal
value line is plotted according to the policy obtained by the POMDP-based approach. It is noted that
the convergence condition of the algorithm is defined as the convergence condition of the sum data
rate. That means that during the training process, the sum data rate is averaged after every batch
of 1000 training time slots, and then, the difference between two adjacent updates, ∆c, is calculated.
In the simulation, we set the convergence condition for the algorithm at |∆c| < 7× 10−3. It is observed
from Figure 6 that the sum rate of the system after each iteration of 1000 slots sharply increases in
the first 100,000 time slots and then gradually converges to a locally optimal policy that depends on
the values of λc and λa. Therefore, in the simulation, we repeated the training process a number of
times and then selected the policy with the proper actor and critic step size values that provide the
maximum average rate. In particular, with step sizes greater than 0.1, the proposed scheme provides
faster convergence; however, it leads to a lower data rate after 200,000 time slots of training. We can
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also see that if we keep decreasing the step size values to less than 0.1, the algorithm might converge
to a worse policy due to overfitting. Besides, it is obvious that with the network parameters in this
paper, the proposed scheme with critic and actor step sizes αc = αa = 0.1 provides better performance,
in which the data rate mostly converges to the optimal value, given by the POMDP-based scheme,
after 200,000 time slots of training. Therefore, we chose actor-critic step size values at αc = αa = 0.1 for
the rest of the simulations.
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Figure 6. The convergence of the proposed actor-critic-based algorithm according to the mean value of
harvested energy.

Figure 7 shows the sum rate according to the mean value of harvested energy in the UAV. It can
be seen that the throughput of the system increases when the mean value of the harvested energy
goes up. That is because the UAV can harvest more energy from the environment; thus, a number
of higher power transmissions can be used for data transmissions during its flight period. We can
see that the system rates of the proposed schemes dominate the conventional schemes in which
the actor-critic-based method can be approximately as good as the POMDP-based method, and the
two proposed schemes can provide a system data rate 10% higher than the Myopic approaches.
Next, we compare the energy efficiency of the schemes with respect to mean value of harvested
energy in Figure 8. In this study, we aim to efficiently utilize the solar harvested energy of the UAV
in the long-term operation. When the transmission capacity is full during the serving time, the rest
of harvested energy can also be stored for the mobility capacity portion to support the UAV’s flight.
Moreover, the overflow energy of the battery is considered as the wasted energy consumption of
the system. For that reason, in the simulation, the energy consumption is calculated as the total
harvested energy during the UAV’s operation. All schemes with each mean value of harvested energy,
in Figure 8, have the same total amount of energy consumption in N = 2× 105 time slots. In the
paper, energy efficiency is defined as the sum data rate over the total harvested energy during the
UAV’s operation. As a consequence, the curves in Figure 8 can be interpreted as the sum-rate according
to energy consumption.

In order to explore the behavior in terms of transmission power by the UAV, in Figure 9, we plot
the statistics of the actions in the POMDP scheme, the actor-critic scheme, the Myopic-NOMA scheme,
and the Myopic-OMA scheme over 200,000 time slots. The notation TM − LVx represents the
transmission mode with a level of LVx where LVx ∈ {LV1, LV2, ..., LV5} is the level of transmission
energy. We can see in Figure 9 that the Myopic-NOMA scheme and the Myopic-OMA scheme tend to
choose the highest transmission power for the purpose of maximizing the instant reward. Obviously,
the statistics of selected actions in these myopic schemes are similar, but the achievable reward of the
NOMA scheme is higher than that of the OMA scheme owing to the effective utilization of the NOMA
technique. However, due to the limitation on harvested energy, using too much energy in a time slot
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may cause the energy shortage, in which the UAV has to stay silent for many future time slots. This will
lower the data rate of the system. On the other hand, simultaneously assigning an appropriate amount
of transmission energy can give the UAV more chances to stay active and transmit data to the GUs under
the environment dynamics, such that a maximum long-term data rate can be guaranteed.
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Figure 7. The sum data rate according to the mean value of harvested energy.
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In Figure 10, we plot the sum data rate according to different values of caching capacity.
The curves show that the system performance is enhanced if the UAV has a higher caching
capacity. Obviously, with a larger value of CF, the UAV can store more items from the LS, and then,
the probability that the GUs’ requests are in the cached content of the UAV will increase, which leads
to the higher data transmission rate. On the other hand, we can see that the higher Pmm also brings
higher performance of the system. The reason is that the GUs will more frequently request their own
items of interest during the time slots.
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Figure 10. The sum data rate with respect to caching capacity.

Figures 11 and 12, respectively, show the impact of noise variance at the GUs and the effect of the
altitude of the UAV on the system reward. We can see that system performance notably declined as
the noise power at the ground users (as well as the altitude of the UAV) grew. In order to explain this,
noise power will lower the throughput for each GU’s data recipient, and meanwhile, a farther distance
between F and the GUs will increase path loss during data transmissions.
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Figure 11. The sum data rate under different values of noise variance.
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Figure 12. The sum data rate versus various values of the altitude of the UAV.

Finally, we further investigated the joint effect of both the number of items, K, in the library,
and caching capacity CF in the UAV on the system data rate. Figure 13 indicates that the system reward
will increase with an increment in the ratio of CF over K. For example, if the number of items is K = 300,
the data rate of the system will go up when increasing caching capacity CF. Furthermore, the results of
the POMDP-based and actor-critic schemes are superior to the Myopic-NOMA scheme. The reason is
that the proposed POMDP scheme exploits prior information on the harvested energy distribution
and on the request model of the GUs, and then, it calculates the possible situations and corresponding
probabilities. The actor-critic method can explore the information from interacting directly with the
environment, and it then learns the optimal policy through trial and error. Consequently, the next
state of the system can be predicted, and the UAV can efficiently allocate transmission power for the
GUs based on NOMA and caching technologies under the long-term operation considerations. On the
other hand, the presented numerical results validate the effectiveness of the proposed approaches
through various network parameters in this paper.
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Figure 13. The sum data rate according to different values of K and CF.

6. Conclusions

In this paper, we investigated non-orthogonal multiple access with data caching for UAV-enabled
downlink transmissions under constraints on energy and the caching capacity in the solar-powered UAV.
The two innovative approaches, based on POMDP and the actor-critic frameworks, were proposed for
a joint cache scheduling and resource allocation issue to maximize the long-term data rate of the system
in cases with and without prior information of the energy arrival distribution. The optimal policy can
be obtained by using the two proposed schemes, such that the UAV can efficiently use harvested solar
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energy to transmit data to a group of ground users that need a service fulfilling their item requests.
Eventually, the numerical results via MATLAB simulations verified the superiority of the proposed
schemes, compared to baseline alternatives in which the context under long-term data rate maximization
is not taken into account under diverse network conditions. The shortcoming of this work is that the
high formulation complexity and computational complexity may be considerably imposed on multi-UAV
systems, where the coverage region for data communications is extended by deploying multiple UAVs to
meet surging data transmission demands. In this regard, a deep reinforcement learning framework can be
one of the promising solutions to the optimization issues in large state and space UAV systems for 5G and
beyond 5G, which is considered in our future research directions.
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