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Abstract: Gallium nitride (GaN) devices are becoming more popular in power semiconductor
converters. Due to the absence of the freewheeling substrate diode, the reverse conduction region is
used in GaN transistors to conduct the freewheeling current. However, the voltage drop across the
device in the reverse conduction mode is relatively high, causing additional power losses. These losses
can be optimized by adequately adjusting the dead-time issued by the microcontroller. The dead-time
loss minimization strategies presented in the literature have the common disadvantage that either
additional hardware or specific converter data are needed for their proper operation. Therefore,
this paper’s motivation is to present a novel dead-time loss minimization method for GaN-based
high-frequency switching converters for electric drives that does not impose additional requirements
on the hardware design phase and converter data acquisition. The method is based on optimizing
the current controllers’ output with a simple perturb-and-observe tracker. The experimental results
show that the proposed approach can minimize the dead-time losses over the whole drive’s operating
range at the cost of only a moderate increase in software complexity.
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1. Introduction

Within electrical drives, especially when powered by batteries, efficiency and power density are
essential aspects. The design of small and highly efficient power converters for electric motor control
demands wide bandgap semiconductors such as those based on silicon carbide (SiC) and gallium nitride
(GaN). These materials, with a high inner electric field, improve the transistor’s parameters, such as
the current density and on-state resistance. Furthermore, the low parasitic capacitances allow them to
operate at higher switching frequencies than silicon devices [1–4]. Besides, GaN-based transistors have
no reverse recovery charge due to the absence of the freewheeling diode. However, fast-switching
devices also bring challenges to the circuit board design and control strategies [5].

With the absence of the freewheeling diode, the reverse conduction region is used to conduct the
current [6]. However, a significant voltage drop in the reverse conduction mode exists, consisting of a
gate threshold and turn-off voltage, which means the load current should be immediately transferred
to the complementary switch in the half-bridge to avoid additional losses. In other words, the delay
between when one transistor is turned off and the other is turned on, which is called the dead-time,
needs to be set precisely [7]. However, the optimum dead-time for GaN transistors changes with the
converter output power and input DC-link voltage [8]. An in-depth investigation in [9] shows the
need to modify both the rising and falling edges of the microcontroller (MCU) control signal with the
variable dead-time.
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There are multiple approaches to proper dead-time selection. One option is to manually create
a look-up table for a specific converter so the controller can set the dead-time accordingly [10].
The half-bridge configuration can also be equipped with a special sampling circuit to measure the
actual time delay between the upper and lower transistors’ switching instants [11,12]. The model-based
methods presented in [13,14] calculate the optimum dead-time depending on the converter’s operating
point reconstructed from the measured values. Furthermore, maximum efficiency point tracking
algorithms can be used within various types of converters for dead-time optimization in the case of
a variable switching frequency [15]. GaN drivers with built-in dead-time minimization circuits are
being developed too; however, their operation is limited to the type of converter they are specifically
designed for, such as highly efficient miniature DC/DC converters [16].

In this paper, an online method of dead-time loss minimization for a vector-controlled permanent
magnet synchronous motor (PMSM) supplied by a three-phase voltage-source inverter (VSI) controlled
by a space-vector modulation (SVM) is proposed. The method is intended to improve and extend the
authors’ work presented in [17], where a similar approach was discussed for a half-bridge DC/DC
converter topology. The method’s principle is based on an online analysis of the current controllers’
output at multiple operating points. Its main advantage is that no prior converter data and additional
hardware are needed. The method, along with the motor control algorithm, was programmed into an
MCU and verified experimentally. Measured data at multiple operating points are presented at the
end of the paper.

2. Theoretical Analysis

Since the three-phase two-level VSI consists of three half-bridges connected in parallel,
the dead-time theoretical analysis was conducted on a single half-bridge. The typical GaN-based
half-bridge configuration is shown in Figure 1. The actual transistors’ switching depends not only on
the dead-time issued by the MCU but also on the propagation delay introduced by the driver, the delay
caused by a digital isolator (when used for the high-side switch), and the delay given by the transistors’
intrinsic properties. Compared to silicon devices, in the case of fast-switching GaN transistors, the
driver’s delay is comparable to the transistor’s delay [16]. Furthermore, the driver’s delay varies with
the temperature and supply voltage, and the transistors’ delay, with the DC-link voltage and the load
current. In the following text, the actual time duration when both transistors in the half-bridge are in
the “off” state will be referred to as the “output dead-time”. Similarly, the converter’s output voltage
actual transition will be referred to as the “output duty cycle”.
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Figure 1. A typical gallium nitride (GaN)-based half-bridge configuration.

2.1. Dead-Time Generation

Ideally, the output dead-time should be equal to zero to minimize the additional losses [11].
When a fixed dead-time is used, it should be long enough with respect to the driver and transistor
switching parameters to prevent a shoot-through (i.e., when both transistors are on simultaneously) [18].
The dead-time in the half-bridge configuration is adjusted by delaying the MCU’s control signal’s
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rising and falling edges. The set dead-time can be both positive and negative. The negative dead-time
is needed in case the turn-on delays are longer than the turn-off delays. This is explained in Figure 2,
which shows the reference signal (Ref); the corresponding controllers’ outputs for the high (H) and
low (L) transistors, respectively; and the resulting output voltage (V) and current (I) waveforms.
The figure shows a situation when the driver and transistor turn-on delay is longer than the turn-off

delay. In practice, this situation is common when separate high-side drivers or digital isolators are
used during the circuit design [9].
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Figure 2. Output duty cycle for (a) discontinuous conduction mode (DCM) positive dead-time,
(b) continuous conduction mode (CCM) current source positive dead-time, (c) CCM current sink positive
dead-time, (d) DCM negative dead-time, (e) CCM current source negative dead-time, and (f) CCM
current sink negative dead-time.

In the so-called discontinuous conduction mode (DCM), the output current polarity changes within
a single switching period, causing a voltage commutation that always appears after the previously
conducting transistor is turned off [19]. During the DCM, the output duty cycle is not influenced by
the dead-time, as seen in Figure 2a,d. The shorter output dead-time in Figure 2d was achieved by
utilizing the negative dead-time, which is created by delaying the control signals’ falling edges for
both the upper and lower transistors.

In the case of continuous conduction mode (CCM) and the current source operation (Figure 2b),
the output signal’s rising edge was delayed by the dead-time plus the difference in the turn-on/off

times of the driver’s circuitry. The output duty cycle does not correspond to the reference duty-cycle,
which means voltage distortion is introduced. When the half-bridge operates as a current sink
(Figure 2c), the falling edge is delayed instead, and the duty cycle is increased.

During CCM and current source operation (Figure 2e), the negative dead-time changes the output
duty cycle at the falling edge of the output signal, similar to the situation shown in Figure 2c. For the
current sink operation (Figure 2f), the rising edge was adjusted.

Depending on the half-bridge output current in CCM, the output duty cycle D can be obtained
from Table 1.
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Table 1. Output duty cycle in CCM.

Current Direction Dead-Time Polarity Output Duty Cycle

Source Positive D = DMCU −
td(rise)

T
Source Negative D = DMCU −

td(fall)

T
Sink Positive D = DMCU +

td(fall)

T
Sink Negative D = DMCU +

td(rise)

T

In Table 1, DMCU is the reference duty cycle, td(rise) is the switching delay following the reference
signal’s rising edge, td(fall) is the switching delay following the reference signal’s falling edge, and T is
the switching period.

2.2. Reverse Conduction Loss

The cause of the reverse conduction losses is shown in Figure 3. Here, the half-bridge output
voltage (which operates as a current source) is distorted by negative peaks that correspond to the
low transistor being in the self-commutated reverse conduction region [6]. The peaks disappear
when the transistor is turned on and starts to operate with a smaller voltage drop (comparable to the
forward conduction mode). The dead-time is at its optimum when the duration of the negative peaks
is minimized.
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The output voltage Vout of the converter can be expressed as [17]

Vout = D·VDC − ∆VSD, (1)

∆VSD =
2tdt

T
VSD(off)·sgn(Iout), (2)

where D is the output duty cycle, VDC is the DC-link voltage, ∆VSD is the additional voltage drop
caused by the non-zero output dead-time, tdt is the output dead-time, VSD(off) is the voltage drop
across the source and drain, and Iout is the converter’s output current.

The additional voltage drop ∆VSD depends on the polarity of the output current and source-drain
voltage VSD(off), which appears across the transistor that operates in reverse conduction self-commutated
mode. The source-drain voltage VSD(off) consists of the gate threshold voltage VGS(th) and negative
gate voltage VGS(off) that the driver applies during the off state [8], i.e.,

VSD(off) = VGS(th) −VGS(off). (3)
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From (3), it can be seen that the dead-time losses are even more significant in the case of robust
converters that apply a negative gate voltage in the off-state to prevent a false turn-on.

As explained in the previous section, the converter output voltage changes with the dead-time
depending on the operation mode (Figure 4). During the CCM, the maximum output voltage exists,
which corresponds to no self-commutation. When the dead-time is decreased beyond some threshold
value (the vertical dashed line in Figure 4b), the current flowing through the recently turned-on
transistor starts to rise before the current of the other transistor drops to zero. This shoot-through
operation means the output is connected to the virtual DC-link neutral point for a short time. The current
is then limited only by the parasitic inductance.
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2.3. Drive Controller

The block diagram of the proposed control scheme with a dead-time loss minimization algorithm
is presented in Figure 5. In contrast to the standard control schemes, the tracking algorithm block,
and the corresponding dead-time compensation block, are added. Figure 5 also shows a speed PS
regulator with the possibility of field-weakening operation. Such a controller has been described,
for instance, in [20]. The reason behind the PS speed controller deployment is a more convenient
measurement and presentation of the experimental results.
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In a steady state, the ∆VSD given by (2) produces output voltage distortion that can be expressed
as [21]

∆vα = K
2tdt

T
VSD(off)

[
sgn(ia) −

1
2

sgn(ib) −
1
2

sgn(ic)
]
, (4)
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∆vβ = K
√

3
2

2tdt

T
VSD(off)[sgn(ib) − sgn(ic)]. (5)

where K is Clarke’s transformation coefficient. The distorting voltage components expressed in the αβ
stationary reference frame can be transformed into the rotor-fixed dq reference frame as

∆vd = ∆vα cos(θ) + ∆vβ sin(θ), (6)

∆vq = ∆vβ cos(θ) − ∆vα sin(θ). (7)

where θ is the angle between the stationary and rotor-fixed coordinate systems. Figure 6a shows the
trajectory of the reference voltage vector (dashed) and the distorted voltage vector (solid) per electrical
revolution in the stationary αβ coordinate system (voltage in per unit). Figure 6b then shows the
vectors transformed into the dq reference frame. From Figure 6, it can be seen that to compensate for
the voltage distortion, the d-axis current controller has to increase the −v∗d demand, and the q-axis
controller has to decrease the v∗q demand.
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Figure 6. The inverter reference (dashed) and distorted (solid) output voltage in (a) the stationary
αβ reference frame and (b) in the rotor-fixed dq reference frame; tdt = 5% of T; ∆VSD = 5% of VDC;
power factor, 0.5; load angle, 15◦.

2.4. Tracking Algorithm

The tracking algorithm [15] is a simple perturb-and-observe tracker searching for the minimum
output of the dq-axis current controllers by adjusting the dead-time for the VSI. Mathematically,
the output of the tracker can be described as

tdt(k) = tdt(k− 1) + ∆tdt, (8)(
vq(av) − vd(av)

)
k
>
(
vq(av) − vd(av)

)
k−1
⇒ ∆tdt = −∆tdt, (9)

where ∆tdt is the dead-time increment, vd(av) and vq(av) are the dq voltage components averaged within
the tracker update period, and the symbol k denotes the discrete step. The duty cycle for each phase is
then compensated according to Table 1, i.e.,

Dx = DMCUx +
tdt

T
·sgn(ix), x = a, b, c. (10)
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The optimum dead-time is continually tracked to ensure the reverse conduction losses are
minimized, even during the drive parameter variation (i.e., power, DC-link voltage, and temperature
variations).

3. Experimental Results

A GaN-based three-phase VSI prototype was built to implement the motor control algorithm along
with the proposed dead-time loss minimization method. A picture of the experimental workspace is
shown in Figure 7.
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The following experiment was designed to test the method. A PMSM drive was operated
under various load and speed conditions, including the field-weakening region. At first, the tracking
algorithm input variable had to be determined. Based on the theoretical analysis performed in Section 2,
the resulting quantity selected as the tracker’s observed value was the difference between the q- and
d-axis voltage components, i.e., vq − vd. With the observed variable determined, the tracking algorithm
had to be tuned; i.e., the dead-time increment and update period values were set. The tracking
algorithm was then tested at multiple operating points. Furthermore, the power consumed by the
converter for multiple fixed dead-time values was measured, and the results were compared to the
proposed tracker-based optimization method.

3.1. Experimental Setup

The VSI was equipped with six GS66508T GaN transistors driven by Si8275 isolated half-bridge
gate drivers. The converter was controlled by an ARM Cortex M4 MCU STM32F334 equipped with a
high-resolution timer peripheral that allows setting the duty cycle and dead-time with a resolution up
to 217 ps. The SVM frequency was set to 100 kHz. The converter supplied a 200 W 4-pole PMSM with
an incremental encoder used for speed and position feedback. A simplified schematic diagram of the
experimental setup is shown in Figure 8.
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A single shunt current measuring method with phase current reconstruction optimized for a
high switching frequency [22] was used for the current measurement. The VSI output voltage is
hardware-demanding to measure directly due to its pulsating nature and high-frequency components.
Therefore, the reference voltage vector, i.e., the current controllers’ output, was used within the
algorithm instead. The controlled motor was then coupled with a similar PMSM machine loaded
by resistors Rload to create a mechanical load. The nameplate data and model parameters of both
machines are shown in Table 2. The data acquired by the MCU were transferred directly to the laptop
via a CAN bus, which was also used to set the controllers’ reference values.

Table 2. Motor and generator parameters.

Motor Generator

Type SGM-02A5F SGM-04AW12
RPM 3000 3000

Power (W) 200 400
Max voltage (V) 200 200
Max current (A) 2.0 4.0

Stator resistance (Ω) 1.35 1.26
d-axis inductance (mH) 7.05 7.75
q-axis inductance (mH) 7.25 8.05

3.2. Current Controllers’ Output Change with Dead-Time

First, the behavior of the current controllers’ output with respect to the set dead-time was examined.
During the experiment, the motor was running in a steady state at a constant speed, with the dead-time
being changed by 1 ns steps per 200 ms to let the current controllers stabilize. The reference speed was
then modified and the data measured again. The dependence of the relative output values of the d-
and q-axis current controllers on the set dead-time for different reference speed values and different
load resistors Rload are plotted in Figure 9.

Figure 9a shows that vd decreased with increasing speed. Contrary to that, vq (Figure 9b) increased
with the speed almost linearly until the field-weakening region was reached (above 1000 RPM).
In Figure 9c, the higher negative values of vd with respect to the speed were caused by the increased
load angle, while the small increase in vq in Figure 9d compensated the stator resistance. To make the
shapes of all the curves more clearly visible, they are replotted in Figure 10 with their aligned peaks.
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Figure 9. Dependence of current controllers’ outputs on the set dead-time for different speed references;
mechanical load created by PMSM with a variable resistance Rload in the armature: (a) d-axis current
controller, Rload = 187 Ω; (b) q-axis current controller, Rload = 187 Ω; (c) d-axis current controller,
Rload = 73 Ω; and (d) q-axis current controller, Rload = 73 Ω.
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Figure 10. More detailed depiction of curves from Figure 9: (a) d-axis current controller, Rload = 187 Ω;
(b) q-axis current controller, Rload = 187 Ω; (c) d-axis current controller, Rload = 73 Ω; and (d) q-axis
current controller, Rload = 73 Ω.
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In Figure 10, the vd curves exhibit a visible maximum, while the vq curves mostly keep decreasing
across the whole tested range. This behavior was caused by the distorting voltage vector decreasing vd
and increasing vq components, as shown in Figure 6. During this time, the reverse conduction losses
were increased with the set dead-time. It follows that the optimum dead-time value can be found at
the minimum of vq − vd. This quantity is also used as the observed value within the tracking algorithm.

3.3. Tracking Algorithm

Figure 11 shows the trace of the tracker’s dead-time from the starting point of 200 ns. The dead-time
increment ∆tdt was set to 5 ns, and the tracker update period, to 200 ms. In Figure 11a, the motor
was running at 800 RPM where both the vd and vq voltage components were changing. In Figure 11b,
the motor was running in the field-weakening region where only the change in vd was observed by the
tracker. For an increased load and the same speed references, Figure 11c,d show lower values found by
the tracker.Electronics 2020, 9, x FOR PEER REVIEW 11 of 14 
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Figure 11. Tracking algorithm searching for an optimum dead-time for (a) 800 RPM, Rload = 187 Ω;
(b) 1200 RPM, Rload = 187 Ω; (c) 800 RPM, Rload = 73 Ω; and (d) 1200 RPM, Rload = 73 Ω.

Due to the speed-dependent load, a higher speed means a higher output VSI current. The same
goes for an increased load. The VSI current and the current-dependent change in the GaN’s switching
behavior caused additional losses and output dead-time variation. Therefore, the optimum dead-time
found was lower for both increased loads and speeds.



Electronics 2020, 9, 1973 11 of 14

3.4. Dead-Time Loss Minimization

To quantify the amount of energy savings achieved with the proposed method, the input inverter
power was measured for multiple cases. Within the first group of tests, the converter was operated
with selected values of fixed dead-time. Within the second group of tests, the converter was operated
with a dead-time found by the tracking algorithm. Table 3 shows the measured DC-link currents for
the fixed and tracked optimum dead-times with the calculated relative loss differences.

In Table 3, it can be seen that for 400 RPM, the optimum dead-time lies close to 100 ns because here,
the relative loss difference between the fixed and tracked dead-time is minimal. A similar situation
exists for 1200 RPM and 50 ns. Contrary to that, the fixed 10 ns and 200 ns values were clearly too
small and large, respectively, for the whole measured range.

In the field-weakening region (above 1000 RPM), the power loss decrease is more significant
because the field-weakening d-axis current component causes additional losses when the dead-time
is fixed. This is important mainly when the GaN converter is used as a direct replacement for a
silicon-based converter. At high switching frequencies, the GaN reverse conduction mode causes
higher power losses compared to low-frequency silicon-based converters. Therefore, it follows that
the dead-time optimization is also important from the point of view of the GaN-based converters
becoming a convenient high-power density and high-efficiency alternative to silicon-based converters.

3.5. Comparison with Other Methods Mentioned in the Literature

To assess the overall quality of the proposed method within the context of other methods presented
in the literature, a qualitative comparison was made. The features of the individual approaches in
selected categories are highlighted in Table 4. The method presented in this paper stands out against
other approaches mainly because it eliminates their disadvantages while achieving effective loss
minimization at the same time.
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Table 3. Relative comparison of VSI losses for selected values of fixed dead-time compared to optimized dead-time for various speed references and Rload = 73 Ω.

RPM
Input DC-Link Current for Various Dead-Time Values (A) Relative Power Saved with the Tracking Algorithm (%)

200 ns 100 ns 50 ns 10 ns Tracker on 200 ns 100 ns 50 ns 10 ns

400 0.1416 0.1409 0.1419 0.1478 0.1409 −0.50 −0.01 −0.71 −4.90
600 0.2376 0.2364 0.2373 0.2440 0.2362 −0.59 −0.08 −0.47 −3.30
800 0.3658 0.3641 0.3643 0.3750 0.3636 −0.61 −0.14 −0.19 −3.14

1000 0.5338 0.5310 0.5301 0.5400 0.5293 −0.85 −0.32 −0.15 −2.02
1200 0.7641 0.7600 0.7574 0.7700 0.7573 −0.90 −0.36 −0.01 −1.68
1250 0.8703 0.8656 0.8642 0.8755 0.8621 −0.95 −0.41 −0.24 −1.55
1300 0.9832 0.9748 0.9709 0.9830 0.9682 −1.55 −0.68 −0.28 −1.53
1350 1.0750 1.067 1.0620 1.0780 1.0580 −1.61 −0.85 −0.38 −1.89
1400 1.1385 1.1309 1.1258 1.136 1.118 −1.83 −1.15 −0.70 −1.61

Table 4. Dead-time optimization method comparison.

Additional
Measurements

Simulation
Requirements HW SW Loss Minimization

Fixed Dead-time [18] single measurement - - - low

Look-Up Table [10] dead-time map required - memory space searching in the
dead-time map medium

Model-Based [13] - converter model
preparation - converter model

online calculation high

Dead-Time Sensor [11] - - reverse drop
sampling circuit

reverse drop
data acquisition high

Method Proposed in This Paper - - - tracking algorithm high
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4. Discussion

In this paper, a novel method of a GaN-based PMSM drive dead-time loss minimization strategy
was presented. The proposed control scheme consists of a classic vector control structure with an
added tracking algorithm to find the optimum dead-time for GaN transistors. The main idea behind
the presented method is based on the theoretical and mathematical analysis of the GaN’s reverse
conduction phenomena and their influence on the inverter output voltage. It follows that reverse
conduction losses occur together with the output voltage distortion. Therefore, the tracker, a simple
perturb-and-observe algorithm, utilizes the current controllers’ voltage outputs for the online optimum
dead-time selection. The presented method’s main contribution is that neither additional hardware
nor prior inverter data are necessary for its operation. This makes the method a viable option for either
“offline” or online optimum dead-time identification.

The experimental results confirm the validity of the presented approach at multiple drive operating
points. It has been found out that a load increase leads to a lower optimum dead-time being found by
the tracker. This is caused by the current-dependent switching behavior of GaN devices. Furthermore,
converter power losses were measured at several operating points for multiple fixed dead-time values
and compared to the losses measured for the case of an active dead-time tracker. The results confirm
the advantages of the load-dependent optimum dead-time generation over a fixed dead-time. In the
field-weakening region, the saved power was more significant due to the PMSM characteristics because
less power was dissipated to weaken the permanent magnets’ flux, as the converter’s output voltage
was not decreased by the reverse conduction drop at the optimum dead-time.
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