Switchable DBR Filters Using Semiconductor Distributed Doped Areas (ScDDAs)
Abstract
:1. Introduction
2. Switchable DBR Theory
3. Switchable DBR Demonstrator
3.1. Design and Modeling
3.2. Fabrication and Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Singh, Y.K. RF-MEMS-based bandpass-to-bandstop switchable single- and dual-band filters with variable FBW and reconfigurable selectivity. IEEE Trans. Microw. Theory Tech. 2017, 65, 3824–3837. [Google Scholar] [CrossRef]
- Fan, M.; Song, K.; Zhu, Y.; Fan, Y. Compact Bandpass-to-Bandstop Reconfigurable Filter with Wide Tuning Range. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 198–200. [Google Scholar] [CrossRef]
- Yang, T.; Rebeiz, G.M. A 1.9–2.6 GHz filter with both bandpass-to-bandstop reconfigurable function and bandpass-and-bandstop cascading function. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 264–266. [Google Scholar]
- Naglich, E.J.; Lee, J.; Peroulis, D.; Chappell, W.J. A tunable bandpass-to-bandstop reconfigurable filter with independent bandwidths and tunable response shape. IEEE Trans. Microw. Theory Tech. 2010, 58, 3770–3779. [Google Scholar] [CrossRef]
- Cheng, T.; Tam, K.-W. A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 909–911. [Google Scholar] [CrossRef]
- Tu, W.-H. Compact Low-Loss Reconfigurable Bandpass Filter with Switchable Bandwidth. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 208–210. [Google Scholar] [CrossRef]
- Lugo, C.; Papapolymerou, J. Electronic switchable bandpass filter using PIN diodes for wireless low cost system-on-a-package applications. IEEE Proc. Microw. Antennas Propag. 2004, 151, 497–502. [Google Scholar] [CrossRef]
- Brito-Brito, Z.; Llamas-Garro, I.; Navarro-Munoz, G.; Perruisseau-Carrier, J.; Pradell, L. UMTS-WiFi switchable bandpass filter. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 125–128. [Google Scholar]
- Wong, P.W.; Hunter, I. A New Class of Low-Loss High-Linearity Electronically Reconfigurable Microwave Filter. IEEE Trans. Microw. Theory Tech. 2008, 56, 1945–1953. [Google Scholar] [CrossRef]
- Mahe, F.; Tanne, G.; Rius, E.; Person, C.; Toutain, S.; Biron, F.; Billonnet, L.; Jarry, B.; Guillon, P. Electronically Switchable Dual-Band Microstrip Interdigital Bandpass Filter For Multistandard Communication Applications. In Proceedings of the 2000 30th European Microwave Conference, Paris, France, 2–5 October 2000. [Google Scholar]
- Chen, C.-C.; Wang, S.-M. Design of an LTCC switchable filter for Dual-Band RF Front-End applications. In Proceedings of the TENCON 2007—2007 IEEE Region 10 Conference, Taipei, Taiwan, 30 October–2 November 2007. [Google Scholar]
- Weng, S.; Hsu, K.; Tu, W. Switchable and High-Isolation Diplexer with Wide Stopband. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 373–375. [Google Scholar] [CrossRef]
- Xu, J. Compact Switchable Bandpass Filter and Its Application to Switchable Diplexer Design. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 13–15. [Google Scholar] [CrossRef]
- Yang, S.; Li, W.; Vaseem, M.; Shamim, A. Fully Printed VO2 Switch Based Flexible and Reconfigurable Filter. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 49–52. [Google Scholar] [CrossRef]
- Ninic, M.; Jokanovic, B.; Meyer, P. Reconfigurable Multi-State Composite Split-Ring Resonators. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 267–269. [Google Scholar] [CrossRef]
- Lugo, C.; Papapolymerou, J. Six-State Reconfigurable Filter Structure for Antenna Based Systems. IEEE Trans. Antennas Propag. 2006, 54, 479–483. [Google Scholar] [CrossRef]
- Quendo, C.; Rius, E.; Person, C. Narrow bandpass filters using dual-behavior resonators based on stepped-impedance stubs and different-length stubs. IEEE Trans. Microw. Theory Tech. 2004, 52, 1034–1044. [Google Scholar] [CrossRef]
- Quendo, C.; Rius, E.; Person, C. An original topology of dual-band filter with transmission zeros. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, PA, USA, 8–13 June 2003; Volume 2, pp. 1093–1096. [Google Scholar]
- Foum, E.; Rius, E.; Tanne, G.; Manchec, A.; Quendo, C. Frequency Variations Improvement of a Bandwidth and Central Frequency Reconfigurable DBR Filter. In Proceedings of the 2006 European Microwave Conference, Manchester, UK, 10–15 September 2006. [Google Scholar]
- Gómez-García, R.; Muñoz-Ferreras, J.-M.; Psychogiou, D. Dual-Behavior Resonator-Based Fully Reconfigurable Input Reflectionless Bandpass Filters. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 35–37. [Google Scholar] [CrossRef]
- Othman, A.; Barrak, R.; Mabrouk, M. New approach to design tunable RF filters using DBR topology for SDR receivers. In Proceedings of the 2013 13th Mediterranean Microwave Symposium (MMS), Saida, Lebanon, 2–5 September 2013; pp. 1–4. [Google Scholar]
- Laur, V.; Moussavou, A.; Tanne, G.; Laurent, P.; Bouquet, V.; Deputier, S.; Guilloux-Viry, M.; Huret, F. Tunable DBR resonators using KTN ferroelectric thin-films. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposiumpp, Honolulu, HI, USA, 3–8 June 2007; pp. 2059–2062. [Google Scholar]
- Allanic, R.; Quéré, Y.; le Berre, D.; Quendo, C. A Novel Approach to Co-Design microwave Devices with Distributed Switches. In Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016. [Google Scholar]
- Allanic, R.; Quéré, Y.; le Berre, D.; Quendo, C. Intrinsically microwave tunable resonator designed on silicon. IEEE Electron. Lett. 2016, 52, 1697–1699. [Google Scholar] [CrossRef]
- Allanic, R.; le Berre, D.; Quere, Y.; Quendo, C.; Chouteau, D.; Grimal, V.; Valente, D.; Billoue, J. Three-State Microwave Tunable Resonator Integrating Several Active Elements on Silicon Technology in a Global Design. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 141–143. [Google Scholar] [CrossRef]
- Allanic, R.; le Berre, D.; Quere, Y.; Quendo, C.; Chouteau, D.; Grimal, V.; Valente, D.; Billoue, J. Continuously Tunable Resonator Using a Novel Triangular Doped Area on a Silicon Substrate. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1095–1097. [Google Scholar] [CrossRef]
- Allanic, R.; le Berre, D.; Quere, Y.; Quendo, C.; Chouteau, D.; Grimal, V.; Valente, D.; Billoue, J. A Novel Synthesis for Bandwidth Switchable Bandpass Filters Using Semi-conductor Distributed Doped Areas. IEEE Access 2020, 8, 122599–122609. [Google Scholar] [CrossRef]
Access | LF Resonator | HF Resonator | ScDDAs | |
---|---|---|---|---|
Length | L01 = 3.74 mm L02 = 4 mm | LstubLF = 5.46 mm | LstubHF = 3.8 mm | LDop = 0.2 mm |
Width | W0 = 0.56 mm | WstubLF = 0.84 mm | WstubHF = 0.31 mm | WDop = 0.31 mm |
ScDDA of DBR1 | ScDDA of DBR2 | ScDDA of DBR3 | ScDDA of DBR4 | |
---|---|---|---|---|
Length | LDop = 0.2 mm | LDop = 1 mm | LDop = 0.2 mm | LDop = 2 mm |
Width | WDop = 0.31 mm | WDop = 0.31 mm | WDop = 0.84 mm | WDop = 1.5 mm |
Ref. | Freq. (GHz) LF Band | Freq. (GHz) HF Band | IL (dB) LF Band | IL (dB) HF Band | Active Components | Frequency Ratio |
---|---|---|---|---|---|---|
[8] | 1.94 | 2.43 | 3.84 | 3.35 | PIN diodes | 1:1.25 |
[9] | 1.06 | 1.51 | 1.7 | 1.7 | PIN diodes | 1:1.42 |
[10] | 1.92 | 2.08 | 3.94 | 3.07 | PIN diodes | 1:1.08 |
[10] | 2.03 | 4.47 | 24.46 | 3.77 | PIN diodes | 1:2.2 |
[11] | 2.53 | 4.9 | 3.77 | 2.64 | PIN diodes | 1:1.94 |
[12] | 1.2 | 1.5 | 2.1 | 2.21 | PIN diodes | 1:1.25 |
[13] | 0.90 | 1.25 | 1.8 | 1.9 | PIN diodes | 1:1.38 |
[14] | 3.7 | 4 | 2.6 | 2.6 | Vanadium-di-oxide | 1:1.08 |
This study DBR1 | 2.55 | 5.58 | 1.97 | 1.9 | Integrated ScDDA | 1:2.19 |
This study DBR2 | 2.6 | 5.53 | 1.97 | 1.95 | Integrated ScDDA | 1:2.13 |
This study DBR3 | 3.23 | 5.53 | 1.98 | 1.68 | Integrated ScDDA | 1:1.71 |
This study DBR4 | 3.8 | 5.2 | 1.94 | 1.95 | Integrated ScDDA | 1:1.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allanic, R.; Le Berre, D.; Quendo, C.; Chouteau, D.; Grimal, V.; Valente, D.; Billoué, J. Switchable DBR Filters Using Semiconductor Distributed Doped Areas (ScDDAs). Electronics 2020, 9, 2021. https://doi.org/10.3390/electronics9122021
Allanic R, Le Berre D, Quendo C, Chouteau D, Grimal V, Valente D, Billoué J. Switchable DBR Filters Using Semiconductor Distributed Doped Areas (ScDDAs). Electronics. 2020; 9(12):2021. https://doi.org/10.3390/electronics9122021
Chicago/Turabian StyleAllanic, Rozenn, Denis Le Berre, Cédric Quendo, David Chouteau, Virginie Grimal, Damien Valente, and Jérôme Billoué. 2020. "Switchable DBR Filters Using Semiconductor Distributed Doped Areas (ScDDAs)" Electronics 9, no. 12: 2021. https://doi.org/10.3390/electronics9122021
APA StyleAllanic, R., Le Berre, D., Quendo, C., Chouteau, D., Grimal, V., Valente, D., & Billoué, J. (2020). Switchable DBR Filters Using Semiconductor Distributed Doped Areas (ScDDAs). Electronics, 9(12), 2021. https://doi.org/10.3390/electronics9122021