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Abstract: It is essential to restore digital images corrupted by noise to make them more useful.
Many approaches have been proposed to restore images affected by fixed value impulse noise,
but they still do not perform well at high noise density. This paper presents a new method to
improve the detection and removal of fixed value impulse noise from digital images. The proposed
method consists of two stages. The first stage is the noise detection stage, where the difference values
between the pixels and their surrounding pixels are computed to decide whether they are noisy
pixels or not. The second stage is the image denoising stage. In this stage, the original intensity
value of the noisy pixels is estimated using only their first-order and second-order neighborhood
pixels. These neighboring orders are based on the Euclidean distance between the noisy pixel and its
neighboring pixels. The proposed method was evaluated by comparing it with some of the recent
methods using 50 images at 18 noise densities. The experimental results confirm that the proposed
method outperforms the existing filters, excelling in noise removal capability with structure and edge
information preservation.
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1. Introduction

Digital images have an important role in our life [1]. Digital imaging has a wide range of
applications in many research areas, such as medical sciences, biology, particle physics, geology,
the science of materials, photography and remote sensing [1–3]. For some medical practices, digital
imaging plays an important role, especially for studying physiology abnormalities and anatomy of the
internal organs [4]. Countless images are made, translated and edited daily [5].

However, many images that are created have some imperfections called noise [6].
Such imperfections may be caused by the incapacity and instability of imaging systems or sensors
to obtain ideal images [1], or natural disruptions in the surroundings during image processing [1,7],
inadequate illumination, or sensor temperature resulting in noise, or during compression and
transmission [1,7,8]. Data obtained with these noises can make the data unusable or lose confidence in
them [1,9].

Noise is simply an unnecessary detail, impacting the consistency of the signals and data [10,11].
This is because noise results in alterations in images where the original values of some pixels are
changed to different values [5]. One of the common types of noise is impulse noise [12]. Impulse
noise frequently distorts the image during the phase of image processing and transmission [11,13].
Impulse noise can be divided into two categories, which are random value impulse noise and fixed
value impulse noise [13–15]. Random value impulse noise is usually caused by errors in timing or
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synchronization of analog to digital converter [15,16], malfunctioning pixel elements in the camera
sensors or faulty transmission [3,15–17]. The intensity values of the damaged pixels in the image by
random value impulse noise ranged from the minimum value to the maximum value in the dynamic
range [13,15,18,19]. On the other hand, fixed value impulse noise is usually caused by malfunctioning
pixel elements in the camera sensors, faulty memory locations or errors in the digitization process [15].
The damaged pixels in the image by fixed value impulse noise take only the maximum or the minimum
values in the dynamic range [12,13,15,19]. Therefore, the damaged pixels appear as black and white
pixels [20,21].

Impulse noise significantly impacts the processing and analysis of digital images, such as image
segmentation, object recognition, object tracking and edge detection [22,23]. Thus, it is important to
eliminate the impulse noise from the image before proceeding with any subsequent processing [11,23,24].
Effective impulse noise removal is therefore highly needed.

Median filter and mean filter have initially been proposed to eliminate the impulse noise [22].
Both filters have a simple process, but the mean filter was found not able to maintain image structure
and edge details, while the median filter gave better results. Other classic filters are Kuwahara
and Nagao filters; unlike mean and median filters, these filters are more complicated because they
divide the window into groups, and the mean value of the most homogeneous group, based on the
lowest standard deviation, is the new value of the pixel to be restored [25–28]. Besides the complexity,
they have two main drawbacks. One is the block structure of the output, particularly evident in textured
areas. The second one is that every time the minimum value of the standard deviation is reached by
more than one subregion, the output of the filter operators cannot be uniquely determined [29].

However, the median filter still has several limitations, especially for removing high noise density.
This is because it filters all pixels in the image, even those pixels that are not corrupted by noise [22,24].
Researchers have proposed several changes or enhancements to the Standard Median Filter (SMF)
due to the limitations of the SMF filter [24,30,31]. Various advanced filters have been proposed by
integrating various techniques [8]. However, the SMF drawback is that the filter is applied to all
pixels in the image evenly, to the noisy pixels and noise-free pixels, which leads to original details lost.
The switching median filter (SwMF) came to solve this drawback [32].

SwMF and its enhancement filters consist of two stages. The first stage is noise detection. In this
stage, each pixel in the image is denoted as a noisy pixel or noise-free pixel [33]. This stage is very
important, as the second stage depends on it to maintain the original details of the image and not to
miss any noisy pixel for restoration. The existing impulse noise detectors may miss many noisy pixels
from being detected, especially for high noise density or on white and black regions. Also, they still
detect many of the noise-free pixels with extreme intensity as noisy pixels, which leads to a loss in the
original details of the image [1]. From that, an enhancement of impulse noise detectors is required.

The second stage of the SwMF and its enhancement filters is the restoration of the corrupted pixels
in the image. The restoration of corrupted pixels is done by estimating the original intensity value
using the pixels around it. The existing restoration filters still cannot achieve high-quality restored
images from corrupted images at high noise density as observed in the recent works by Chen et al. [22],
Samantaray et al. [34], Chen et al. [35] and Sangave and Jain [12]. From that, an enhancement of
impulse noise restoration is required.

In this paper, an enhanced SwMF method is proposed. The proposed method has two stages.
The first stage is the fixed value impulse noise detection, wherein the pixels having extreme intensities
in the corrupted image will be denoted as noisy pixels or noise-free pixels depending on the difference
values between their intensities and the intensities of the surrounding pixels. In the second stage,
the original intensity value of the noisy pixels will be estimated using the median value of the
non-extreme intensity pixels of the first-order neighborhood pixels. In case all the pixels in the
first-order neighborhood are having extreme intensity pixels, the median value of the non-extreme
intensity pixels in the second-order neighborhood pixels will be used to estimate the original intensity
of the noisy pixel.
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2. Related Works

Many methods were proposed to enhance SwMF. For example, in work by Samantaray et al. [34],
a variable threshold detector (VTD) was used, where the threshold value was dependent on the
estimated noise density. The noise density was estimated by sliding an 11 × 11 mask over all the
image regions. For each mask having a non-extreme intensity pixel at its center, the method counts
the number of pixels with extreme intensity within this area. Then, the noise density was estimated
by dividing this number of extreme intensity pixels by the number of the mask’s positioning over
the entire image. To restore the noisy pixels, Samantaray et al. [34] proposed a neighborhood-based
decision filter (NBDF), where only the first-order neighborhood (FON) pixels were used to estimate
the original intensity value of the noisy pixel.

In work by Chen et al. [22], the 3σ and local statistics principal (D3PLS) distinguish the noisy
pixels and the noise-free pixels in the corrupted image. For the restoration of the noisy pixels, Chen et
al. [22] proposed an adaptive sequentially weighted median filter (ASWMF). The median value of the
weighted noise-free pixels in a small window is used as the new value of the noisy pixels. If all the
pixels in the window are noisy pixels, the window is enlarged until there is at least one noise-free pixel,
or it reaches its maximum size.

In work by Chen et al. [35], a fixed threshold detector (FTD) was used, where the number of
pixels having the same intensity value as the pixel to be checked in a window of size 5 × 5 determines
whether the pixel is noisy or not. In the work by Chen et al. [35], iterative grouping median filter
(IGMF) was proposed to restore the noisy pixels. The uncorrupted pixels within a window of size
5 × 5 pixels were arranged in ascending or descending order. They are then divided into groups as the
number of edges is found by applying a threshold value between each pixel and its adjacent pixel.

In work by Sangave and Jain [12], a boundary discriminative noise detector (BDND) is used to
discriminate the noisy pixels in the corrupted image. The pixels in a window of size 21 × 21 pixels
were divided into two groups of equal number, after ascending sort. The two boundaries determined
by the pixel intensity value had the largest difference in value with the intensity value of the next pixel
to it in each group. After that, to restore the noisy pixels, Euclidean distance filter (EDF) was used,
where the original intensity value of a noisy pixel was estimated by the mean value of the noise-free
pixels in a window of size w × w pixels after being weighted by the Euclidean distance.

3. The Proposed Method

In this work, we aim to generate a restored image R from the image C corrupted by fixed value
impulse noise. The proposed method is based on SwMF. Therefore, the proposed method consists of
two stages, with the first stage being the noise detection stage, and the second stage being the image
denoising stage. This is shown in Figure 1. In the noise detection stage, each pixel in the corrupted
image C will be denoted as either a noisy pixel or noise-free pixel. This information will be stored in a
noise mask N. Then, in the image denoising stage, those pixels denoted as noisy pixels in noise mask N
will undergo the process to estimate their original intensity value. The result is the restored image R.
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Figure 1. General flow of the proposed method.

3.1. Noise Detection Stage

This method aims to remove fixed value impulse noise only. For this type of impulse noise,
all corrupted pixels in image C have extreme intensity values (i.e., 0 or L-1), where L is the number of
intensity levels of the image (e.g., for an eight-bit-per-pixel grayscale image, L is equal to 256 levels).
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Therefore, all pixels in image C that have non-extreme intensity values will be denoted as noise-free
pixels. On the other hand, initially, all pixels in image C having extreme intensity value will be denoted
as noise candidate pixels. However, some of the pixels with the extreme intensity value are not noisy
pixels. As a consequence, in this work, noise candidate pixels will be further undergoing the detection
stage to distinguish which of them are noisy pixels, and which ones are noise-free pixels.

As mentioned in work by Chen et al. [22], it is assumed that the intensity distribution of the
uncorrupted pixels within a local window usually follows a normal distribution. This means that
the intensities in the local window have a small difference in value between each other. Hence,
the noise-free pixels with extreme values are normally surrounded by pixels that have the same or
similar intensity values (i.e., with a small difference in value) to them. From these assumptions,
the proposed detector considers that the noise candidate pixel’s intensity is significantly different from
the neighboring pixels as a noisy pixel. On the other hand, if the intensity value of the noise candidate
pixel is similar to its neighboring pixels, this pixel is considered as a noise-free pixel.

Based on that, two threshold values will be used to evaluate the intensity differences between the
noise candidate pixel with its neighboring pixels. The first threshold value is the highest difference
value (HDV), and the second threshold value is the highest mean value (HMV) of the difference values.
Both HDV and HMV will be determined from a set of training images. The training image Tr is
considered a clean image without noise.

HDV will be calculated by taking the intensity differences between normal extreme intensity (NEI)
pixels, which are the pixels having extreme intensity value in image Tr, with all of their surrounding
pixels, within a window of size 3 × 3 pixels. These difference values will be obtained from all training
images that will be used in this work. As the dynamic range is from 0 to 255, the difference values will
be grouped and each group will be of 10 difference values. The groups having less than 6% repetitive
rate will be denoted as infrequent difference values and will be excluded. Then, the largest intensity
difference that is obtained after excluding the infrequent values will be the HDV.

On the other hand, HMV will be calculated by taking the mean values of the difference values
between each NEI in image Tr and its surrounding pixels within a window of size 3 × 3 for all original
images. The infrequent mean values will be excluded. The mean values having less than 2% will be
denoted as infrequent mean values and will be excluded. The highest mean value after excluding the
infrequent values will be the HMV.

Based on that, the proposed detector denotes noise candidate pixels on an image as noisy pixels or
noise-free pixels depending on either of those two threshold values. First, the difference value between
the intensity value of the pixel will be checked with the intensity values of the pixels surrounding
that pixel, as these difference values will be compared with HDV. Second, the mean value of all the
difference values between the noise candidate pixel and its surrounding pixels, as this value, will be
compared with HMV.

After that, each noise candidate pixel will be compared with all non-extreme intensity pixels
surrounding it in a window of size 3 × 3 pixels. If any difference value is bigger than HDV, the noise
candidate pixel will be denoted as a noisy pixel. Otherwise, the mean value of all the difference values
will be computed. The difference value between noise candidate pixels and extreme intensity pixels
will be constant. For the opposite extreme intensity pixels than the noise candidate pixel, the difference
will be equal to the HDV value. For the pixels having the same extreme intensity value as the noise
candidate pixel, the difference will equal to 0. If the mean value of the difference values is bigger than
HMV, the noise candidate pixel will be denoted as a noisy pixel, otherwise as a noise-free pixel.

If all the pixels surrounding the noise candidate pixel have extreme-intensity values, the fixed
threshold detector will be used. For the fixed threshold detector, a window of size 5 × 5 pixels and a
threshold of 21 will be used, as recommended in the work by Chen et al. [22]. The number of pixels
having the same intensity as the noise candidate pixel will be counted in a window of size 5 × 5 pixels.
If the number counted is bigger than the threshold, the noise candidate pixel will be denoted as a
noise-free pixel, otherwise as a noisy pixel.
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The following eight steps are presented to summarize the procedure:

Step 1: Initialize all pixels as noise-free pixels by making all elements in matrix N equal to 0.
Step 2: Denote all pixels having extreme intensity value as noise candidate pixel PNC.

PNC(x, y) =

1 C(x, y) = 0 or C(x, y) = 255

0 otherwise
(1)

where (x,y) are the spatial coordinates, and C(x,y) is the intensity value of the corrupted image
at coordinates (x,y). PNC(x,y) equal to 1 is used to indicate that the pixel is a noise candidate
pixel, whereas PNC(x,y) equal to 0 is used to indicate that the pixel is noise-free.

Step 3: For each PNC(x,y) equal to 1, compute the intensity difference values between this pixel with
each of its neighboring pixels within a 3 × 3 window, with coordinates (x,y) at the center of that
window. These difference values are stored in vector D.

D(i) =
∣∣∣C(x, y) −C(x + ai, y + bi)

∣∣∣ 0 ≤ i ≤ 7 (2)

with vector a = {−1,0,1,1,1,0,−1,−1} and vector b = {−1,−1,−1,0,1,1,1,0}.
Step 4: If all the neighboring pixels have the same intensity with the center pixel, which is

∑
i

D(i) = 0,

go to Step 6. Otherwise, compare all values in D with HDV value. If any value in D is bigger
than HDV, the pixel at these coordinates is denoted as a noisy pixel. Thus, N(x,y) is given the
value 1 and go to Step 8. Otherwise, go to Step 5.

Step 5: Replace any element in D which is equal to 255 with HDV value. Then, compute the mean
value of the elements in the updated D. If the mean value is greater than HMV, PNC is denoted
as a noisy pixel (i.e., N(x,y) = 1), otherwise as a noise-free pixel (i.e, N(x,y) = 0), then go to Step 8.

Step 6: Count the number of pixels that have the same intensity as PNC(x,y) within a window of size
5 × 5 pixels, with coordinates (x,y) at the center of the window. Save this count as Cs.

Step 7: If Cs > 21, PNC is denoted as a noise-free pixel (i.e., N(x,y) = 0), otherwise as a noisy pixel
(i.e., N(x,y) = 1), then go to Step 8.

Step 8: Repeat the steps from Step 3 to Step 8 for all PNC.

3.2. Image Denoising Stage

The proposed image denoising stage is based on the work by Samantaray et al. [34], where only
FON pixels are used to estimate the original intensity value of the noisy pixel, as they are more
correlated to the noisy pixel than the others. In the work by Samantaray et al. [34], as some pixels left
with an extreme intensity value in case of all FON pixels have extreme intensity values, the process of
restoration needed to be repeated to ensure that all noisy pixels have been restored. Some pixels have
extreme intensity values that remain in the second round to be restored. In the second round, the FON
pixels may already be restored depending on the second-order neighborhood (SON) and third-order
neighborhood (TON) pixels. This means, in the second round, the process depends on SON and
TON to estimate the original intensity value of the noisy pixel. Figure 2 shows the positions of FON,
SON and TON pixels in relation to the noisy pixel PN (i.e., the pixel with N(x,y) = 1). These neighboring
orders are based on the Euclidean distance between the noisy pixel and its neighboring pixels.

However, the SON pixels are more correlated to the central pixel than the TON pixels [22].
Based on that, an enhancement is proposed to the work by Samantaray et al. [34], where the SON
pixels are used to estimate the original intensity value of the noisy pixels in the case of all the FON
pixels having extreme intensity values. Thereafter, if all FON and SON pixels have extreme intensities,
the pixel to be restored will either have an extreme intensity as the new intensity value or it should be
left unchanged.
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The proposed method replaces the intensity value of the noisy pixel by the median value of the
non-extreme intensity FON pixel intensities. The intensity value of the noisy pixel is replaced by the
median value of the non-extreme intensity SON pixel intensities if all the FON pixels have extreme
intensities. If all the FON and SON pixels have extreme intensities and the number of the opposite
extreme intensity value pixels is bigger than 6, the new value of the corrupted pixel will be the opposite
extreme intensity; otherwise, it will be left with no change.

To summarize, the steps are as follows:

Step 1: Locate the noisy pixel PN (i.e., the pixel with N(x,y) = 1).
Step 2: Check the pixels surrounding PN in a window of size 3 × 3 with PN at the center of the window.

If all pixels in the window have extreme intensities go to Step 4. Otherwise, go to Step 3.
Step 3: If all FON pixels have extreme intensities, the median value of SON pixels will be the new

intensity value of PN. Otherwise, the median value of FON will be the new value of PN. Then go
to Step 6.

Step 4: Count the number of the pixels having the opposite extreme intensity of PN, which is Co.
Then go to Step 5.

Step 5: If Co greater than 6, the new value of PN will be the opposite extreme value of it. Otherwise, leave
it with no change. Then move to Step 6.

Step 6: Repeat all steps for all noisy pixels in the image (i.e., the pixels with N(x,y) = 1).

4. Results and Discussions

To evaluate the results of the proposed noise detector and the mentioned detectors above,
the missing detection rate (MDR), and the false detection rate (FDR) were used. Equations (3) and (4)
show the mathematical expression for the MDR and the FDR, respectively [22].

MDR =

∑
p∈ f (Rr(p) = 0∧Rd(p) = 1)∑

p∈ f Rr(p)
× 100% (3)

FDR =

∑
p∈ f (Rr(p) = 1∧Rd(p) = 0)∑

p∈ f Rr(p)
× 100% (4)

where f is the image matrix, Rr is the matrix for indicating noises added by Matlab 2018a, which indicates
a noisy pixel with Rr(p) = 0, or noise-free with Rr(p) = 1; Rd is the matrix for indicating the detected
noises, which indicates a noisy pixel with Rd(p) = 0, or noise-free with Rd(p) = 1; symbol ∧ refer to
logical AND.

MDR calculates the ratio of noisy pixels that the detector did not detect to the total number of
noisy pixels in the corrupted image. Therefore, the lower the MDR ratio the better detecting capability.
FDR calculates the ratio of noise-free pixels that the detector detects as noisy pixels to the total number
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of noisy pixels in the corrupted image. Therefore, the lower the FDR ratio, the better at not detecting
false pixels.

However, to evaluate the image denoising stage of the proposed method and the methods
mentioned above, the peak signal to noise ratio (PSNR) and structural similarity index (SSIM) are used.
Equations (5) and (6) show the PSNR and SSIM mathematical expressions [22].

PSNR = 10 log10
m× n× 2552∑m

i=1
∑n

j=1( f (i, j) − g(i, j))2 (5)

SSIM =
(2µ fµg + C1)

(
2σ f g + C2

)(
µ2

f + µ
2
g + C1

)(
σ2

f + σ
2
g + C2

) , C1 = (K1L)2, C2 = (K2L)2 (6)

where, f is the original image and g is the restored image; m is the height of the image and n is the
width of the image, σf is the standard deviation of f and µf is the mean value of f, σg is the standard
deviation of g and µg is the mean value of g, σfg is the covariance of f and g, C1 and C2 are the stabilizing
constants, L is the number of intensities levels in the image, K1 and K2 are selected by default as 0.01
and 0.03, respectively.

PSNR measures the resemblance between the original image and the restored image. Therefore,
the higher the PSNR the better the restored image, which means the better the image denoiser
restoring capability. SSIM measures the preservation capability of the structural information. Therefore,
the higher the SSIM the better the preservation capability, which means better image denoiser structure
information preservation capability.

4.1. Data Preparation

In this paper, 83 standard images will be used. These images are taken from the internet. All images
are gray-scale images, with different size (i.e., 480 × 480 pixels, 512 × 512 pixels, 640 × 480 pixels,
720 × 576 pixels, and 720 × 580 pixels). These images have been selected because they are normally
used in digital image processing research. Furthermore, most of them have large black or white regions
on the image.

These images are divided into two groups. The first group consists of 33 images and is used as the
training images Tr. These images are used to determine the values of HDV and HMV. The remaining
50 images are used as the testing images Ts. Because all images are considered noise-free images,
to evaluate the performance of the methods in noise detection and image denoising, image Ts will be
synthetically corrupted by fixed value impulse noise using Matlab 2018a, from noise density 5% to
90%, with increment step of 5%. Therefore, 18 noise density levels are evaluated in this work.

4.2. Calculations to Determine HDV and HMV

To calculate the value of HDV, a procedure was conducted on the 33 original uncorrupted Tr

images. The procedure calculated the difference values between the NEI pixels and their surrounding
pixels in a window of size 3 × 3 pixels. The results of this procedure are based on 59,122 NEI pixels
found in the 33 Tr images, which means 472,976 surrounding pixels. The results of the procedure are
shown in Table 1.

Table 1. The ratio of the difference values NEI pixels and their surrounded pixels in window of size 3 × 3.

The Difference Values 0 1–10 11–20 21–30 31–40 41–50 51–100 101–150 151–200 201–255

Repetition rate 58.0% 14.7% 5.7% 5.9% 3.7% 2.5% 6.2% 2.2% 0.9% 0.3%

It can be analyzed from the results of Table 1 that NEI pixels are correlated to their surroundings.
Of the surrounding pixels, 58.01% have the same intensity level as their NEI pixel and 14.7% have
a difference in intensity level with their NEI between 1 to 10 intensity levels. However, it can be
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observed that the differences in intensity level ratio become less as the difference in intensity levels
becomes higher.

The ratio of the difference value of less than 11 intensity levels between NEI pixels and their
surrounding pixels in a window of size 3 × 3 pixels is equal to 72.7%. Therefore, the ratio of the
difference value higher than 10 intensity levels between NEI pixels and their surrounding pixels in a
window of size 3 × 3 pixels is equal to 27.3%. From this observation, the recommended HDV for the
proposed method is 10 intensity levels.

To calculate the recommended value for HMV, another procedure has been conducted.
The procedure was applied to these pixels surrounding NEI pixels in a window of size 3 × 3
pixels. As the recommended value for HDV is 10 intensity levels, the procedure was applied only
on those pixels that had differences in intensity value from their NEI pixels that were less than 11
intensity levels.

The procedure to determine the value of HMV calculates the ratio of the mean values of the
difference values between the intensity level of NEI pixels and their surrounding pixels within a
window of size 3 × 3 pixels. The procedure was conducted on the same 33 images used to calculate the
HDV value. Table 2 shows the results of the procedure.

Table 2. The ratio of the mean values of the difference values between the intensity level of NEI pixels
and their surrounding pixels.

Mean Value of the Differences <1 <2 <3 <4 <5 <6 <7 <8

The ratio 83.4% 91.9% 95.5% 96.9% 98.1% 99.3% 99.9% 100%

As shown in Table 2, it can be observed that most of the pixels surrounding the NEI pixels have a
small difference in intensity level. The other differences may exist as they are on the border of an edge.
The ratio for mean values less than three is equal to 95.5%. The ratio for mean values greater than three
is increased slightly. Based on that, the recommended HMV value is 3.

4.3. Noise Detection Stage Evaluation

The proposed fixed value impulse noise detector and some of the recent detectors were applied to
the 50 images from testing set Ts, after adding noise to them. The detectors applied to images at each
noise density from 5% to 90% with a gap difference of 5%. The MDR and FDR have been taken for
each detector at each noise density. The average of MDR and FDR have been taken for all images at
each noise density. Table 3 shows the results of the noise detection stage, where ND refers to noise
density and AVG refers to the average.

From Table 3, it can be observed that FTD has the best results for MDR, which means its
miss-detection of noisy pixels is the lowest. Yet, FTD has the highest FDR, which means it detects
noise-free pixels as noisy pixels more than the other methods.

The proposed method has the best result for FDR. This means that the proposed method has the
lowest false noise detection ratio. Besides, the proposed method also performs well in terms of MDR,
where the average MDR is still less than 1%. Furthermore, the proposed method also gives the lowest
value when we add the average MDR with the average FDR, showing that the proposed method is the
best noise detector amongst the evaluated methods in this work.

4.4. Image Denoising Stage Evaluation

To evaluate the noise cancelation stage, the proposed method and the recent methods we applied
to the 50 Ts images, after adding noise to them. The methods applied to images at each noise density
from 5% to 90% with a gap difference of 5%. The PSNR and SSIM are used to evaluate each method at
each noise density for all images. The average PSNR and the average SSIM have been taken for all
images at each noise density for each method. The same fixed value impulse noise detector is used for
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methods. The detector used is FTD with threshold of 21. Table 4 shows the results of the experiment,
where, ND refers to noise density and AVG refers to the average.

It can be observed from Table 4, that the EDF method has the worst results in this experiment for
both PSNR and SSIM. On the other hand, the proposed method has the best PSNR and SSIM results
in the average of all densities in this experiment. This means that the proposed method has the best
restoring and structure information preservation capability.

Table 3. The results of the noise detection stage.

ND
VTD [33] FTD [34] BDND [12] D3PLS [22] Proposed

MDR FDR MDR FDR MDR FDR MDR FDR MDR FDR

5 0.00 3.69 0.00 3.67 0.00 3.80 0.39 3.23 0.13 2.65
10 0.00 1.84 0.00 1.81 0.00 1.89 0.41 1.57 0.13 1.30
15 0.00 1.23 0.00 1.19 0.00 1.21 0.40 1.01 0.13 0.85
20 0.00 0.81 0.00 0.88 0.00 0.88 0.39 0.75 0.13 0.63
25 0.00 0.63 0.00 0.69 0.00 0.69 0.40 0.58 0.14 0.50
30 0.00 0.53 0.00 0.57 0.00 0.56 0.39 0.47 0.14 0.42
35 0.01 0.44 0.00 0.48 0.00 0.46 0.39 0.39 0.14 0.36
40 0.14 0.31 0.00 0.41 0.00 0.39 0.39 0.33 0.15 0.31
45 0.27 0.28 0.00 0.36 0.00 0.34 0.39 0.28 0.16 0.27
50 0.47 0.25 0.00 0.32 0.00 0.29 0.39 0.25 0.16 0.24
55 2.41 0.16 0.00 0.28 0.00 0.26 0.39 0.22 0.17 0.22
60 5.91 0.14 0.00 0.25 0.00 0.23 0.39 0.19 0.17 0.19
65 8.15 0.13 0.00 0.23 0.00 0.20 0.38 0.17 0.18 0.17
70 10.74 0.11 0.00 0.20 0.00 0.18 0.37 0.15 0.18 0.16
75 35.03 0.06 0.00 0.18 0.00 0.16 0.37 0.14 0.19 0.15
80 40.76 0.06 0.00 0.16 0.01 0.14 0.45 0.12 0.19 0.14
85 46.55 0.05 0.00 0.15 0.15 0.13 1.24 0.10 0.18 0.13
90 52.45 0.05 0.02 0.13 2.36 0.11 6.50 0.08 0.16 0.12

AVG 11.30 0.60 0.00 0.67 0.14 0.66 0.78 0.56 0.16 0.49
AVG MDR + FDR 11.87 0.67 0.81 1.34 0.65

Table 4. The results of the noise cancelation stage.

ND IGMF [34] EDF [12] ASWMF [22] NBMF [33] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5 39.67 0.990 34.86 0.954 42.90 0.993 43.41 0.994 43.76 0.994
10 37.02 0.980 30.21 0.854 39.96 0.987 40.43 0.988 40.66 0.988
15 35.30 0.971 26.71 0.732 38.07 0.980 38.53 0.982 38.66 0.982
20 34.06 0.961 23.95 0.617 36.59 0.973 37.04 0.975 37.12 0.975
25 32.99 0.950 21.67 0.520 35.36 0.965 35.77 0.967 35.87 0.968
30 32.11 0.940 19.72 0.438 34.28 0.956 34.70 0.959 34.75 0.959
35 31.35 0.927 18.06 0.371 33.33 0.947 33.78 0.950 33.76 0.950
40 30.63 0.915 16.59 0.316 32.50 0.936 32.90 0.940 32.89 0.939
45 29.98 0.902 15.31 0.271 31.71 0.924 32.09 0.928 32.03 0.928
50 29.33 0.888 14.13 0.232 30.96 0.911 31.31 0.916 31.27 0.915
55 28.71 0.872 13.08 0.200 30.24 0.897 30.57 0.902 30.51 0.901
60 28.11 0.855 12.15 0.172 29.56 0.882 29.85 0.887 29.80 0.886
65 27.52 0.836 11.29 0.148 28.86 0.864 29.10 0.869 29.07 0.868
70 26.90 0.815 10.52 0.126 28.16 0.845 28.33 0.849 28.32 0.848
75 26.21 0.791 9.74 0.105 27.38 0.821 27.51 0.824 27.57 0.825
80 25.50 0.762 9.02 0.085 26.55 0.793 26.63 0.795 26.72 0.797
85 24.71 0.726 8.35 0.067 25.57 0.756 25.60 0.757 25.75 0.760
90 23.77 0.682 7.76 0.051 24.36 0.705 24.37 0.705 24.50 0.709

AVG 30.22 0.876 16.84 0.348 32.02 0.896 32.33 0.899 32.39 0.700
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4.5. State-of-Art Evaluation

To evaluate the state-of-art of the proposed method, an experiment was conducted. The proposed
method is evaluated by comparing it with some of the recent state-of-art methods. PSNR and SSIM will
be used to evaluate the output images for each state-of-art at each noise density from 5% to 90% with 5%
as a gap difference between those noise densities, using 50 Ts images. Table 5 shows the average results
for all images at each noise density, where, ND refers to noise density and AVG refers to the average.

Table 5. The results of the state-of-art experiment.

ND
IGMF + FTD EDF + BDND ASWMF + D3PLS NBMF + VTD Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5 39.67 0.990 34.91 0.954 42.83 0.993 43.64 0.994 43.85 0.994
10 37.02 0.980 30.21 0.855 39.95 0.987 40.61 0.989 40.86 0.989
15 35.30 0.971 26.70 0.731 38.05 0.980 38.73 0.983 38.86 0.983
20 34.06 0.961 23.93 0.617 36.56 0.973 37.22 0.976 37.29 0.976
25 32.99 0.950 21.67 0.519 35.34 0.965 36.00 0.969 36.05 0.969
30 32.11 0.940 19.73 0.438 34.30 0.956 34.91 0.960 34.98 0.960
35 31.35 0.928 18.06 0.371 33.33 0.946 33.97 0.951 33.96 0.951
40 30.63 0.915 16.60 0.316 32.47 0.936 33.10 0.941 33.09 0.941
45 29.98 0.902 15.31 0.271 31.68 0.924 32.28 0.930 32.23 0.930
50 29.33 0.888 14.14 0.233 30.95 0.911 31.53 0.918 31.47 0.918
55 28.71 0.872 13.10 0.200 30.22 0.898 30.76 0.905 30.72 0.904
60 28.11 0.856 12.16 0.172 29.53 0.882 30.03 0.890 29.99 0.889
65 27.52 0.837 11.28 0.147 28.87 0.864 29.27 0.872 29.25 0.872
70 26.90 0.815 10.50 0.126 28.13 0.844 28.48 0.851 28.48 0.852
75 26.21 0.791 9.74 0.105 27.37 0.821 27.62 0.826 27.73 0.829
80 25.50 0.762 9.03 0.086 26.56 0.793 26.76 0.797 26.89 0.801
85 24.71 0.726 8.36 0.067 25.57 0.756 25.73 0.758 25.91 0.765
90 23.77 0.682 7.77 0.051 24.34 0.704 24.42 0.705 24.63 0.714

AVG 30.22 0.876 16.84 0.348 32.00 0.896 32.50 0.901 32.57 0.902

From Table 5, it can be observed that the state-of-art consists of EDF as a denoiser, and BDND
as a noise detector has the worst results in both PSNR and SSIM. On the other hand, the state-of-art
consists of the proposed detector, and the proposed denoiser has the best results in both PSNR and
SSIM. This means, the proposed method is better than the other methods mentioned in this work.

Figures 3–5 show noisy images and their restored images. The noisy images are affected by fixed
value impulse noise at 10%, 50% and 90% noise density, respectively. Each noisy image is restored by
the proposed method and some of the recent methods.

Figure 3 shows a noisy “Girl face” image by fixed value impulse noise at 10% density and its restored
images by the proposed method and some of the recent methods that have been mentioned in this work.
This figure presents the performance of the methods for a low corruption level. It can be observed that
EDF+BDND has the worst restored image. On the other hand, the proposed method and the others have
better results and they look similar. However, the PSNR of the proposed method is the highest.

Noisy “Girl” image at 50% noise density and its restored images are shown in Figure 4. This figure
presents the performance of the methods for a medium corruption level. From the appearance of the
restored images, it can be observed that EDF+BDND has the worst restored image. On the other hand,
the other methods have a better appearance on their restored images, but the PSNR of the restored
image by the proposed method is the highest.

Figure 5. presents noisy “Tulips” image along with its restored images. In this figure, the noise
density added is at 90%, to present a high corruption level. It can be observed from the appearance of
the restored images that EDF+BDND has a less similar output image to the original image. On the
other hand, the other methods have more similarity to the original image, but the restored image
by the proposed method has the highest PSNR, which means that it has the most similarity to the
original image.
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5. Conclusions

In this paper, a method has been proposed to restore corrupted images by fixed value impulse
noise. The proposed method has two stages, the noise detection stage and the image denoising stage.
In the noise detection stage, the pixels with extreme intensities are denoted as noisy or noise-free pixels
depending on the difference between their intensities and the intensities of the pixels surrounding
them. An experiment was conducted to evaluate the proposed detector by comparing it with some of
the recent detectors used to detect the fixed value impulse noise. The results of the experiment showed
that the proposed detector has the best result in the average of all outputs.

In the image denoising stage, the noisy pixels are restored by estimating their original intensities based
on the first-order and second-order neighborhood pixel intensities. An experiment has been conducted to
evaluate the proposed image denoiser by comparing its output images with the output of some of the
recent methods used to restore the images corrupted by fixed value impulse noise. The results of the
experiments show that the proposed method has better restoring and structure information preservation
capability. In future works, to further improve the method’s performance, the authors will explore the
possibilities of using inpainting approaches in the image-denoising stage. The inpainting methods have
been used in noise reduction works, such as Zhou et al. [36] and Zhou et al. [37].
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