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Abstract: Recently, anti-glare (AG) surface treatment technology has been considered as a standard
process to enhance the visibility of electronic display devices. For AG, the hydrofluoric acid (HF)-based
chemical etch method is the most common approach for the current display glass industry. However,
in order to overcome the environmental and durability degradation problems of the HF-based chemical
etch method, this paper proposes an eco-friendly physical surface treatment technology using the
sandblasting method. Based on the preliminary analysis results using the central composite design
(CCD) method-based response surface modeling methodology (RSM), additional experiments and
analyses were performed for process modeling and optimal process recipe generation. To characterize
the sandblasting process, the mean value of haze was considered as the process output, and the
pressure of the nozzle, the distance of the nozzle from the surface of glass, the glass feed rate, and the
grit size of the abrasives were considered as process inputs. Based on the process model using the
statistical response surface regression method and machine learning-based approaches, the proposed
method can generate optimized process recipes for various haze targets of 10%, 20%, and 30%,
with an average haze difference of 0.84%, 0.02%, and 0.86%, and maximum deviations of 1.26%,
1.14%, and 1.4%, respectively. Through the successful completion of this work, it is expected that the
proposed surface treatment method can be applied to various products including mobile phones,
tablet PCs, and windshields of vehicles.

Keywords: sandblasting; anti-glare (AG); haze; electronic display glass; process modeling; central
composite design (CCD) method-based response surface modeling methodology (RSM)

1. Introduction

To evaluate the performance of conventional consumer electronic display devices including
television (TV), cathode ray tube (CRT), or liquid crystal display (LCD) computer monitors,
the resolution, refresh rate, brightness, contrast ratio, and chromaticity of the display were considered
as common key assessment items. However, as the usage of mobile devices increases, outdoor visibility,
readability, and visual fatigue are also considered very important factors for quality measures [1].
Conventional evaluation factors are primarily related to the characteristics of the display devices,
but the visibility, readability, and visual fatigue in lighting or bright outdoors are highly related to the
light reflection phenomenon of glass used on the surface of the display devices [2]. For this reason, in the
display used for medical diagnosis, testing criteria related to reflection were set and quality assurance
(QA) evaluation of the display device was performed [3]. In general, there are two approaches to solve
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the light reflection problem in electronic displays, the anti-reflective (AR) surface treatment method and
the anti-glare (AG) surface treatment method. AR surface treatment technology negates reflected light
by coating a film layer with a different refractive index on a glass substrate [4]. AG surface treatment
technology typically uses light diffusion by roughening a reflective surface or coating small particles
on the surface [5]. In the AR method, surface reflection is minimized by the formation of small porous
or nano-patterns that can lower the index of film refraction or by applying a single or multi-layer of AR
coating [6]. Owing to this capability, AR technology is very useful in various applications that require
precise control of light, such as solar cell fabrication processes and semiconductor manufacturing
processes, as well as electronic displays [7]. However, since AR surface treatment methods require
multiple steps of the coating process or precise nano-patterning process, they require high processing
costs for mass production of electronic display glass [8]. AG surface treatment has a problem that the
scattering layer for roughening the surface degrades the display’s clarity [5], but it is widely used for
mass production since it can alleviate the specular reflection problem at relatively low manufacturing
costs through direct etching of the glass surface [9]. Typically, in the electronic display industries,
for low-cost processing, the hydrofluoric acid (HF) etching solution-based chemical etching is widely
used for surface treatment of AG. However, the chemical etching technique has the disadvantage of
lowering the durability of the glass due to the chemical reactions between the hydrofluoric acid and
the composition materials in the glass. In addition, HF is a very hazardous chemical with very strong
worldwide regulations. Therefore, the development of alternative technology for surface treatment of
AG is essential to overcome the environmental regulations and safety problems. To this end, in this
paper, we present an AG surface treatment method that can satisfy various haze target requirements
using the sandblasting process. Sandblasting or abrasive-blasting is a physical–mechanical technique
using fine particle type abrasives which are accelerated through high-speed air or gas through a nozzle
and then etched through a physical impact on a hard surface. Classically, sandblasting has been mostly
used in the cleaning process to remove paint or rust. However, recently sandblasting has been used to
improve material properties in various fields. To enhance the film adhesion in the material coating
process, sandblasting was used for the formation of rough surface or formation of micro patterns on the
surface areas [10]. Sandblasting can be applied to the solar cell fabrication process to improve power
generation efficiency by applying a surface treatment to minimize light reflection [11], and sandblasting
has been applied to make super-hydrophobic surface characteristics [12]. Sandblasting is also used
to form about 50-µm microstructures at a relatively low production cost by using an abrasive with a
smaller particle size (around 30 µm) compared to the conventional method. In this case, it is sometimes
called powder blasting or micro-powder blasting to distinguish it from conventional sandblasting [13].
Sandblasting is generally used for glass to make a double glass structure by roughening the surface of
the glass, or to make a pattern or frosting effect on the glass surface for aesthetic purposes [14]. In this
case, the sandblasting is generally a simple process that is not significantly affected by process variation.
Recently, research of surface treatment methods that can be applied to mass production of electronic
display glass using sandblasting has begun to replace the existing HF-based chemical process [15].
There has been a growing demand in the electronics industry for AG glass with specific haze value
for functional and aesthetic advantages, not just at the level of simple pattern formation using AG.
For example, many high-end level mobile phones released after 2019 are manufactured to have surface
characteristics that are strong against fingerprints and aesthetics while maintaining durability for
the backside cover glass as well as the AG treatment for display cover glass for visibility. For these
applications, different from the conventional sandblasting process, it is essential to develop a stringent
surface treatment process that minimizes variation with a target haze value. For this, in this paper,
we proposed an eco-friendly physical surface treatment technology using a sandblasting method for
various haze targets. As described above, we can see that sandblasting was used to form a pattern on
the glass surface or to use it for surface treatment to reduce the reflectivity, but the relevant research
on the process model between various haze values and the sandblasting process is not confirmed
other than the previous research results of this research team [15]. Based on our preliminary analysis
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results using the design of experiment (DOE) and statistical analysis, additional experiments and
analysis were performed for process modeling and optimal process recipe generation for various haze
targets. To characterize the sandblasting process, the mean value of haze was considered as the process
output, and the pressure of the nozzle, the distance of the nozzle from the surface of glass, the motor
speed for glass feed speed control, and the particle size of the abrasives were considered as process
inputs. To evaluate mass production feasibility, mean of haze, uniformity of haze, glossiness, surface
roughness, and transmittance were measured and analyzed for final samples.

The structure of this paper is as follows. In Section 2, three experimental methods are described
for modeling, model evaluation, and mass production testing that satisfies various haze targets.
In Section 3, the results of process modeling using response surface regression and machine learning are
compared, and the feasibility of mass production of the process recipe determined using the prediction
of the process model is described and finished with the conclusion.

In this work, three sets of experiments were conducted for process modeling, model validation
test, and evaluation of optimized recipes for the feasibility of mass production. Through the response
surface regression-based statistical model and machine learning-based process model, the optimal
process recipes were defined to satisfy the various haze targets, and the final test for the evaluation of
mass production feasibility showed acceptable performance results for the haze targets of 10%, 20%,
and 30%.

2. Materials and Methods

Figure 1 shows the overall flow of the proposed method for modeling and recipe generation of the
sandblasting process for AG surface treatment. In this study, three sets of experiments were conducted
for process modeling, the model validation test, and evaluation of optimized recipes for the feasibility
of mass production. First, 54 experiments were conducted for modeling of the sandblasting process.
Based on the first experiment set, two models, a statistical model and a machine learning-based model,
were designed and the second experiment set was used for the validation of the modeling performance.
In the second experiment, the experiments were conducted by reducing the range of the process
variables compared to the first experiment set, and 30 experiments were used for the evaluation of
the modeling performance. Based on modeling validation test results, optimal process recipes were
defined, and final experiments were conducted to evaluate whether the defined process recipes could
satisfy the various haze targets, and whether haze uniformity, glossiness, and transmittance values
were acceptable for mass production.
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2.1. Experimental Design for Process Modeling

In this paper, the range of process variables was determined using our preliminary statistical
analysis results [15] and the number of outputs for the modeling of process characteristics was adjusted.
In the previous preliminary work of this research team, the pressure of the nozzle, the distance of
the nozzle from the surface of glass, and the glass feed rate were used as process input variables
for sandblasting, and roughness, haze, surface durability, and flatness were used as process outputs
for the evaluation of mechanical process characteristics [15]. For surface roughness expression,
arithmetic average roughness (Ra) was calculated with measured values using a laser microscope [16].
Haze characteristics were quantized by measuring the amount of scattered or reflected light while
passing through the AG surface-treated glass using measurement equipment from Minolta, and the
surface durability values were measured by applying a force to the AG-treated glass to measure the
magnitude of the force at the time when the glass substrate was fractured. For the flatness, the degree
of warpage was expressed by using the difference between the maximum and minimum values after
measuring five places of the specimen using a laser bending measurement device. In the preliminary
experiment, a total of 20 experiments were conducted on three input factors using the face-centered
central composite design (CCD) method with 2 blocks. Through the preliminary analysis, it was
confirmed that the surface durability and flatness did not show statistical significance on the input
ranges of the process variables considered in this study. Therefore, in this study, the surface durability
and flatness were excluded from the process outputs for process modeling. Table 1 shows the process
inputs and their ranges targeted in this study based on the results of preliminary works. In this work,
in order to understand the effects of three inputs (the pressure of the nozzle, the distance of the nozzle
from the surface, and the motor speed for control of glass feed speed) on the sandblasting process,
we tested separately for each abrasive with two types of grit size (#600 and #800) as shown in Table 1.
Among the three process input variables for each model with different grit sizes, one input variable
was varied according to the minimum step size shown in Table 1, and the other two input variables
were fixed at the median value of the variation range; that is, 27 experiments were conducted for each
abrasive type, and a total of 54 experiments were performed.

Table 1. Process inputs and their ranges.

Parameter Range (or Type) Units Input Resolution
(Minimum Step Size to Control)

Pressure of the nozzle 2.5~4.5 MPa 0.25
Distance of the nozzle from the surface 200~280 mm 10

Motor speed for control of glass
feed speed 8~12 RPM 0.5

Particle (or grit) size of the abrasives #600, #800 N/A N/A

For sandblasting abrasives, the grit size number (#600, #800, etc.) was based on the agreed-upon
particle size distribution for each mesh or screen size [17]. In other words, the average particle size of
abrasive #600 was from 13 µm to 16 µm, and abrasive #800 was from 9.8 to 12.3 µm. Usually, when the
grit size is smaller than #600, it is called micro-fine grit, and if the process is classified by the size of the
grit, the sandblasting process we used in this work might be considered to belong to “micro-powder
blasting”. The glass substrate used in this work was a mobile phone display glass manufactured by
Corning co. (Gorilla 2320) with a size of 50 × 90 mm and thickness of 0.3 mm to 0.5 mm.

2.2. Experiments for Testing of Developed Process Models

The second experiment was used to evaluate the modeling performance of two developed models
(statistical process model and machine learning-based process model) using the data from the first
experiments. Since the purpose of the second experiment was not to support data for process modeling
but for the evaluation of modeling performance, the process condition of the second experiment
was defined based on the engineer’s experience rather than a systemic experimental design; that is,
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at first, through the analysis of the first experiment result, the most dominant input factor (p1) for the
sandblasting process was found. Next, the variation width of the process output was checked while
changing the values of the p1. In this case, the remaining process variables were fixed to a specific
value according to the first experiment result and the decision of the engineer as shown in Table 2.

Table 2. The process ranges for testing of the developed process model.

Haze Target (%) Abrasive Type Constant Inputs Range of Pressure (MPa)

10 #600 Distance = 240 mm,
speed = 10 RPM 2~3

20 #600 Distance = 250 mm,
speed = 10 RPM 2.75~3.75

30 #600 Distance = 230 mm,
speed = 10 RPM 3~4

10 #800 Distance = 250 mm,
speed = 10 RPM 2.25~3.25

20 #800 Distance = 230 mm,
speed = 10 RPM 3~4

30 #800 Distance = 220 mm,
speed = 10 RPM 3.75~4.75

2.3. Final Experiment for Validation of Process Recipes

After the process recipes for each haze target of 10%, 20%, and 30% were determined based on
the modeling result, the final experiment was carried out using five glass substrates for each haze
target using the defined recipes. To review the mass production feasibility, five glass substrates were
processed simultaneously on the same panel and the haze was measured in three places of each glass;
that is, to see the deviation of surface treatment, the uniformity was calculated using the measured
fifteen haze values for each haze target. In addition, glossiness, roughness, and transmittance were
also measured to see the feasibility of mass production.

3. Results and Discussion

3.1. Response Surface Regression-Based Statistical Model

Table 3 shows the estimated regression coefficients of #800 grit size based on the response surface
regression method. In this regression, the R-squared value was 0.9781. As shown in this table, the
pressure of the nozzle and the distance of the nozzle from the surface of glass were most dominant to
the haze. This could be inferred that the increase in pressure may lead to an increase in the glass etch
rate, and thus it affects the increase of haze. On the contrary, it was found that the higher the value of
the distance of the nozzle from the surface of glass, the lower the etch rate, so it affects the decrease
of haze value. In addition, in this model, the motor speed for control of glass feed speed could not
show the statistical significance on the basis of a p-value of 0.05. However, the square term of motor
speed for control of glass feed speed was shown to have statistical significance based on a p-value of
0.05; that is, the effect of the motor speed for control of glass feed speed was not significant within the
corresponding process range, but it was inferred that the effect was amplified by the square of this
input parameter and had an effect toward reducing the haze value.

Table 4 shows the estimated regression coefficients of #600 grit size based on the response surface
regression method. In this regression, the R-squared value was 0.9895. As a result of comparing the
coefficients of the sandblasting model with #600 grit size with coefficients of the sandblasting model
with #800 grit size, the number of each coefficient value was different, but most of the modeling input
process parameters including the pressure of the nozzle, the distance of the nozzle from the surface of
glass, and the squared term of the motor speed for control of glass feed speed had the same tendency
on haze.



Electronics 2020, 9, 2048 6 of 16

Table 3. The estimated regression coefficients for the sandblasting model using #800 abrasive.

Term Coefficient t-Value p-Value

Constant 17.3218 68.915 0.000
Pressure 8.7573 19.687 0.000
Distance −9.6742 −21.748 0.000

Speed 0.3231 0.726 0.476
Pressure × Pressure 0.6991 1.127 0.273
Distance × Distance 2.1107 3.404 0.003

Speed × Speed −2.0208 −3.259 0.004

Table 4. The estimated regression coefficients for the sandblasting model using #600 abrasive.

Term Coefficient t-Value p-Value

Constant 25.978 67.694 0.000
Pressure 20.243 29.805 0.000
Distance −19.696 −28.999 0.000

Speed −4.154 −6.116 0.000
Pressure × Pressure 3.964 4.187 0.000
Distance × Distance 8.425 8.899 0.000

Speed × Speed −1.781 −1.881 0.075

In the coefficient comparison of two models, the motor speed for the control of glass feed speed
was the only input variable with a different sign. However, we could ignore this mismatch since this
parameter showed the statistical insignificance for the sandblasting model of #800 grit size on the basis
of a p-value of 0.05. However, the model of #600 grit size showed statistical significance on the motor
speed for control of the glass feed speed and it could be inferred that the etch rate of #600 material was
higher than that of #800 abrasive material because the grit size of #600 was larger than that of #800;
thus, only the sandblasting model of #600 grit size showed that haze was related on motor speed for
the control of the glass feed speed. However, as in the case of the sandblasting model of #800 grit size,
the effect of the motor speed for the control of the glass feed speed did not seem to be large compared
to other process inputs.

Figure 2 is the response surface regression modeling result of the sandblasting process of the #600
grit size. This plot shows the effects of the pressure of the nozzle and the distance of the nozzle from
the surface of glass on haze. At this plot, the speed was fixed as the center point of the processing range
that was used in the experiment. As shown in the 3D surface plot in Figure 2a, the pressure of the
nozzle and the distance of the nozzle from the surface of glass were critical factors for the haze change.
In this plot, the haze value was relatively high at the higher pressure and lower at the distance of the
nozzle. Especially when the distance of the nozzle from the surface of glass was less than 225 mm,
the increase rate of the haze became more rapid. These effects are better illustrated in the contour plot
in Figure 2b. For example, where the distance of the nozzle from the surface of glass was 250 mm,
the haze varied from 0% to 45% depending on the pressure change. On the other hand, if the distance
was around 200 mm, the variation in the haze according to the change in nozzle pressure exceeded 75%.

Figure 3 shows the effects of the motor speed for control of glass feed speed and the distance of
the nozzle from the surface on the haze using the response surface regression modeling result of the
sandblasting process of #600 grit size. At this plot, the nozzle pressure was fixed as the center point of
the processing range that was used in the experiment. As shown in Figure 3a, compared to the distance
of the nozzle from the surface of glass, the effect of the motor speed for control of glass feed speed
on the haze was relatively insignificant. But the haze value tended to decrease as the motor speed
for the control of the glass feed speed increased at the same distance of the nozzle from the surface
of the glass. All the lines of the contour plot in Figure 3b are drawn in the vertical direction, and as
described in Figure 3a, this implies that the effect on the haze of the motor speed for control of glass
feed speed was insignificant relative to the distance of the nozzle from the surface of the glass. In the
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plot of Figure 3b, the vertical direction lines tilt to the left along with the increase of the motor speed
for the control of the glass feed speed, which is assumed to be because the glass cannot be sufficiently
etched to achieve high haze values under high-speed conditions.Electronics 2020, 9, x FOR PEER REVIEW 7 of 16 
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3.2. Machine Learning-Based Process Model

In this paper, a modified design of the experiment was used to add more detailed experiments to
preliminary research using CCD experimental design. For modification of the experimental design,
an expert engineer of the sandblasting process set the two process input values to constant and changed
only one input variable within process ranges. With this set of experiments, a statistical regression
model was developed using the second-degree polynomial-based response surface regression model.
However, in this set of experiments, extra experiments that do not follow standard DOE were added to
use prior knowledge based on the experience of sandblasting experts. In addition, considering that
the accuracy of modeling may be limited due to the order limitation of the second-degree polynomial
model, machine learning was additionally implemented in process modeling. Machine learning has
been steadily applied and studied in various fields to model high-order complex processes. Typically,
compared to statistical regression models, the machine learning-based modeling approaches require a
relatively big size of training data. However, there are research results that show superior modeling
results compared to statistical methods even if only limited experimental results are used due to
the critical time and cost limitations for experimental design such as semiconductor processes [18].
Therefore, in this paper, the sandblasting process was modeled using the WEKA (Waikato Environment
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for Knowledge Analysis) machine learning platform with limited training data [19]. To maximize
modeling performance, learning algorithms and their hyper-parameters were selected and optimized
by the Auto-WEKA package [20]. Similar to the statistical process models, for machine learning-based
models, each sandblasting process was modeled according to its grit size. Based on the Auto-WEKA
package, the Gaussian process classifier was selected for modeling of the sandblasting process with
the #600 grit size, and the locally weighted learning (LWL) method was selected for modeling of the
sandblasting process with the #800 grit size. The Gaussian process classifier used in this package
use Gaussian process for regression without hyper-parameter tuning [21]. The Gaussian process
is a kind of random stochastic process and is defined by a collection of random variables with a
multivariable Gaussian distribution. This Gaussian distribution is specified by its mean function and
covariance function which characterizes the correlation between different points in the function [22].
Here, the Gaussian process regression calculated the probability distribution of suitable functions
using training data. To make a prediction using the Gaussian process, we needed the covariance kernel
function, and the normalized polykernel, polykernel, and radial basis function (RBF) kernel were
applied in this WEKA package [23]. The LWL method used in this package uses an instance-based
algorithm to assign instance weight and use naïve Bayes classification [24]. In the WEKA package,
the naive Bayes model plays the role of linear regression and the locally weighted learning method
was used to train the data with the lazy training approach. Through the LWL method, the attribute
independence issue of naïve Bayes classifier can be solved [25].

The data used for modeling is the same as the statistical model. In this case, the amount of data is
very limited for machine learning, so all 27 experimental data were used for training. In other words,
we could not divide this experimental data into a training set and validation set at this time. Instead,
additional experiments for model evaluation were conducted later. Table 5 shows the modeling results
of the machine learning-based process model. As a result of machine learning-based process modeling,
the relative absolute errors of the #600 grit size model and the #800 grit size model were 7.05% and
7.44%, respectively, showing no significant difference.

Table 5. The modeling error of machine learning-based process models.

Process to Model Correlation Coefficient Relative Absolute Error Root Relative Squared Error

#600 grit size 0.9973 7.05% 7.38%
#800 grit size 0.9966 7.44% 8.43%

Figure 4 shows the effects of the pressure of the nozzle and the distance of the nozzle from
the surface of the glass on haze using the Gaussian process classifier-based modeling result of the
sandblasting process of #600 grit size. At this plot, the speed was fixed as the center point of the
processing range that was used in the experiment as shown in the previous analysis of the statistical
model. As shown in the 3D surface plot in Figure 4a, the tendency of haze to increase as the nozzle
pressure increased and the distance of the nozzle from the surface of the glass decreased was consistent
with the statistical response surface methodology (RSM) modeling result. However, when the distance
and pressure values were close to the minimum and maximum values of the processing range
considered in this work, the haze values were close to 100%, indicating an unusual modeling prediction.
This is presumed to be an over-generalization error of the process model when there was insufficient
data for training. Comparing the contour plot in Figure 4b with that of Figure 3b, the trend of these
two plots was similar, but it appears that Figure 4b shows a higher non-linearity on process inputs and
represents an excessive haze value at the minimum or maximum of the process input conditions.
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Figure 5 shows the effects of the motor speed for control of glass feed speed and the distance of
the nozzle from the surface on haze using the Gaussian process classifier-based modeling result of the
sandblasting process of #600 grit size. At this plot, the nozzle pressure was fixed as the center point of
the processing range as we did in the previous analysis. As shown in this plot, the effect of the motor
speed for control of glass feed speed and the pressure of nozzle on haze was much different from that
of the statistical process model. At a relatively high distance of the nozzle from the surface of the glass,
the haze was shown to decrease with increasing speed, which is generally consistent with the results of
the statistical process model. However, at low-distance values, the haze values tended to increase as
the increase of motor speed for control of glass feed speed. As shown in Figure 5, when the distance of
the nozzle from the surface of glass and the motor speed for control of glass feed speed approached the
minimum and maximum values of the processing range, respectively, the haze value increased rapidly
to reach 100%. These prediction results do not match with the practical processing results and these
wrong modeling results were due to the lack of training data. The contour plot in Figure 5b shows that
the tendency of haze to increase as the distance value decreased was consistent with the statistical
model, but the model of the contour plot suddenly changed around 250 to 260 in the distance range of
the nozzle from the surface of the glass and it is presumed to have occurred due to the overfitting or
generalization error.Electronics 2020, 9, x FOR PEER REVIEW 10 of 16 
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3.3. Modeling Performance Test

Table 6 shows the prediction root mean squared error (RMSE) values of the developed process
models, the statistical process model, and the machine learning-based process model. As shown in
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the contour plots of the previous section, the effect on the haze of each process input was similar to
both process models, but the level of the sensitivity was different at a specific range. However, as a
result of the new experiment for the modeling performance test, the predicted RMSE was within 5% of
both models. When evaluating the modeling performance in terms of prediction RMSE, the statistical
process model showed a smaller RMSE in both the process model of #600 grit size and process model
of #800 grit size.

Table 6. The prediction RMS error values of developed process models.

Process to Model Prediction RMSE for
Statistical Model

Prediction RMSE for Machine
Learning-Based Model

#600 grit size 2.77 4.19
#800 grit size 0.90 2.97

In general, the statistical RSM only considered the order of the input parameters up to the
quadratic level, so in highly non-linear and complex processes, new modeling techniques such as
machine learning-based modeling methods are expected to show better prediction results. However,
the modeling error between the two models did not make a significant difference, and the prediction
error of the statistical model was even smaller. However, there are some additional points to consider
for these results to be concluded with this experiment alone. First, while conventional machine learning
techniques require a large amount of training data set, the training data set used in this work was
very limited to save time and cost for modeling and we used only limited data from the experimental
design method and some experimental data from the experience of an expert engineer. In addition,
some inputs such as motor speed for the control of the glass feed speed were fixed to constant values
based on the decision of the expert engineer, and we could not guarantee that the training data were
not uniformly distributed over the entire search space, which may have led to the generalization error
in process modeling.

3.4. Recipe Optimization for Various Haze Targets

Based on the developed two process models, response surface regression-based statistical model,
and machine learning-based process model, the optimal process recipes were defined to satisfy the
various haze targets for mass production. In fact, in the case of the sandblasting process considered
in this study, since the number of input variables was not large and the value of the input variable
had to be selected in the discrete type rather than a continuous real number, we found the optimal
process conditions directly using the model’s prediction of all possible process variables that can be
entered in discrete numbers with the system-defined input resolution. However, at first, we ignored
the resolution of input values to see the exact optimal process condition and then used the most similar
values to the optimal process condition as the real process inputs.

First, the process conditions that satisfy each haze target were found based on the statistical
regression model. Figure 6 is an optimization plot to find the process conditions of the 20% haze
target. The search ranges to find the optimal process conditions were set to 2.5~4.5 MPa, 200~280 mm,
and 8.0~12.0 RPM for the pressure of the nozzle, the distance of the nozzle from the surface of the glass,
and the motor speed for control of the glass feed speed, respectively. As shown in Figure 6, the process
conditions for satisfying the 20% haze target were 3.5070 MPa of the nozzle pressure, 229.5921 mm of
the distance of the nozzle from the surface of the glass, and 10.0141 of the motor speed for control of
the glass feed speed. At this condition, the prediction result of haze was 20.0457% and the composite
desirability value was 0.99543. This measure of composite desirability (D) is the weighted geometric
mean of the individual desirabilities for the responses. Considering the resolution of the available
process input values, the actual input process conditions were 3.5 MPa, 230 mm, and 10 RPM for the
pressure of the nozzle, the distance of the nozzle from the surface of the glass, and the motor speed for
the control of the glass feed speed, respectively.
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The process condition found based on the statistical process model was used as an input to the
machine learning-based process model, and the deviation between the prediction of two process
models was examined. Table 7 shows the haze prediction results of the machine learning-based model
for the process input found in the statistical process model. As shown in the table, the prediction
results of the machine learning-based model for the 10% and 20% haze targets were not significantly
different from the process conditions derived from the statistical model, but the difference was about
4.3% for the 30% haze target. As noted in the previous section, it can be estimated that the prediction
performance of the statistical process model was more reliable because the statistical process model
was superior to the prediction RMSE value at the modeling performance test, but the final confirmation
was determined through additional experimental results for the review of mass production.

Table 7. Prediction results of the machine running-based process model using process conditions
optimized by the statistical process model.

Haze Target Nozzle Pressure
(MPa)

Distance of the Nozzle
from the Surface of the

Glass (mm)

Motor Speed for
Control of Glass

Feed Speed (RPM)

Prediction of the Haze from
Machine Learning-Based

Process Model

10% 2.75 250 10 11.297%
20% 3.5 230 10 20.279%
30% 4.25 220 10 25.678%

3.5. Performance Test for Mass Production

Finally, mass production feasibility was evaluated according to the process conditions for each
haze target described in the previous section. For mass production feasibility evaluation, five glass
samples for each haze target were processed under the same process conditions, and their performance
was examined by measurement of haze, uniformity, and transmittance. To evaluate the uniformity of
the surface treatment process, five 50 × 90 mm glass samples were arranged on a 400 × 500 mm panel
as shown in Figure 7a, and the haze was measured in three places for each glass as shown in Figure 7b.
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Figure 7. Layout of uniformity test structure: (a) Dimensions of panel and samples; (b) the measurement
location of the haze at each panel for uniformity.

Table 8 shows the results of the sandblasting process for each haze target. The uniformity of the
haze was calculated using two methods, Equations (1) and (2).

Uniformity1 (%) =
(Hmax −Hmin

2

)
×

(
1

Havg

)
× 100, (1)

Uniformity2 (%) =

(
Hmax −Hmin
Hmax + Hmin

)
× 100, (2)

where Hmax, Hmin, and Havg represent the maximum value of the haze, minimum value of the haze,
and the average value of the haze, respectively.

Table 8. The results of the sandblasting process for haze targets of 10%, 20%, and 30%.

Haze Target (%) Hmax (%) Hmin (%) Havg (%) Standard
Deviation

Uniformity1
(%)

Uniformity2
(%)

10 11.52 10.26 10.84 0.358 5.812 5.785
20 20.68 19.54 20.02 0.324 2.848 2.834
30 31.54 30.14 30.86 0.461 2.268 2.270

As shown in the table, the magnitude of the deviation for all targets ranged from 0.14% to 1.52%,
and uniformity did not exceed 6% for each target, and both the mean and variance were good enough
for the mass production of the various target hazes.

Figure 8 shows a comparison between the glass before surface treatment and the glass that was
surface treated to have haze values of 10%, 20%, and 30%, respectively. When the picture was taken by
placing it on the floor, the difference between each glass did not appear on the picture, so the picture
was taken after artificially tilting the glass.

Table 9 shows the glossiness and surface roughness of the glass by target haze. For measurement
of the glossiness, the gloss meter from Samwon Instruments was used, and for surface roughness
expression, arithmetic average roughness (Ra) was calculated with measured values using a laser
microscope from Keyence. It can be seen that glossiness decreased rapidly as the haze value increased.
Surface roughness was measured through a laser confocal microscope and roughness values (RA) were
averaged after measure at the five points per glass. As shown in Table 9, the RA of each glass with
three haze targets did not show an intuitive relationship with the haze value and ranged from 0.575 to
0.696. Figure 9 is an example of an RA measurement surface using a laser microscope. Numerically,
there was no significant difference in the RA values between glass with a 20% haze target and glass
with a 30% haze target, but there was some difference in the appearance of the surface observed under a
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microscope. As shown in Figure 9, the surface of Figure 9d showed a higher deviation in the uniformity
of surface roughness at some locations compared to that of Figure 9c.
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Table 9. Glossiness and surface roughness of the glass substrates with various haze targets.

Haze Target (%) Glossiness (GU) Surface Roughness (µm)

0 (Bare glass) 168.7 0.1643
10 100.9 0.5751
20 56.6 0.6959
30 37.6 0.6689
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Figure 9. RA measurement surface: (a) Bare glass; (b) glass with 10% haze target; (c) glass with 20%
haze target; (d) glass with 30% haze target.

Figure 10 is the result of the transmittance analysis by wavelength. For measurement of
transmittance, a spectrophotometer from Konica Minolta was used and the tested range of wavelengths
was from 360 to 740 nm, with a 10-nm wavelength pitch. As shown in this figure, all haze targets
showed more than 90% transmittance within the visible light wavelength band and showed a difference
in transmittance of less than 3% compared to bare glass; thus, the decrease in transmittance by surface
treatment for haze was negligible.
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4. Conclusions

In this paper, the AG surface treatment technology based on sandblasting was discussed for
display devices. By using the physical surface treatment technology instead of the conventional
chemical treatment methods, we can apply it on various AG surface treatment applications targeting
various haze targets. In order to develop a sandblasting surface treatment technology that satisfies
various haze targets, a statistical process model and a machine learning-based process model were
developed. Three sets of experiments were conducted for process modeling, the model validation
test, and the evaluation of optimized recipes for mass production. The final experiment for mass
production showed average haze values of 10.84%, 20.02%, and 30.14%, respectively, for the three haze
targets of 10%, 20%, and 30%, and uniformity was also at least 2.268% to 5.812%. For the transmittance
test, all glasses with different haze targets showed more than 90% transmittance within the visible
light wavelength band and they showed a difference in transmittance of less than 3% compared to
bare glass. Through this work, it is expected that it can be used as a surface treatment technique in
various application fields that require various haze values through sandblasting in an environmentally
friendly way.
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